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Investigation of complex nonlinear 
dynamic behaviors observed 
in a simplified driveline system 
with multistage clutch dampers
Jong‑Yun Yoon1 & Byeongil Kim2*

The results of the harmonic balance method (HBM) for a nonlinear system generally show nonlinear 
response curves with primary, super-, and sub-harmonic resonances. In addition, the stability 
conditions can be examined by employing Hill’s method. However, it is difficult to understand the 
practical dynamic behaviors with only their stability conditions, especially with respect to unstable 
regimes. Thus, the main goal of this study is to suggest mathematical and numerical approaches to 
determine the complex dynamic behaviors regarding the bifurcation characteristics. To analyze the 
bifurcation phenomena, the HBM is first implemented utilizing Hill’s method where various local 
unstable areas are found. Second, the bifurcation points are determined by tracking the stability 
variational locations on the arc-length continuation scheme. Then, their points are defined for various 
bifurcation types. Finally, the real parts of the eigenvalues are analyzed to examine the practical 
dynamic behaviors, specifically in the unstable regimes, which reflect the relevance of various 
bifurcation types on the real part of eigenvalues. The methods employed in this study successfully 
explain the basic ways to examine the bifurcation phenomena when the HBM is implemented. Thus, 
this study suggests fundamental method to understand the bifurcation phenomena using only the 
HBM with Hill’s method.

The harmonic balance method (HBM) is efficiently used to investigate nonlinear dynamic behaviors in a tor-
sional system induced by piecewise-type nonlinearities under sinusoidal input conditions, especially to examine 
multiple numbers of periodic responses1–16. In addition, Hill’s method can be employed to reveal the stability 
conditions, while the system analysis is conducted under the frequency up- or down-sweeping conditions5,6,17. 
However, the incremental HBM employed in this study has some limitations in examining complex dynamic 
behaviors because the basic mathematical model is constructed based on integer valued harmonic terms5,6. In 
addition, the employed Hill’s method can only project the information of the stability conditions. Thus, it is dif-
ficult to recognize the practical dynamic behaviors that occur in the physical system, especially regarding the 
unstable regimes determined by Hill’s method.

Many studies have been conducted to resolve these problems. For example, nonlinear output frequency 
response functions (NOFRFs) as a type of HBM have been suggested to examine the nonlinear motions of the 
Duffing oscillator10. In this study, NOFRFs in strong nonlinear equations were implemented by employing the 
Volterra series to extend the classic FRF to nonlinear cases. The incremental harmonic (IHB) method was used to 
investigate the limit cycle oscillation of a two-dimensional airfoil with parameter variability in an incompressible 
flow11. Here, the strong nonlinear cubic stiffness subject to non-probability was estimated using the IHB method. 
In addition, an excitation perturbation method to trigger a sub-harmonic resonance has been suggested18. To 
capture the sub-harmonic effects, we artificially modified the input conditions with respect to the relevant sub-
harmonic input terms. In addition, various prior studies have been conducted to examine the nonlinear dynamic 
responses in a torsional system with clearance-type nonlinearities by employing a multiterm HBM19–24.

Based on prior studies of various nonlinear analysis problems, this study suggests a method to investigate the 
bifurcation characteristics using both the HBM and Hill’s method. Thus, the specific objectives of this study are 
as follows: First is to suggest a method to determine the bifurcation point (BP) of the HBM solutions with respect 
to the arc-length vector. Here, the BPs are defined along with the saddle node relevance by estimating the angles 
of the arc-length from the unit vector. Second is to investigate the relationship of the eigenvalue real parts on 
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the bifurcation characteristics. In general, the unstable regimes—except for the saddle-node—are closely related 
to the various bifurcation types, such as period-doubling, quasi-periodic, and chaotic responses, which can be 
anticipated along with the positive valued eigenvalue real parts. To achieve these goals, we focus on a torsional 
system with 1-DOF induced by piecewise-type nonlinearities6,25. In addition, the damping value will be given 
with a specific one, since the nonlinear effects at the super- and sub-harmonic regimes are generally reduced or 
faded away along with increasing the damping6.

