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Partial randomized benchmarking
Kirill Dubovitskii1 & Yuriy Makhlin2,3*

In randomized benchmarking of quantum logical gates, partial twirling can be used for simpler 
implementation, better scaling, and higher accuracy and reliability. For instance, for two-qubit 
gates, single-qubit twirling is easier to realize than full averaging. We analyze such simplified, partial 
twirling and demonstrate that, unlike for the standard randomized benchmarking, the measured 
decay of fidelity is a linear combination of exponentials with different decay rates (3 for two qubits and 
single-bit twirling). The evolution with the sequence length is governed by an iteration matrix, whose 
spectrum gives the decay rates. For generic two-qubit gates one slowest exponential dominates 
and characterizes gate errors in three channels. Its decay rate is close, but different from that in the 
standard randomized benchmarking, and we find the leading correction. Using relations to the local 
invariants of two-qubit gates we identify all exceptional gates with several slow exponentials and 
analyze possibilities to extract their decay rates from the measured curves.

Efficient quantum computers will require calibration of quantum gates to evaluate the effects of environment 
and noise and to enable quantum-error  correction1–3. Because of the requirements of the threshold theorem for 
fault-tolerant quantum  computations4–7, it is important to quantitatively describe such errors. Various approaches 
have been suggested in order to characterize the gates. In general, a non-ideal quantum gate is a superoperator 
on density matrices rather than a unitary, and its deviation from the ideal gate is described by a collection of 
numbers, which grows very fast with the number of qubits. The direct quantum process  tomography8–10 gives 
a full description. While the gate set  tomography11–14 can already be performed on two qubits, for n qubits a 
complete description of a noise model without any assumptions about its structure requires O(24n) parameters, 
so that it quickly becomes  intractable15,16 in spite of further improvements like the compressed  sensing17,18.

Randomized benchmarking (RB)19–21 has a more advantageous scaling and provides a single overall metric 
for the error level instead of full characterization of its structure. Random gate sequences are tested, and the 
sequence fidelity decays exponentially with its length. This allows one to enhance and measure small gate errors 
in current and prospective quantum-information devices and also makes it robust to state preparation and 
measurement  errors22.

While RB characterizes a set of unitary gates, a specific gate can be tested using the interleaved  RB23–25 (IRB), 
where a random gate sequence is interleaved with applications of this specific gate. Effectively, this implies 
averaging of the tested gate over unitary rotations, the so called twirl operation. The resulting averaged gate is a 
depolarizing  channel19, characterized by a single number, which can be measured to quantify the fidelity of the 
tested gate. Instead of impractical sampling of random gates from the full unitary group, standard RB procedures 
rely on random Clifford gates, since the Clifford twirl can be substituted for a full unitary  twirl26, because the 
Clifford group Cn is a 2-design22,26,27.

With the current advance of experimental techniques, the Clifford randomized benchmarking can be rou-
tinely performed on a small number of  qubits28,29, and the question of interest is extension of these techniques 
to larger qubit systems. This is not straightforward since the complexity grows, albeit polynomially, with the 
number of qubits (even though one only needs to sample from the fast growing Clifford group), because of the 
gate compilation  complexity22,30. The Clifford RB is widely used for one-two qubit systems, but experiments even 
with three qubits are  rare31, see discussion in Ref.32.

Various generalizations and modifications of RB are discussed in the literature as well as research to better 
understand the accuracy of fidelity estimates from RB under various conditions. Apart from developments of 
IRB, for example, direct RB with application of many gates in parallel was  studied32 and the cross-entropy bench-
marking (XEB) was  demonstrated33. Here we analyze twirling over a subgroup of the full Clifford (or unitary) 
group in order to address certain problems of the standard IRB and to simplify and optimize the RB  protocol34. 
Specifically, we consider C⊗n

1 -twirls, i.e., the use of random single-qubit gates  only15. This problem is of interest 
for current and future analysis of quantum benchmarking. On one hand, in this approach the gate-compilation 
problem does not arise, facilitating scaling to larger systems. Furthermore, already for two qubits the use of 
random single-qubit instead of two-qubit gates ( C⊗2

1 -twirl discussed below) saves resources since the former 
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are typically faster and have higher fidelity, which improves the accuracy (confidence interval) of gate-fidelity 
estimates. In contrast, comparison against non-interleaved sequences in C2 (or Cn ) IRB is only approximate, since 
contributions of errors in random Cliffords and the interleaved gate do not necessarily add up unless one of 
these error channels is  depolarizing23,35. This increases the confidence interval of the fidelity estimate in  IRB23,35.

These remarks are of special importance for experiments with logical qubits (built of several physical qubits 
in quantum-error correction architectures), since they may be challenging, and high-quality two-qubit gates 
may be in short supply, so that any overhead here may be a concern for some  time34. Further, C⊗2

1 -twirling may 
be convenient if one tests an idle or a single-qubit gate on two qubits in order to directly address decoherence or 
cross-talk and spurious  interactions36. Moreover, the standard C2 IRB was found to perform poorly in this kind 
of setting, when the interleaved gate is of higher fidelity than the random  Cliffords35.

