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Modeling and simulation of high 
energy density lithium‑ion battery 
for multiple fault detection
Chandrani Sadhukhan1, Swarup Kumar Mitra2, Suvanjan Bhattacharyya3*, 
Eydhah Almatrafi4,5,6, Bahaa Saleh7 & Mrinal Kanti Naskar8

Lithium‑ion battery, a high energy density storage device has extensive applications in electrical and 
electronic gadgets, computers, hybrid electric vehicles, and electric vehicles. This paper presents 
multiple fault detection of lithium‑ion battery using two non‑linear Kalman filters. A discrete non‑
linear mathematical model of lithium ion battery has been developed and Unscented Kalman 
filter (UKF) is employed to estimate the model parameter. Occurrences of multiple faults such as 
over‑charge, over‑discharge and short circuit faults between inter cell power batteries, affects the 
parameter variation of system model. Parallel combinations of some UKF (bank of filters) compare 
the model parameter variation between the normal and faulty situation and generates residual 
signal indicating different fault. Simulation results of multiple numbers of statistical tests have been 
performed for residual based fault diagnosis and threshold calculation. The performance of UKF is 
then compared with Extended Kalman filter (EKF) with same battery model and fault scenario. The 
simulation result proves that UKF model responses better and quicker than that of EKF for fault 
diagnosis.

The battery, an energy source has been used by the mankind since its invention more than two hundred years ago. 
After lots of developments, now-a-days batteries available are lighter in weight, higher energy storage capacity, 
enhanced safety features, and longer durability and found suitability in wide range of consumer and industrial 
 applications1,2. Lithium batteries have been modified into lithium ion to make it rechargeable and applied in 
electrical gadgets, computers, hybrid electric vehicles, and electric vehicles etc. Considering the aspects like reli-
ability and safety of electric vehicles, it is important to monitor the states of lithium ion cells during operation. 
This can be managed by collection of required data and subsequent estimation of states of cells through a battery 
management system (BMS)3,4. The performance of battery cell depends on current, voltage and temperature, 
and the state of cells include state of charge (SOC)5–7, state of health (SOH)8–10 and state of energy (SOE)11 and 
remaining useful life time (RUL)12,13. The faults in electrical vehicle are indicated as (a) overcharge, (b) over-
discharge (c) internal and external short circuit. The battery internal and external short circuit fault results in 
generation of huge amount of heat which induces thermal runway. Unchecked faults in the battery are irrevers-
ible in nature and may lead to damages when it is  severe14,15. In order to nullify such situations, it is important 
to diagnose fault of the battery quickly and accurately. It has been observed from the literatures that diagnosis 
of fault of lithium ion battery is of growing interest among researchers both in industry and academic field. The 
efforts have been put by the researchers aiming to detect different battery faults using advanced methodologies 
and techniques. One such technique is observer-based fault diagnosis which offers improved robustness because 
of its capability to avoid battery fault information loss. That may be accomplished due to unknown disturbances 
and faulty initial condition. The inherent advantages of lower cost and high flexibility make the model based 
fault diagnosis techniques a viable solution for accurate fault  diagnosis16. The Luenberger observer (LO) using a 
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series of reduced order  observers17 can be applied on battery-pack for fault detection. Some researchers proposed 
model-based short circuit fault analysis using advanced techniques like  indentation18, nail  penetration19, fabri-
cation with defect  structures20 and thermal runaway at extreme high  temperatures21. In another model, output 
voltages and the actual output voltages of batteries can be compared during the EV operation process and the 
alarm system will be triggered when the absolute value of the voltage difference exceeds the  threshold22,23. Also, 
Kalman filter finds its effective application for diagnosis of the fault in lithium-ion  batteries24,25 in particular when 
optimal filter exhibits strong robustness with noisy signal. The model based fault detection methods facilitated 
with very high robustness can be used to detect faults of battery accurately. Adaptive Kalman filter based fault 
diagnosis for lithium ion battery is under consideration by many  researchers26–28. Adaptive Kalman filter can 
estimate states of battery parameter by the process and measurement noise covariance adjusting which is not 
possible in case of Extended Kalman filter where information on noise statistics are considered to be the pre-
requisite for proper functioning of the filter otherwise it may lead to inaccurate results. Recently overcharge and 
overdischarge of battery fault is  discussed29. A review paper on Fault Mechanisms, Fault Features, and Diagnosis 
Procedures are  discussed30.

Considering the wide application of lithium-ion batteries in various devices, it is desirable to manufacture 
batteries which will have higher energy density, power density and service life. The failure due to over-charge, 
over-discharge, short circuit between inter cells of lithium-ion battery could lead to performance degradation 
and system fault which in turn may cause inconvenience, faster aging and higher cost of maintenance, thermal 
runaway or even explosion. Therefore, it is imperative to design a reliable and robust battery management system 
for early detection of the faults of the battery during service condition. The overall performance is greatly depend-
ent on critical functions such as State-of-Charge (SOC) and State-of-Health (SOH) estimations, over-charge, and 
under-charge protections etc. From the practical point of view, estimation of three faults, namely over-charge, 
over-discharge and short circuit fault between inter cell power of lithium-ion batteries will certainly improve the 
reliability and efficiency of the devices, gadgets, electric and hybrid electric vehicles etc.