Problem formulation and mathematical model
Practical system and its schematic.  Figure 1a illustrates the simple driveline system composed of the 
1st mass for the engine and 2nd mass comprising the transmission, drive shaft, and wheel. Here, the 2nd mass 
is lumped with an equivalent inertia value derived from the inertia values of the gears, driveshafts, and wheels6. 
The input torque flows from the 1st mass into the 2nd mass, where the fluctuation of the input torque is isolated 
by the clutch dampers, as illustrated in Fig. 1a. By assuming that the inertia value of the 2nd mass is much greater 
than that of the 1st mass, the practical system can be considered as a single degree-of-freedom (DOF) system, 
as shown in Fig. 1b, where the 2nd mass is simply assumed as a ground. Thus, a nonlinear system with 1-DOF 
can be developed as a part of driveline focused on the rotational motion of the 1st mass and multi-staged clutch 
dampers based on prior studies6,25. Here, the 1st mass is considered as a lumped system, including the crankshaft 
and flywheel of the engine. To investigate the dynamic characteristics, the employed parameters for the torsional 
system shown in Fig. 1b are as follows: inertia of flywheel, If = 1.38 × 10−1 kg m2; viscous damping, cf = 1.59 N m s/
rad. In addition, the definitions of other parameters in Fig. 1b are input torque, TE, drag torque, TD, and clutch 
torque, fn

(

θf , θ̇f
)

 , which will be explained in detail later. Here, θf  and θ̇f  are the angular displacement and veloc-
ity of the flywheel (subscript f), respectively, as indicated in Fig. 1b.

System modeling with piecewise type nonlinearities.  The principle of piecewise-type nonlineari-
ties, marked with a red dotted line in Fig. 1b, are depicted in Fig. 2. The basic profile of piecewise-type nonlin-
earities induced by the multi-staged clutch dampers is shown in Fig. 2a, where kCi (i = 1, 2, 3, 4) are the stages of 
stiffness. In general, the clutch force is affected by various factors, and the input torque is transferred from the 
engine to the rest of the driveline system6. First, the clutch torque TS induced by multi-staged linear springs is 
considered, as shown in Fig. 2b, where φp1 and −φn1 are the transition angles on the positive and negative sides, 
respectively. Second, another clutch torque TH is induced by the dry friction between the clutch plate and friction 
materials, as depicted in Fig. 2c. Third, the preload, TSPr, must also be considered based on the design concepts 
along with various practical conditions. As Fig. 2b–d show only the two stages of relevant components to clutch 
forces, more stages of clutch force components will be included for the practical system. The other parameters 
will be explained while deriving the mathematical description below.

For the employed piecewise-type nonlinearities, the nonlinear force fn
(

θf , θ̇f
)

 (or TC) can be developed by 
mathematical formulation, as depicted in Fig. 2a6,25. First, the clutch torque TS

(

θf
)

 is derived from the stiffness 
with a smoothing factor σC employed as 1× 103 , as follows:

(1)TS

(

θf
)

= kC1θf +
1

2

N
∑

i=2

(

kC(i) − kC(i−1)

)(

Tsp(i−1) − Tsn(i−1)

)

,

(2)Tsp(i) =
(

θf − φp(i)
)[

tanh
{

σC
(

θf − φp(i)
)}

+ 1
]

,

(3)Tsn(i) =
(

θf + φn(i)
)[

tanh
{

σC
(

θf + φn(i)
)}

− 1
]

.

Figure 1.   Practical system and its schematic diagram with piecewise type nonlinearities: (a) a simplified 
driveline system with multi-staged clutch dampers; (b) a torsional system with 1DOF affected by piecewise type 
nonlinearities.



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9834  | https://doi.org/10.1038/s41598-022-13833-7

www.nature.com/scientificreports/

Here, kC(N) (or kC(i)) is the Nth (or ith) stage of the clutch stiffness (with subscript N or i), Tsp(i) (or Tsn(i)) is 
the positive (or negative) side of the clutch torque induced by the stiffness at the ith stage (with subscript p or 
n), and φp(i) (or − φn(i) ) is the ith transition angle of the positive (or negative) side. Second, the clutch torque TH 
induced by dry friction is derived by a smoothing factor σH of 0.1.