While most experiments implement the full  IRB24,25, C⊗2
1 -twirling was also used in some  cases37,38. C⊗n

1 -twirls 
would simplify the procedure, take less resources, and allow to use RB easier even on pairs of qubits including 
within larger systems and as a part of more complex manipulations. The need for less resource-intensive nature 
of such partial twirling becomes more acute for multi-qubit systems, and the use of our analysis of partial twirls 
here may be promising, although it requires further developments, in particular, of the theory of local invariants 
to complete exhaustive analysis of regular and exceptional gates (with one or more dominating decay factors, see 
below). Nevertheless, it is important to realize that such partial twirling is not universally effective for all logical 
gates and be able to understand when it is useful and when not.

It is apparent from the experimental  data37,38 and expectations that this approach based on the single-qubit 
subgroup produces substantial twirling. However, it is not necessarily complete, and the question arises, which 
information it provides. We analyze such partial twirls for the case of two qubits in this article. We note that 
the effect of the C⊗n

1 -twirl, with averaging over single-qubit unitaries, was studied in Ref.15 and for the case of 
simultaneous RB in Refs.25,36. Related questions for multiqubit systems were addressed recently with a discus-
sion of RB  generalizations31,39,40. For Clifford-subgroup twirling, it was  shown34 that in general the space of 
qubit density matrices is decomposed into independent blocks with different decay factors in these blocks (cf. 
the discussion of three decay  factors36).

The approach, developed in the current article, allowed us not only to analyze the benchmarking of generic 
gates but also to find all exceptional gates and fully analyze the IRB in all these exceptional cases with the possi-
bility to extract more information from a simpler experimental procedure. We demonstrate that the dynamics of 
the noise-averaged evolution operator as a function of the length of the RB gate sequence can be described with a 
linear markovian operator. We find this operator explicitly, using local invariants of the gate. Its eigenvalues pro-
vide the decay rates for the measured fidelity in partial-RB experiments, and accordingly, the generic IRB decay 
curve is a linear combination of several exponentials, cf.25,34,39. For generic two-qubit gates, the fidelity decay is 
dominated by a single exponential, which is close, but not identical, to the result of the standard RB, and we find 
the deviation of these quantities. Furthermore, we complete the exhaustive analysis by finding all exceptional 
gates, when more than one exponent is visible in the decay curves, and demonstrate how the RB fidelities can 
be extracted from the data in these cases. In the opposite limit, we find a family of two-qubit gates, which can be 
viewed as especially suited for partial RB, since only one decay factor is non-vanishing. The presented analysis 
can be generalized to situations with more qubits or larger subsystems ( C1 ⊗ C2 , C⊗3

1  twirls etc.).

Full interleaved randomized benchmarking
Here we briefly summarize some basic properties of the RB procedure, needed for our analysis of the partial 
IRB below. Detailed accounts can be found, e.g., in Refs.19,22,27,41. In particular, we introduce some notation and 
describe certain assumptions, some customary for RB and some used in this paper to enhance the focus on 
basic properties of the partial RB. Consider an arbitrary gate W to be tested. For an ideal unitary operation w0 it 
acts on density matrices by conjugation, W0[ρ] = w0ρw

†
0 . We assume that ideally, W should realize a (unitary) 

gate W0 , but due to errors W = W0� with the error superoperator � , close to 1̂ for weak errors. We imply that 
W = W0� is the average over realizations of noise (sometimes W refers instead to a specific realization of the 
gate which should be clear from the context).

Interleaved randomized benchmarking (IRB) studies sequences of the type

with random gates Vi , which are sampled uniformly from the relevant group, for instance, in the Haar measure 
from the unitary group U(d) or,  equivalently26 (i.e., with the same average �n ), from the Clifford group. This 
equivalence relies on the Clifford group being a 2-design, see  also22,41,42. For smaller, or other, subgroups of U(d) 
the averaging may be only partial.

The final gate F ≡ (W0Vn . . .W0V3W0V2W0V1)
† in Eq. (1) is chosen such that in the absence of errors 

the product �n reduces to 1̂ , and any deviation from the identity indicates errors. One typically measures the 
resulting state after the action of the sequence �n on an initial state ρ0 . Due to errors the probability to find the 
system in the state ρ0 decays with the sequence length n. The decay rate quantifies the fidelity of the gate W. This 
procedure implies multi-fold repetition of the experiment.

There is a number of factors that influence the resulting operator �n . Noise and inaccuracies during each 
instance of W in the sequence (Eq. 1) force it to deviate from W0 . Here we assume that these noise contributions 
are uncorrelated for different instances of W even within each sequence (short noise correlation time). The total 
error of the sequence contains independent contributions from all terms in Eq. (1), and averaging over repetitions 
results in replacement of each W by its noise-averaged value, W0� . Moreover, we assume that the random gates 
Vi are error-free for the purposes of this paper. In principle, in the standard IRB errors in Vi ’s are accounted for 
by subtracting the decay constant for non-interleaved sequences of only Vi’s23 (though accuracy of this approach 

(1)�n = FWVn · · ·WV3WV2WV1,
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is proven only for depolarizing noise in Vi
35). We neglect this contribution since we focus here on a different 

phenomenon; this is especially justified for the case of most interest, when W is a two-qubit gate, while Vi ’s are 
single-qubit gates, typically, with much lower errors.