Here, HN (or H(i)) is the Nth (or ith) stage of hysteresis (with subscript N or i), and THp(i) (or THn(i)) is the 
positive (or negative) side of the clutch torque induced by hysteresis at the ith stage (with subscript p or n). In 
addition to the torque calculated using Eqs. (1)–(6), the preload TPr must be considered as a function of θ1pr.

Here, TSPr is the total clutch torque induced by the pre-load; TPr1 (or TPr2) is the positive (or negative) torque 
induced by the pre-load; and φPr is the angle located at the pre-load. Overall, the total clutch torque is estimated 
by the summation of TS

(

θf
)

 , TH

(

θf , θ̇f
)

 , and TSPr

(

θ1pr
)

 from Eqs. (1)–(7), as follows:

The properties of the clutch torque fn
(

θf , θ̇f
)

 (or TC) employed are listed in Table 1. Finally, the practical 
clutch torque profile can be calculated using Eqs. (1)–(8), as illustrated in Fig. 2a.

Basic equation and development of HBM.  The basic equation of motion for the torsional system, 
which includes the nonlinear function fn

(

θf , θ̇f
)

 shown in Fig. 1b, is derived as follows:

(4)TH

(

θf , θ̇f
)

=
H(N)

2
tanh

(

σH θ̇f
)

+
∑N

i=2

(

H(i)

4
−

H(i−1)

4

)

[

THp(i−1) + THn(i−1)

]

,

(5)THp(i) = tanh
{

σC
(

θf − φp(i)
)}[

1+ tanh
(

σH θ̇f
)]

,

(6)THn(i) = tanh
{

σC
(

θf + φn(i)
)}[

1− tanh
(

σH θ̇f
)]

.

(7)TSPr

(

θ1pr
)

=
1

2
TPr1

[

tanh
(

σCθ1pr
)

+ 1
]

+
1

2
TPr2

[

−tanh
(

σCθ1pr
)

+ 1
]

, θ1pr = θf − φPr .

(8)fn
(

θf , θ̇f
)

= TC

(

θ1pr , θ̇1pr
)

= TS

(

θ1pr
)

+ TH

(

θ1pr , θ̇1pr
)

+ TSPr

(

θ1pr
)

.

(9)If θ̈f (t)+ cθ̇f (t)+ fn
(

θf , θ̇f
)

= TE(t)− TD .

Figure 2.   Asymmetric torque TC(δ1) profile induced by multi-staged clutch dampers: (a) the overall clutch 
torque profile; (b) the nonlinear force induced by multi-staged clutch springs; (c) the hysteresis induced by 
multi-staged friction force; (d) the preload based on asymmetric design concept.
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Here, TE(t) and TD are the sinusoidal input and drag torques, respectively. In this study, the input torque is 
given by Fourier coefficients based on the measured data as follows:

Here, Tm and Tpi are the mean and alternating parts of the input torque, respectively; ωp and ϕpi are the excita-
tion frequency and phase angle, respectively; and Nmax is the maximum number of harmonics correlated with 
the harmonic index of the HBM. The input torque profiles employed are listed in Table 2.

In this study, the drag torque is assumed as TD = Tm under steady-state conditions. To find out the nonlinear 
dynamic behaviors, this study will employ the harmonic balance method (HBM) since the HBM generally give 
the frequency and time domain solutions simultaneously under the steady-state and frequency sweeping condi-
tions. Also, while the simulation is conducted, stability conditions can be efficiently determined by employing 
the Hill’s method5,6,27. The Galerkin scheme of Eq. (10) is expressed as follows:

Then, its corresponding formulae are defined as follows:

(10)TE(t) = Tm +

Nmax
∑

i=1

Tpicos
(

iωpt + ϕpi
)

.

(11)−ω2mHP
′′θc + ωcHP

′θc + fn

(

θf , θ̇f
)

− FE(t) = 0.

(12)θf (t) = Hθc , θf (t) =
[

θf (t0) θf (t1) . . . θf (tm−2) θf (tm−1)
]T
,

(13)θc =
[

θm θa(1) θb(1) · · · θa(k) θb(k) · · · θa(ηNmax ) θb(ηNmax )

]T
,

(14)H =













1 · · · cos(kψ0) sin(kψ0) · · ·

1 · · · cos(kψ1) sin(kψ1) · · ·

. . .
. . .

1 · · · cos(kψN−2) sin(kψN−2) · · ·

1 · · · cos(kψN−1) sin(kψN−1) · · ·













, H′ = ωHP
′, H′ = −ω2

HP
′,

Table 1.   Properties for the piecewise type nonlinearities based on the practical system.

Property Stage Value

Torsional stiffness, kCi (Linearized in a piecewise manner) (Nm/rad)

1 10.1

2 61.8

3 595.8

4 1838.0

Hysteresis, Hi (Nm)

1 0.98

2 1.96

3 19.6

4 26.5

Transition angle at positive side (θf > 0), φpi (rad)

1 0.05

2 0.16

3 0.30

4 0.39

Transition angle at negative side (θf < 0), φni (rad)

1  − 0.04

2  − 0.05

3  − 0.09

4  − 0.15

Table 2.   Employed input torque profiles from the engine dynamometer test.

Torque component

Magnitude 
(Nm)

Phase (rad)TM Tp1

168.9 251.5 − 1.93
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Likewise, its nonlinear and input functions are defined as follows:

The relevant variables used are ωt = ψ and ω = ω
ωn

 , where ωn is the non-dimensionalized time scale and 
normalized frequency value with the natural frequency; T = ητ is the concerned time period with respect to 
0 ≤ t < T → 0 ≤ ψ < 2π

ωn
 ; η is the sub-harmonic index; τ is the fundamental excitation frequency; and k is the 

incremental index as k = ωn, 2ωn, 3ωn . . . . By employing the relationship between θ̇ (t) = dθ
dt = ω dθ

dψ = ωθ ′ and 
θ̈ (t) = ω2θ ′′ , the overall Galerkin scheme of the basic equation of Eq. (11) is expressed as follows:

To determine the solutions for θc  and ̟  for each step, the Newton–Raphson method is implemented under 
the condition � → 0 , where �  is considered as a function of θc  and ̟  such that �

(

θc ,̟
)

 . A detailed explana-
tion about these parameters and their use can be found in previous studies6.

Initial results with frequency upsweeping condition
Figures 3 and 4 show the initial results obtained by the HBM with η = 2 and Nmax = 24 under the frequency 
upsweeping condition. Figure 3 compares the results based on two different methods such as the HBM and the 
numerical simulation (NS), which reflects good correlations except for the sub-harmonic resonance area. Moreo-
ver, the Hill’s method is employed to determine the stability condition as shown in Fig. 45,6,17. For this study, the 
valid components of the input torque vector with η = 2 and Nmax = 24 are given as Fm = 168.9 , Fa(2) = −87.97 , and 
Fb(2) = 235.65 in Eq. (18). Here, the employed values, η =2 and Nmax = 24 were enough to project the nonlinear 
effect when the simulations from the HBM are compared with the numerical simulation (NS)5,6,27. In general, 
the employment of values for η and Nmax differs depending on the various types of nonlinearities. Also, the other 
issues such as a convergence and number of index numbers for η and Nmax can be referred5,6,27.

To examine the sub-harmonic responses, the components of the input torque pertaining to the sub-harmonic 
locations, such as Fa(1) and Fb(1) , are Fa(1) = εFa(2) and Fb(1) = εFb(2) . Here, ε is taken as equal to 1× 10−5 . To 
obtain the sub-harmonic responses, a small range of excitation input values are artificially employed18. Figure 4a 
shows the simulated results, including both super- and sub-harmonic resonances, marked with red dotted cir-
cles. In addition, the resonant areas of (b) and (c) in the red dotted circles are more concentrated in Fig. 4b,c, 
respectively. When the super- and sub-harmonic resonances are examined, the stability variational conditions, 
such as stable to unstable (STU) and unstable to stable (UTS) conditions, are clearly observed. In addition, the 
STU and UTS conditions are simultaneously considered with the direction of the arc-length solution, as indi-
cated by (1) and (2) in Fig. 4b,c. For example, the regimes indicated as (1) in Fig. 4b,c show that the directions of 
solutions are changed from facing the same direction as frequency upsweeping to facing the opposite direction 
under STU or UTS conditions.