Since W = W0� , one can rewrite (Eq. 1) as a product of conjugate �’s:

with the unitaries Ui , related to Vi via:

(We assume that we deal with n equivalent implementations of the same gate W.) Uniform distribution for Vi ’s 
over the (unitary/Clifford or other) group implies the same for Ui ’s (since W0 belongs to the same group; this is 
not the case for partial RB). Hence averaging of �n over the random Vi ’s reduces to independent averaging of 
each U†�U-term on the rhs of Eq. (2). Every such term, a superoperator �U , maps a state ρ to

Its average over realizations of the random U (we use both notations, the over-bar and the angular brackets) is:

Here the last subscript U denotes averaging over the group. One can see that the averaged gate �̄ is isotropic with 
respect to the group rotations, i.e., invariant under an arbitrary basis change L from the group:

because according to Eq. (4) for any L we have �U [LρL†] = L�UL[ρ]L† , which can be immediately averaged 
over U (or equivalently, over U ′ = UL).

The isotropy strongly constrains the degrees of freedom in the gate �̄ , making it a depolarizing channel:

where d is the dimension of the Hilbert space. It interpolates between the identity map at µ = 1 and the com-
pletely depolarizing channel, a constant map to 1̂/d at µ = 0.

Thus, �n is isotropic for any n. RB investigates how µn ≡ µ(�n) depends on n. According to Eq. (2) one 
has �n = (�̄)n , and using Eq. (7) one finds that µn = µn decays exponentially with the sequence length n. By 
measuring this exponential decay one can extract µ , the fidelity of the tested gate W.

Averaging a two-qubit operation over single-qubit gates
Let us now consider twirls over a smaller group, the single-qubit group C⊗n

1  (or U⊗n
1  ). On one hand, randomi-

zation with only single-qubit gates appears to be still sufficiently powerful. However, it is not obvious, if it is 
complete, that is if �n is depolarizing. There is a number of questions, which we analyze below. Does the fidelity 
of the sequence decay exponentially? If not, what kind of decay is expected and which information about the gate 
can be extracted from this decay? If one fits the decay curve with an exponential, how is the extracted exponent 
related to the RB-fidelity of a complete RB experiment (with random unitary or Clifford two-qubit gates Vi and 
complete averaging)?

We discuss these questions for two-qubit gates with single-qubit randomization as described above and show 
that the decay is characterized by three exponentials, and then show how to complete the analysis for the case 
of two qubits. This approach can be extended to a more general situation of partial averaging over a subgroup.

To begin the analysis, note that in the case of partial averaging the considerations of the previous section fail. 
More specifically, in Eq. (3) Ui ’s do not belong the group unless W0 is a single-qubit gate itself, and averaging over 
Ui ’s in Eq. (2) cannot be done straightforwardly. Instead, we rewrite the sequence (Eq. 1) as follows:

where

and

In this case Ũi ’s are independent single-qubit random gates. Note that they also enter Eq. (10) for the final 
gate F̃n . However, if W0 is also a single-qubit gate, Eq. (2) can be applied, and this is used below in the following 
subsection.

Testing a trivial two-qubit operation. Let us begin our analysis from the case of W0 = 1̂ . Testing the 
identity gate may probe the influence of noise or decoherence. Then

(2)�n = FW0�Vn · · ·W0�V3W0�V2W0�V1 = (U†
n�Un)(U

†
n−1�Un−1) · · · (U†

2�U2)(U
†
1�U1) ,

(3)V1 = U1, ViW0 = UiU
†
i−1 for i = 2 . . . n.

(4)�U [ρ] ≡ U†�[UρU†]U .

(5)�̄[ρ] ≡ ���[ρ] = ��U [ρ]�U .

(6)�̄[LρL†] = L�̄[ρ]L†,

(7)�̄[ρ] = (1− µ)
1̂

d
+ µρ,

(8)�n = F̃n(Ũ
†
nW0�Ũn) · · · (Ũ†

2W0�Ũ2)(Ũ
†
1W0�Ũ1),

(9)V1 = Ũ1, Vi = ŨiŨ
†
i−1 for i = 2 . . . n,

(10)F̃n =
[

(Ũ†
nW0Ũn) · · · (Ũ†

2W0Ũ2)(Ũ
†
1W0Ũ1)

]†
.
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�̄ is isotropic w.r.t. single-qubit rotations, or locally invariant. It maps a two-qubit density matrix 
ρ = 1

4 + 1
2 sσ

(1) + 1
2pσ

(2) + βijσ
(1)
i σ

(2)
j  to a matrix of the same form. One can easily see that in terms of s, p,β 

the most general locally invariant mapping is:

with three independent real factors a, b, c, which satisfy |a|, |b|, |c| ≤ 1 . Hence

For an operation with given a, b, c, if we average it over the whole SU(4), what value of µ would we 
obtain? Apparently, µ would be a linear combination xa+ yb+ zc . Since for a = b = c they coincide with µ , 
one finds that x + y + z = 1 . Furthermore, averaging, e.g., with the gate CZ (or CNOT) replaces a, b, c with 
2
3 c +

1
3a,

2
3 c +

1
3b,

5
9 c +

2
9a+

2
9b , but should keep the same µ . All this allows us to find that x = y = 1

5 , z =
3
5 , 

and thus:

This is the value, which the standard randomized benchmarking (with complete averaging over all Clifford 
or unitary two-qubit gates Vi ) would measure.

For instance, the initial state 00 has sz = pz = 1/2 and βzz = 1/4 , so that the probability to find the same 
state after n rounds decays as (1+ an + bn + cn)/4 . From this value one can extract a, b, c. To simplify extrac-
tion, one can apply the operation to various initial states and measure probabilities of various final states. For 
instance, if the system is prepared in the initial state |↑↑� , then by repeating the experiment one can measure 
the probabilities P↑↑ , P↑↓ , P↓↑ , P↓↓ of the four computational-basis states after application of the IRB-sequence. 
From these one can find the three decaying exponentials directly:

This allows one to extract three decay factors, a, b, c, separately (they are all close to 1 in the case of small 
errors).

Obviously, when two qubits are decoupled and uncorrelated, a characterizes single-qubit errors on the first 
qubit, b describes errors on the second qubit. If only single-qubit errors are present, c = ab . Hence, the difference 
c − ab describes errors associated with interaction/cross-talk between the qubits, or any other kind of correlated 
noise experienced by  them25,36.

Testing an arbitrary two-qubit gate. Twirling over single-qubit gates for a two-qubit system is a par-
ticular case of averaging over a subgroup (cf.34). Another simple example is twirling only by rotations around one 
axis (say, the z-axis) for a single qubit. In such cases, in contrast to twirling over the whole unitary or Clifford 
group, the twirled operation �̄ is not necessarily characterized by a single depolarizing parameter µ , but in gen-
eral by more parameters (see above). For the z-twirling of a single qubit, as it happens, we also have three decay 
factors: in the language of the Bloch sphere, one for the z-component, and two conjugate factors for the xy-plane, 
which results in oscillatory in-plane decay.

As we discussed in the introduction, such partial RB is of special interest, and we analyze which information 
does one learn from such measurements. While some properties are more general, below we focus on the single-
qubit subgroup (either unitary U⊗2

1  or Clifford C⊗2
1  with equivalent twirling  properties26).

Let us derive an expression for the averaged operation after many repetitions in the case of the C⊗2
1  twirling. 

By rewriting expression (Eq. 8) for the interleaved sequence, one finds the following recurrence relation for the 
operation �n , the result of the n-step interleaved RB (see “Methods”):

where the angular brackets denote averaging over the subgroup (5), while the gate error superoperator � was 
defined before Eq. (1) and coincides with �1 , cf. also a discussion after Eq. (1). Clearly, �n is subgroup-invariant 
and characterized by the corresponding parameters (three numbers an, bn, cn both for single-qubit averaging 
and two-qubit W as well as for z-averaging and a single-qubit W). This recurrence relation is a central result in 
the analysis. Our further goal is to solve this recurrence relation.

First, we note that Eq. (16) simplifies when the gate W0 belongs to the group, which we are averaging over. 
This includes the case of the whole unitary U(2) (or Clifford C2 ) group (standard RB), and the case of the idle 
gate W0 = 1̂ . In these cases W0 drops out of Eq. (16), and since �n is locally invariant, it can be taken out of the 
averaging, which implies that �n = �

n . However, in general, for an arbitrary group and gate W0 , the average 
product in Eq. (16) does not factorize. Below we analyze this expression in this generic situation, for the C⊗2

1  
twirl and an arbitrary gate W0.

Each averaged error operator �n is characterized by a triple of numbers, which can be combined into a vector

(11)�n = �̄n.

(12)s  → as, p  → bp, β  → cβ

(13)�n : s �→ ans, p �→ bnp, β �→ cnβ .

(14)µ = a+ b+ 3c

5
.

(15)







1 − 1 − 1 1
1 − 1 1 − 1
1 1 − 1 − 1
1 1 1 1













P↑↑
P↑↓
P↓↑
P↓↓






=







cn

bn

an

1






.

(16)�n+1 =
〈

(W†
0�nW0) ·�

〉
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and Eq. (16) is a linear relation between fn+1 and fn , which we describe by an iteration matrix M:

Clearly, the n-dependence of fn , and hence results of any measurement in an RB experiment, are determined 
by the eigenvalues of the 3× 3 matrix M̂ . In the following we analyze the spectrum of this matrix.

The error-free (identity) operation � = 1̂ corresponds to f = (1, 1, 1) . Thus, neglecting preparation errors, 
we find that fn = M̂n(1, 1, 1).

While the exact spectrum of M depends on the properties of the error-operator � , in the zero-order approxi-
mation, dropping the factor � on the rhs of Eq. (16), we obtain an error-free iteration matrix M0:

We first find the spectrum of M0 , and the spectrum of M can then be found perturbatively in small errors. 
In particular, the spectra of M and M0 are close (assuming gate errors are weak).