(15)P
′ =

















0

. . .
�

0 k
−k 0

�

. . .

















, P
′′

=

















0

. . .
�

k2 0

0 k2

�

. . .

















.

(16)fn

(

θf , θ̇f
)

= Hfnc , FE(t) = HFEc ,

(17)fnc =
[

fm fa(1) fb(1) · · · fa(k) fb(k) · · · fa(ηNmax) fb(ηNmax)

]T
,

(18)FEc =
[

Fm Fa(1) Fb(1) · · · Fa(k) Fb(k) · · · Fa(ηNmax) Fb(ηNmax)

]T
.

(19)H� = 0,� = −ω2mP
′
θc + ωcP′θc + fnc − FEc = 0.

Figure 3.   Initial results of nonlinear frequency responses with RMS by comparing the HBM and NS. Key: black 
line, the HBM result with ζ = 0.05; red open circle, NS under the frequency upsweeping; blue plus, NS under the 
frequency down-sweeping.
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However, the regimes indicated as (2) always follow the same direction as frequency upsweeping for both 
STU and UTS conditions. Based on prior studies, the regimes marked as (1) are expected to clearly show that the 
jumping phenomenon occurs; the phenomenon is normally known as the saddle-node points that are observed 
at slightly different locations based on the frequency upsweeping or down-sweeping conditions. In general, a 
representative saddle-node bifurcation is clearly observed in the primary resonant area, as shown in Fig. 4a. 
However, regarding the regimes (2) with unstable conditions, as shown in Fig. 4b,c, it is difficult to anticipate 
specifically whether the simulated results under STU occur in the practical system or they just project theories 
from the HBM using Hill’s method. Thus, more techniques must be considered to understand the nonlinear 
dynamic behaviors with respect to the bifurcation characteristics.

Examination of primary, super‑, and sub‑harmonic resonances
As a first step to examine the nonlinear dynamic behaviors, different resonant areas such as primary, super-, 
and sub-harmonic resonances are determined, as shown in Fig. 5. To define the various resonant regimes, basic 
linear concepts for the half-power method can be employed26. For example, the relationships between the Q 
factor location and the half power location lead to the following basic equations:

(20)
1

2ζ
=

ωn

�ω
, �ω = ω2 − ω1,

(21)ζ =
�ωn

2
, �ωn =

�ωn

ωn
,

(22)ω1 ≈ ωn −
�ωn

2
= ωn − ζ ,

Figure 4.   Nonlinear frequency response with RMS reflecting the stability conditions under the frequency 
upsweeping: (a) RMS values with super- and sub-harmonic regimes; (b) super-harmonic response area; (c) sub-
harmonic response area. Key: red open circle, stable solutions; blue plus, unstable solutions.

Figure 5.   Nonlinear frequency responses focused on super-harmonic regimes with RMS values. Key: red open 
circle, stable solutions; blue plus, unstable solutions.
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Here, ωn , ω1 , and ω2 are the natural frequency and the lower and higher values of half power locations for the 
linear system, respectively. In addition, ωi (with i = 1, 2) is the normalized frequency value of ωn . Thus, this study 
employs the same concepts to define different resonant areas based on Eqs. (22) and (23). Figure 5a illustrates 
the comparisons of the HBM results with various damping ratios using backbone curves. Here, Bω  is the basic 
backbone curve, which is estimated under no input or damping conditions27. In addition to the basic Bω  curve, 
two more backbone curves transferred from Bω  along the ω axis can be calculated as follows:

Figure 5a shows three cases of HBM results for ζ = 0.03, 0.05, and 0.1, via a comparison of the backbone 
curve Bω  and the transferred backbone curves. Here, assuming that the concepts in Eq. (20)–(23) for the linear 
system can be approximately employed for the nonlinear system, the cross points of  Bω1 and Bω2 with respect to 
the HBM result with ζ = 0.05 are considered as ω1 and ω2 as indicated in Fig. 5a,b. Based on Eq. (24), the local 
resonances are obtained, which are normally defined as primary, super-, and sub-harmonic resonances, along 
with different frequency response regimes. Thus, when the bifurcation point (BP) is estimated by focusing on 
the frequency upsweeping condition in this study, the simulation can simultaneously recognize their relevant 
regimes for the primary, super-, and sub-harmonic responses by employing the values ω1 and ω2 calculated from 
Eq. (24). Figure 5b shows the different resonant areas referenced by ω1 and ω2 . For example, the areas marked 
with (1), (2), and (3) indicate the primary, super, and sub-harmonic resonances, respectively. In addition, the 
primary resonance is normally affected by the saddle-node BP, as shown in Fig. 5b.

Investigation of saddle‑node bifurcation point
As a second step to determine the BPs, the locations where the stability conditions vary can be determined. 
In general, bifurcation occurs when the real parts of the eigenvalues are zero28. In addition, if the variational 
condition of arc-length directions at a specific point is examined, then the bifurcation characteristics in the next 
steps of the solutions can be determined in terms of saddle-node or other types of bifurcations. To determine the 
saddle-node BP, the direction of the arc-length vector can be estimated. Here, by assuming the physical dynamic 
behaviors at the saddle-node BP are directly correlated with the jumping phenomena, as clearly observed in 
Figs. 4 and 5, the angle at this point is deduced to be 90° under STU or UTS conditions. To calculate and deter-
mine the saddle-node point, the angle between the arc-length and unit vectors can be estimated. Figure 6 depicts 
the various cases of arc-length vectors and their angles with unit vectors.

Here, the unit vectors with the 2ηNmax + 1 number of components along with the size of HBM matrices and 
vectors are defined as follows:

Thus, the unit vectors are always in the horizontal direction, which are referenced to calculate the angles of 
the arc-length vector �si  (with i = a1, b1, and a) from uω  or −uω  at each step, as indicated in Fig. 6. Here, θa1 , 
θb1 , θa , and θb are certain points of solution that determine the BPs. To calculate the angles constructed by each 
arc-length with the unit vectors, the basic concept of inner product can be used, as follows:

While ϕi is estimated, uω  or −uω  must be chosen based on the frequency up- or down-sweeping conditions, 
respectively. For the locations of  θa1 and θb1 , the composed angles ϕa1 (or ϕb1 ) between �sa1 (or �sb1 ) and  uω  

(23)ω2 ≈ ωn +
�ωn

2
= ωn + ζ .

(24)Bω1 = Bω − ζ ,Bω2 = Bω + ζ .

(25)uω =
[

0 · · · 1
]T
,−uω =

[

0 · · · −1
]T
.

(26)ϕi =
�uω , �si�
∣

∣uω

∣

∣

∣

∣�si

∣

∣

, i = a1, b1, a and b.

Figure 6.   Particular points of nonlinear frequency responses by considering the angles between the arc-length 
and unit vectors.
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(or −uω  ) are much less than 90°. However, other points, such as θa and θb show much stiffer variational changes 
in angles, then their angles approach 90°. For example, when the arc-length vector around θa changes its direc-
tion from the frequency upsweeping to the opposite direction, �s

k
a at the prior step finally reaches �s

k+1
a  at the 

current step, where the composed angle between �s
k+1
a  and uω   becomes 90°. Again, when the arc-length vector 

around θb changes its direction from the opposite to the frequency upsweeping direction, �s
k
b  goes to �s

k+1
b  , 

which is at 90° with uω  . Based on the given variational conditions, the angle index can be determined as follows:

Because ϕi is calculated numerically while the HBM is conducted, the angles obtained are approximately 90°. 
Thus, the absolute value |ϕi| is used to determine the difference from 90°. Here, |ϕi| is considered as approximately 
90° if �ϕ < εϕ , where the index number εϕ is π/180 rad. Thus, if the condition �ϕ < εϕ is satisfied, this point 
is determined as a saddle-node point. Overall, the examination of �ϕ with respect to the stability conditions—
namely, STU and UTS—leads to two different bifurcation conditions, such as saddle-node and other types of 
bifurcations, as summarized in Table 3.