Introducing matrix elements of W0 and � , we have found from Eq. (19) the matrix elements of M by direct 
calculation in terms of the matrix elements of � . In particular, in the error-free case � = 1 , we found certain 
relations between these elements. The first set of three relations,

follows from the fact that an error-free operator �n remains error-free after application of (19). In other words, 
(1, 1, 1) is the eigenvector of M0 with eigenvalue 1.

Further, due to trace conservation

Trace conservation here implies that the traces of �n+1 and �n coincide, which follows directly from Eq. (19).
Relations (20, 21) strongly constrain the structure of the iteration matrix M0 . However, there is a further 

relation: the matrix M0 remains intact under qubit transposition as we show in the next section with the use of 
local invariants. This implies that M0 is symmetric: M0

ij remains the same if in the subscript ij each 1 is replaced 
by 2 and 2 by 1, or explicitly

Using this and the previous relations, we find the general form of the iteration matrix

and its spectrum:

The corresponding eigenvectors (isotropic superoperators) are W-independent: (1, 1, 1) for the identity 
superoperator, (1,−1, 0) and (3, 3,−2) for the antisymmetric/symmetric traceless superoperators. Hence itera-
tion matrices M0 for all gates commute.

There are no further relations between the matrix elements of the iteration matrix as illustrated in Fig. 1, 
in which (m1,m2) for various possible gates are plotted. They all fall within an area, limited by the four curves:

These relations were directly checked analytically, for instance, by using an explicit representation of two-qubit 
gates W0 from all possible equivalence classes with the same local  invariants43–45. In terms of these invariants G1 , 
G2 (cf. the next section) they read:

(17)fn ≡
(

an
bn
cn

)

,

(18)fn+1 = M̂fn.

(19)M0 : �n+1 =
〈

W†
0�nW0

〉

.

(20)M0
i1 +M0

i2 +M0
i3 = 1, i = 1, 2, 3,

(21)

M0
11 +M0

21 + 3M0
31 =1,

M0
12 +M0

22 + 3M0
32 =1,

M0
13 +M0

23 + 3M0
33 =3.

(22)M0
12 = M0

21,M
0
13 = M0

23,M
0
31 = M0

32,M
0
11 = M0

22.

(23)M0 =





m1 m2 1−m1 −m2

m2 m1 1−m1 −m2
1−m1−m2

3
1−m1−m2

3
1+2m1+2m2

3





(24)Spectrum of M0 : 1,m1 −m2,
5m1 + 5m2 − 2

3
.

(25)0 ≤ m1 ≤ 1 , 0 ≤ m2 ≤ 1,

(26)m1 +m2 ≥
1

3
,

(27)
√
m1 +

√
m2 ≤ 1.
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Iteration matrix and local invariants
The special form of Eq. (19) entails an important property of the mapping and the corresponding matrix M0 . 
Indeed, the mapping from �n to �n+1 is the same for two two-qubit gates wA

0  and wB
0  if they differ only by appli-

cation of single-qubit gates before and/or after the gate: wA
0 = S1S2w

B
0T1T2 , where S1 , S2 , T1 , T2 are single-qubit 

unitary gates applied to the qubit 1 or 2 as indicated by the subscript. Such two gates are referred to as locally 
equivalent, or equivalent up to local transformations, and physically have the same correlation, or entanglement 
properties. It has been shown that two gates are locally equivalent if and only if they have the same value of the so 
called local invariants, and a complete set of such invariants was  found45. These invariants of a two-qubit gate, a 
complex number G1 and a real number G2 , are given by explicit expressions in terms of the matrix of the gate and 
thus can be efficiently calculated. They turn out to be useful in the analysis of optimal decompositions of complex 
unitary operations in terms of elementary quantum logic gates for specific physical realizations of  qubits46–48.

Explicitly the invariants can be found using the 4× 4 matrix Q of transformation to the Bell  basis45: first, one 
finds the matrix of the gate in the Bell basis, wB = Q†wQ , then the product ω = wT

BwB , and finally, for a unitary 
gate the invariants are given by

The observation above about the local invariance of the iteration matrix M0 implies that it is completely 
determined by the local invariants G1 , G2 . This observation has useful consequences for our analysis. First, one 
can show explicitly that the gates W0 and SWAP·W0·SWAP, which differ only by the transposition of the two 
qubits, have the same values of the local invariants. Hence they are locally equivalent and, in particular, have the 
same iteration matrix M0 . Here the SWAP gate is a standard operator, which exchanges the states of two qubits. 
On the other hand, it is obvious, and can be checked directly, that the M0-matrices for W0 and SWAP·W0·SWAP 
differ by the exchange of the first two basis vectors, that is by the transposition of the first two columns and first 
two rows. This immediately proves the relation (22).

Further, we found an explicit expression for the iteration matrix M0 (23) in terms of the local invariants:

(28)2|G1| + 1 ≥ |G2|,

(29)|G1| ≥ 0,

(30)(G2)
2 + 3 ≥ 12|G1|.

(31)G1 =
tr2ω

16
, G2 =

tr2ω − trω2

4
.

Figure 1.  Distribution of possible values of the entries m1 , m2 of the iteration matrix M0 for possible two-
qubit gates, drawn uniformly from the unitary group U(4). Each point (m1,m2) corresponds to a family of 
two-qubit gates. Large solid dots correspond to (the families of) the gates SWAP, iSWAP, 

√
SWAP , identity, 

and CNOT. Boundaries of this region are discussed in the text. The dashed line indicates the family in Eq. (42) 
with the solid square showing the gate W� especially suited for partial RB—with only a single decay factor (here 
cos �π = −1/5 ), see discussion around Eq. (42). Inset: the partial-RB decay factors for each of these gates, that 
is the eigenvalues of the respective iteration matrix M0.
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One can verify these identities by various methods. For example, we used the fact that the family of the gates 
W0 = exp( i2 [cxσ 1

x σ
2
x + cyσ

1
y σ

2
y + czσ

1
z σ

2
z ]) , with real cx,y,z contains representatives with all possible local invari-

ants (hence, any two-qubit gate is locally equivalent to some gate in the family)43. For this family we calculated 
both sides of these identities in order to verify them.

Thus, we found that the iteration matrix M0 is completely determined by the local invariants of the gate W0 . 
However, we notice that the matrix depends only on G2 and the absolute value |G1| , but not on the phase of G1 . 
Thus, a question arises which two-qubit gates form this fixed-iteration-matrix family with the same |G1| and 
G2 , but various argG1 . To analyze it, it is convenient to introduce the parameters kx = cos 2cx , ky = cos 2cy , 
kz = cos 2cz . In the k-space each point in the cube −1 ≤ kx , ky , kz ≤ 1 represents two local-equivalence classes 
of two-qubit gates with the same G2 and complex conjugate values of G1 . One can verify that

(In fact, ReG1 = (kx + ky + kz + kxkykz)/4 and ImG1 = ±
√

(1− k2x)(1− k2y)(1− k2z )/4 .) Thus, the family 
with fixed |G1| and G2 is a circle in k-space, orthogonal to the main diagonal (1, 1, 1) and with a center on this 
diagonal.

More precisely, the family only covers the part of circle within the cube. At the same time, argG1 does not 
assume all values in [0, 2π] on this circle. Using the  expression44 for the uniform (Haar) measure in terms of the 
local invariants G1 , G2 , one finds that it can be expressed as ∝ dm1dm2d(argG1) , and thus the density of points in 
Fig. 1 shows directly, which fraction of the full interval [0, 2π] is covered by admissible values of argG1 for given 
|G1| and G2 . In particular, at each point on the main diagonal of the cube in k-space the phase argG1 has only 
one fixed value, and thus the density of points at the upper boundary in Fig. 1 vanishes. We note further that the 
circles for the identity and the SWAP gates are just the points (1, 1, 1) and (−1,−1,−1) on the main diagonal.

Decay factors
The spectrum of M determines the decay factors in the decay curves measured in an IRB experiment as we 
discussed above. It is close to the spectrum of M0 , and as one can see from the explicit expression (24), one 
eigenvalue of M is always close to 1, while two other eigenvalues are typically smaller (it follows from Eq. (24), 
Eqs. (25)–(27) and Fig. 1 that the eigenvalues cannot exceed 1 by absolute value; they always correspond to 
decay rather than growth.) This implies that the measured decay curve is a linear combination of three decaying 
exponentials, one slow and two others, which decay fast and vanish already at small values of the sequence length 
n. Below in this section we compare this slow decay constant to that observed in standard IRB with complete 
twirling over SU(4) or C2 , see Eq. (38) and below.

However, we begin with the analysis of exceptions to this general picture: our approach allows us to find and 
analyze all exceptional cases, when more than one exponent with the decay constant close to ±1 may appear so 
that more than one exponential is visible in the decay curve. Analysis, based on the explicit expressions (24) for 
the spectrum, demonstrates that this happens only near m1 = 1,m2 = 0 and m1 = 0,m2 = 1 . Translation to the 
language of local invariants allows us to find that the exceptional gates are those close to the identity and the 
SWAP gate, as well as to those locally equivalent to them. In other words, the exceptional cases are single-qubit 
gates, perhaps, in combination with one SWAP gate.

Thus, generically only one decay factor defines the IRB decay curve. As for the exceptional situations, for 
nearly single-qubit gates there are three decay factors a, b, c, close to 1, which determine the decay, and they can 
be extracted, for instance, using the procedure described near Eq. (15). In the remaining exceptional case of the 
SWAP and locally equivalent gates, the eigenvalues of M are close to those of M0 (1, 1,−1) and can be extracted 
similarly as above. In this case the iteration matrix is

where a, b, c can be expressed via matrix elements of the � superoperator in the basis of Pauli matrices σ̂i ⊗ σ̂j in 
the space of density matrices: if we define the basis vectors as σi ⊗ σ0 , σ0 ⊗ σj , σi ⊗ σj , σ0 ⊗ σ0 (with i, j = x, y, z ), 
then

Then we find that after n steps the error superoperator �n is described by fn = ((ab)n/2, (ab)n/2, cn) for even 
n and fn = (a(ab)(n−1)/2, b(ab)(n−1)/2, cn) for odd n. This gives us a simple procedure for extracting all three 
decay factors, a, b, c from combinations in Eq. (15):

(32)m1 =
2|G1| + G2 + 1

6
,

(33)m2 =
2|G1| − G2 + 1

6
.