Figure 7a clearly shows the saddle-node and other bifurcation points determined by Eqs. (25)–(27). In addi-
tion, the distribution of �ϕ under the frequency upsweeping condition is shown in Fig. 7b, where the saddle-node 
points indicated by red rectangles are located near 90°. Except for the saddle-node points, other BPs illustrated 
with green circles are located below or away from 90°; their relationships are described in Eq. (27).

Figure 8a–c show the BPs in more detail by focusing on the primary, super-, and sub-harmonic resonant areas, 
as indicated by (1), (2), and (3) in Fig. 7a, respectively. From the results illustrated in Fig. 8, it can be observed 
that the saddle-node BPs are located at the jump phenomena points, whereas the other BPs follow the frequency 
upsweeping direction. In addition, the multiple saddle-node points found at the primary resonance are due to 
numerical problems during the HBM process, which will be further investigated in a future work.

Examination of eigenvalues for the bifurcation characteristics
The saddle-node BP is clearly revealed along with the estimation of the arc-length direction based on frequency 
upsweeping in this study, as shown in Figs. 5, 7, and 8. However, other BPs relevant to the period-doubling, quasi-
periodic, and chaotic cascades are not clearly observed from the previous techniques. To analyze other types of 
bifurcations, the real parts of eigenvalues Re(λ) will be examined. To determine the relationships between Re(λ) 
and the bifurcation characteristics, the distribution of positive Re(λ) with respect to the overall number of Re(λ) 
is first examined. The positive Re(λ) is correlated with the unstable condition of the system responses. Second, 
a reference value of Re(λ), such as the maximum positive Re(λ), is investigated over the range of frequencies 
for the super- and sub-harmonic resonances. Figure 9 shows the two properties previously described. Figure 9a 
shows the distribution of positive Re(λ) values over all numbers of Re(λ), calculated as follows:

(27)�ϕ =

∣

∣

∣

π

2
− |ϕi|

∣

∣

∣
(with i = a1, b1, a, and b).

Table 3.   Bifurcation characteristics along with various angles between the arc-length and unit vectors under 
the stability variational conditions.

Stability conditions Conditions of �ϕ Characteristics of bifurcation points

Stable → unstable (STU)
�ϕ < εϕ Saddle-node

�ϕ > εϕ Period-doubling cascade/quasi-periodic/chaotic

Unstable → stable (UTS)
�ϕ < εϕ Saddle-node

�ϕ > εϕ Stable

Figure 7.   Comparisons of bifurcation points with stability conditions: (a) various bifurcation points along with 
primary, super-, and sub-harmonic resonant areas; (b) relationship of bifurcation points to the angles between 
the arc-length and unit vectors. Key: red open square, saddle-node points; green open circle, bifurcation points 
other than saddle-node; black line, HBM solutions.
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In addition, Fig. 9b shows the positive maximum values of Re(λ) over the range of our simulation. Here, 
Emax is defined as the maximum positive Re(λ). The results in Fig. 9a,b show that significant values around the 
super- and sub-harmonic resonances are distributed, especially when they are compared with the HBM results 
given in Figs. 5, 7, and 8.

Figure 10 compares the HBM results at the super-harmonic resonance with Ed and Emax. As marked by (A), 
(B), (C), and (D), the relevance of Ed and Emax to the bifurcation characteristics is clearly observed. For instance, 
regimes (A) and (C) do not have any Ed and Emax, where any complex bifurcation is expected, as shown in 
Fig. 11. As shown in Fig. 11, regimes (A) and (C) are related to super-harmonic resonance and period-doubling. 
However, regimes (B) and (D), where more complex dynamic behaviors are revealed, show effective Ed and Emax 
values, as shown in Fig. 10b,c. When the range of Ed and Emax values in regimes (B) and (D) are examined, Ed 
and Emax in regime (D) are higher than those in regime (B). For example, Ed in regime (B) is lower than 0.45, as 
shown in Fig. 10b. In contrast, Ed in regime (D) is higher than 0.45. Likewise, Emax in regime (B) is lower than 
4. However, Emax in regime (D) is higher than 4. When these results are compared to the numerically simulated 
bifurcations, as shown in Fig. 11, regimes (B) and (D) are affected by the period-doubling cascade and chaotic 
responses, respectively.