(34)G2 = kx + ky + kz and |G1| = (2+ G2
2 − k2)/8.

(35)M =
(

0 a 0
b 0 0
0 0 c

)

,

(36)a = 1

3

∑

α=1,2,3

�αα , b = 1

3

∑

α=4,5,6

�αα , c =
1

9

15
∑

α=7

�αα .
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here the powers on the rhs depend on the parity p = 0/1 of the length sequence n. Thus, one can easily extract the 
decay factors of the gate by using the fact that the upper entry of the column (Eq. 37) is multiplied by c with exten-
sion of the random sequence by one step, while the second and third entries are multiplied alternatively by a and 
b on odd and even steps. Having extracted a, b, and c, one can also obtain the decay factor µ = (a+ b+ 3c)/5 , 
which would be measured in the standard, more complex IRB experiment with complete twirling.

Now let us account, perturbatively, for the deviations of the error operator � from identity: �αβ = δαβ + εαβ 
with εαβ ≪ 1 . We find for the highest eigenvalue of M in the non-degenerate case:

We note that exactly this value (to the first order in ε ) one would obtain in a full RB procedure with complete 
averaging over all random two-qubit operations. Thus, the highest eigenvalue of M coincides with the decay factor 
for the full RB, to the first order in the errors ε . This means that the decay factor extracted from the partial RB 
experiment would coincide with that in the full RB, and hence the simpler partial twirling is efficient.

To study this further, we found the second-order correction to the highest eigenvalue µ in the case of the error 
operator � , isotropic w.r.t. single-qubit rotations and described by the parameters a, b, c close to 1:

Thus, due to these corrections a difference appears between the results of the full RB and simple partial RB 
(with single-qubit twirling only). Hence strictly speaking the partial RB does not reproduce the result of full 
RB, although corrections are typically weak. Note that the second-order correction diverges at the exceptional 
gates (locally equivalent to the identity or SWAP); thus, for gates W close to such exceptional gates deviations 
between full and partial RB are stronger.

We note also a special gate family with m1 = m2 = 1/5 especially suited for partial randomized benchmark-
ing with only one non-vanishing decay constant, see “Methods”.

Conclusions
We analyzed the process of partial randomized benchmarking with the focus on the case of testing a two-qubit 
quantum gate with twirling only over single-qubit rotations (in other words, with interleaving only with random 
single-qubit gates). We demonstrated that in this case, unlike for the standard randomized benchmarking, the 
decay of the fidelity as a function of the length of the gate sequence is not purely exponential, but is a combina-
tion of three exponential contributions with three different decay factors. These three exponents can be extracted 
from the experiment and provide information about the errors of the tested quantum gate.

To analyze these decay factors, we showed that the dynamics of the realization-averaged RB sequence as 
a function of its length may be described as linear and markovian with the use of a 3× 3 iteration matrix M.

In the absence of errors, we found a complete description of the iteration matrix M0 . We expressed it in terms 
of the local invariants of the tested two-qubit gate. This allows one to efficiently find the matrix and its spectrum 
for a given gate, and thus to analyze partial-RB experiments.

It turns out that for generic gates only one of the three decay factors is close to 1 in absolute value, while the 
other two are smaller. As a consequence, already for not too long sequences only one exponential survives, and 
the experimental dependence of fidelity on the sequence length is just exponential to a high accuracy (we even 
found a family (Eq. 42) of two-qubit gates, especially suited for partial RB, where the second and third decay 
factors vanish). Furthermore, the decay factor of this exponential is very close to that, which one would obtain 
in a full RB experiment with complete twirling. Thus, a simplified partial RB provides the same information as 
the standard full-scale RB, which is harder to implement experimentally.

However, we found out that there are corrections to this statement: while the slowest decay factor in partial 
RB coincides with the full-RB decay factor to the leading order in the size of the errors, the second-order cor-
rections are non-zero, and we found explicit expressions.

Moreover, there exist exceptional quantum gates: for these gates, more than one of the three decay factors are 
close to one in absolute value, and hence the decay curve is not a simple exponential. Using the local invariants 
of the gates, we found and analyzed all the exceptional gates. These gates are the identity, SWAP, and all the gates, 
locally equivalent to these two. The gates close to these also have similar properties.

Three decay factors for a generic gate, if measured, can be viewed as a fingerprint of the tested two-qubit 
gate. This fingerprint determines the gate, as we showed, up to local single-qubit operations and up to the phase 
of the invariant G1 . It defines not a unique gate but a one-parameter family of gates (or rather, a family of local 
equivalence classes).

Methods
Recurrence relation for the error superopertor. Here we derive the recurrence relation (Eq. 16). We 
start from Eq. (8) and use it to relate �n+1 to �n:

(37)







1 − 1 − 1 1
1 − 1 1 − 1
1 1 − 1 − 1
1 1 1 1













P↑↑
P↑↓
P↓↑
P↓↓






=









cn

akbk+p

ak+pbk

1









for n = 2k + p, p = 0/1,

(38)µ = 1+ 1

15
Tr ε̂ = 1

15
Tr �̂.

(39)µ = a+ b+ 3c

5
+ (m1 −m2)(a− b)2

10(1−m1 +m2)
− 3(−2+ 5m1 + 5m2)(a+ b− 2c)2

250(−1+m1 +m2)
.
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To find �n+1 from this, we need to (1) average over Ũ2 , ..., Ũn+1 (that is average each of them over the group) 
and (2) average then over Ũ1 (averaging can of course be done in any order). Averaging in stage (1) transforms 
�n in Eq. (40) to �n , and then only stage (2) remains:

Since the average �n is isotropic with respect to the group, Ũ1 and Ũ†
1 around it can be dropped, and we obtain 

Eq. (16) (cf. the definition (4), (5)).