(28)Ed =
Numbers of positive Re(�i)

Total numbers of Re
(

�j

) with i, j = 1, 2, . . . .

Figure 8.   Bifurcation points along with various resonant areas: (a) bifurcation points at the primary resonance; 
(b) bifurcation points at the super-harmonic regime; (c) bifurcation points at the sub-harmonic regime. Key: red 
open square, saddle-node point; green open circle, bifurcation points other than saddle-node; black line, stable 
solutions; blue plus, unstable solutions.

Figure 9.   Positive values in the real part of eigenvalues: (a) Ed in the real part of eigenvalues; (b) EMax in the 
real part of eigenvalues.
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In addition, Figs. 12 and 13 show a strong relationship between the bifurcation characteristics and the proper-
ties of Ed and Emax at sub-harmonic resonance. Here, regimes (A) and (B) do not show any values of Ed and Emax, 
where the sub-harmonic and period-doubling responses are observed, as shown in Fig. 13. However, Ed and Emax 
in regimes (C) and (D), where more complex dynamic behaviors are observed, show higher values, as shown in 
Fig. 12b,c. For instance, Ed values in regimes (C) and (D) vary between 4.5 and 5. In addition, while the nonlinear 
dynamic behaviors are more complex, the level of Ed reaches approximately 0.5. Moreover, Emax increases when 
the dynamic behaviors change from period-doubling cascade to chaotic response, as shown in Fig. 13.

Conclusion
This study investigated nonlinear dynamic responses by examining bifurcation characteristics and their relevant 
properties. In particular, to anticipate complex dynamic behaviors, arc-length vectors and properties of eigen-
values were estimated by employing the HBM. The contributions of this study are as follows: First, this study 

Figure 10.   Comparison of bifurcation points with the distribution of eigenvalues at the super-harmonic 
response regime: (a) various bifurcation points; (b) Ed along with various stability conditions; (c) EMax along 
with various stability conditions. Key: red open square, saddle-node point; green open circle, bifurcation points 
other than saddle-node; black line, stable solutions; blue plus, unstable solutions.

Figure 11.   Comparison of HBM and bifurcation diagram with RMS values focused on super-harmonic 
response regime: Key: black line, HBM result with stable condition; red plus, HBM result with unstable 
condition; blue filled circle, bifurcation diagrams.
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suggested the numerical techniques to determine BPs on the HBM solutions by estimating the direction of the 
arc-length vector. From the given results, the BPs were defined as either saddle-node BPs or other types of BPs. 
Second, the relationships between the bifurcation characteristics and the properties of the eigenvalue real parts, 
such as Ed and Emax, were investigated. Based on these results, while the bifurcation became more complex, Ed 
and Emax became higher than those in other areas.

There are several possibilities for future research based on the unfinished tasks in this study. For example, 
the primary resonance has multiple saddle-node points, as shown in Figs. 7a and 8a. In addition, the bifurca-
tion phenomena above ̟ = 1.06 are still to be analyzed using the results shown in Fig. 4a, which were not fully 
examined here. These issues will be investigated as the next stage of our research.

Received: 24 September 2021; Accepted: 30 May 2022

Figure 12.   Comparison of bifurcation points with the distribution of eigenvalues at the sub-harmonic response 
regime: (a) various bifurcation points; (b) Ed along with various stability conditions; (c) EMax along with various 
stability conditions. Key: red open square, saddle-node point; green open circle, bifurcation points other than 
saddle-node; black line, stable solutions; blue plus, unstable solutions.

Figure 13.   Comparison of HBM and bifurcation diagram with RMS values focused on sub-harmonic response 
regime: Key: black line, HBM result with stable condition; red plus, HBM result with unstable condition; blue 
filled circle, bifurcation diagrams.
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