Gate family with m
1
= m

2
= 1/5. We note a special role of the gate family with m1 = m2 = 1/5 . In this 

case the second and third eigenvalues of M0 in Eq. (24) vanish, and the decay curve is a single exponential to a 
high accuracy. In other words, these gates are especially suited for partial randomized benchmarking. Further-
more, for these gates next-order corrections (Eq. 39) also vanish. Such a gate can be implemented, for example, 
by turning on the qubit–qubit coupling Hcpl = g[1− (1+ �)σ 1

x σ
2
x − (1− �)σ 1

y σ
2
y − σ 1

z σ
2
z ] for a finite period 

t = h/(16g) , provided that cos �π = −1/5:

For general � the gates in Eq. (42) describe a family with m1 = m2 = 1
24 (5+ cos �π) between 1/6 and 1/4.
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Ũ1

.

(42)W� = exp

�

− i

�
Hcpl t

�

=









cos �π
4 0 0 i sin �π

4
0 1−i

2
1+i
2 0

0 1+i
2

1−i
2 0

i sin �π
4 0 0 cos �π

4









.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10129  | https://doi.org/10.1038/s41598-022-13813-x

www.nature.com/scientificreports/

 30. Wallman, J. J. & Flammia, S. T. Randomized benchmarking with confidence. New J. Phys. 16, 103032 (2014).
 31. McKay, D. C., Sheldon, S., Smolin, J. A., Chow, J. M. & Gambetta, J. M. Three-qubit randomized benchmarking. Phys. Rev. Lett. 

122, 200502 (2019).
 32. Proctor, T. J. et al. Direct randomized benchmarking for multiqubit devices. Phys. Rev. Lett. 123, 030503 (2019).
 33. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019).
 34. Brown, W. G. & Eastin, B. Randomized benchmarking with restricted gate sets. Phys. Rev. A 97, 062323 (2018).
 35. Epstein, J. M., Cross, A. W., Magesan, E. & Gambetta, J. M. Investigating the limits of randomized benchmarking protocols. Phys. 

Rev. A 89, 062321 (2014).
 36. Gambetta, J. M. et al. Characterization of addressability by simultaneous randomized benchmarking. Phys. Rev. Lett. 109, 240504 

(2012).
 37. Chen, Y. et al. Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett. 113, 220502 (2014).
 38. Casparis, L. et al. Gatemon benchmarking and two-qubit operations. Phys. Rev. Lett. 116, 150505 (2016).
 39. Helsen, J., Xue, X., Vandersypen, L. M. & Wehner, S. A new class of efficient randomized benchmarking protocols. NPJ Quantum 

Inf. 5, 71 (2019).
 40. Erhard, A. et al. Characterizing large-scale quantum computers via cycle benchmarking. Nat. Commun. 10, 5347 (2019).
 41. Meier, A. M. Randomized benchmarking of Clifford operators. Ph.D. thesis, University of Colorado at Boulder (2013).
 42. Zhu, H. Multiqubit Clifford groups are unitary 3-designs. Phys. Rev. A 96, 062336 (2017).
 43. Zhang, J., Vala, J., Sastry, S. & Whaley, K. B. Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 67, 042313 (2003).
 44. Watts, P., O’Connor, M. & Vala, J. Metric structure of the space of two-qubit gates andperfect entanglers and quantum control. 

Entropy 15, 1963–1984 (2013).
 45. Makhlin, Yu. Nonlocal properties of two-qubit gates and mixed states and the optimization of quantum computations. Quantum 

Info. Proc. 1, 243–252 (2002).
 46. Plourde, B. L. T. et al. Entangling flux qubits with a bipolar dynamic inductance. Phys. Rev. B 70, 140501(R) (2004).
 47. Hanneke, D. et al. Realization of a programmable two-qubit quantum processor. Nat. Phys. 6, 13–16 (2010).
 48. Wang, X., Barnes, E. & Sarma, S. D. Improving the gate fidelity of capacitively coupled spin qubits. NPJ Quant. Inf. 1, 15003 (2015).

Acknowledgements
We thank A. Shnirman for valuable discussions. This work was supported via the Basic research program of HSE.

Author contributions
K.D. and Y.M. wrote and reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Partial randomized benchmarking
	Full interleaved randomized benchmarking
	Averaging a two-qubit operation over single-qubit gates
	Testing a trivial two-qubit operation. 
	Testing an arbitrary two-qubit gate. 

	Iteration matrix and local invariants
	Decay factors
	Conclusions
	Methods
	Recurrence relation for the error superopertor. 
	Gate family with . 

	References
	Acknowledgements