It has been found that some published research papers concentrate only internal short circuit  fault18–20 of the 
battery pack and some other works describes fault such as over-charge, over-discharge etc. No researcher has 
considered all these faults simultaneously of lithium-ion battery in their work using model based method. Most 
of the researchers have concentrated model based method using a single technique that is residual evaluation 
for estimation of the faults of the  batteries22,24–26. The novelty of present work is to model based fault detection 
occurs on lithium-ion battery pack for over-charge, over discharge and short circuit fault between inter cell power 
of lithium-ion batteries simultaneously. In the present study, a systematic model based fault detection scheme is 
proposed using a bank of Unscented Kalman filter (UKF) on lithium ion battery pack model for multiple fault 
detection such as over-charge, over-discharge and short circuit fault between inter cell power of lithium-ion 
batteries. A statistical test has been performed for residual based fault diagnosis and threshold calculation. The 
performance of UKF then compared with bank of Extended Kalman filter (EKF) on same battery model with 
same fault scenario. Depending on battery usage, different model of battery such as experimental, empirical, 
electrochemical are used. The battery model is considered as an extension of the The venin model where over-
charged, over-discharged and short circuit fault between inter cell power of lithium-ion batteries are taken as 
fault parameter. The proposed work is divided into two parts: (a) experimental (b) simulation. In experimental 
part battery cells are monitored offline for long time interval in case of over-charging and over-discharging and 
parameter variation due to over-charging, over-discharging are measured. A 123 26650  LiFePO4 battery (3.3 
Volts, 2.5 Ah) cell was used in the experiment. Electrochemical impedance spectroscopy (EIS) technique is used 
to extract the circuit parameter variation during overcharging and discharging of the battery which is reflected in 
Tables 2 and 3. The parameter variations are incorporated in the battery model during simulation and run by two 
bank of filter such as UKF and EKF. The lithium ion battery states are estimated and also residual signal is gener-
ated by comparing estimated and measured output for each individual power cell using UKF bank. It has been 
shown that the UKF based fault diagnosis proves significant result when compared with EKF based approach.

Proposed fault diagnosis scheme on battery pack using UKF/EKF bank
A model-based fault detection scheme for a battery pack using bank of UKF or EKF is represented in Fig. 1. To 
diagnose the fault due to overcharge, over discharge or short circuit fault in a battery pack, a bank of UKF or 
EKF works in parallel with the system. A series of voltage and current sensors are connected to the battery pack 
to measure voltage and current in each cell of battery pack. The various parameters, states of battery model can 
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Figure 1.  Schematic diagram of UKF/EKF bank-based fault detection scheme.
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be measured by sensor provided data. The state space model of equivalent battery pack is designed and UKF 
or EKF banks are processed to get the estimated states of the system. The estimated data from filter and sensor 
provided data are compared and residual signal is generated. The mean of residual signal indicate the existence 
of fault in the system.

Residual signal generation. The discrete state space model of any non-linear time invariant system (with 
fault) can be expressed as

where, x(k), u(k) and y(k) denotes the state vector, input signal and system output vector respectively at time 
step k. Nonlinear functions f() and g() are continuously differentiable with respect to time and FT(k) implies the 
occurrences of fault at time step k.

The discrete state space model of nonlinear Kalman Filter is given by

where, x̂(k) and ŷ(k) denotes estimated state vector and estimated output vector of the filter at time step k respec-
tively. Where w(k) and v(k) are independent zero mean Gaussian process and measurement noise. The process 
noise variance Qk and measurement noise variance Rk are expressed as.

From Eq. (2) and Eq. (4), the residual signal is expressed as

where F( ) is function of process w(k) and measurement noise v(k) sequence.

If there exist any fault in the system FT (k) ), the filter output indicates the non-zero mean (NZM) residual 
sequences which is the summation of Gaussian noise and existing fault as given in Eq. (7). Simultaneous occur-
rences of multiple faults in the system each state of the filter output is indicated by NZM residual sequences.

A multiple fault diagnosis scheme is explained in the flowchart as shown in Fig. 2. When a system is affected 
by n number of different faults such as FT1, FT2, . . . ..FTn , a bank of filters are utilized by incorporating each fault 
separately. The discrete state equation of each filter is represented as:

The output equation of each filter are described by

The residual of each filter is the difference between the system output and the filtered output.
Residual of each filter are expressed as
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The summary of UKF algorithm is given in Table 1. Residual based multiple fault diagnosis using UKF/EKF 
is shown in the flowchart given in Fig. 2. For i no. of cells are monitored by voltage or current sensor, if any fault 
occurs, the estimated state of filter output will not match with the sensor output data as a result Non Zero Mean 
(NZM) residual signal obtained. When fault does not occur in the system it shows output as Zero Mean (ZM) 
residual of process and measurement noise.

(11)

rd1 = y1(k)− �y1(k)
rd2 = y2(k)− �y2(k)

.

.

.

rdn = yn(k)− �yn(k)
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Figure 2.  Residual based multiple fault diagnosis algorithm using UKF/EKF.
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Battery modeling
Model based fault diagnosis method is implemented using electrochemical properties of a battery. An extension 
of the venin model is presented which is already applied for various fault diagnosis and state estimation problem. 
The extended model is used because of the complexity in computation of partial differential equations in electro-
chemical models. A second order battery model of an additional RC parallel circuit element as shown in Fig. 3 
is considered to represent the electrochemical phenomenon of cells. The parameters are interfacial impedance, 
reactivity distribution of the electrode and the resistance of electron and ion migration. The equivalent circuit 

Table 1.  Summary of UKF algorithm.
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Figure 3.  Equivalent circuit model of the battery pack.
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consists of a controlled or open circuit voltage source Voc and change in its value with the SOC, a resistor  Rb 
denotes the bulk electrolyte resistance which can vary during the process of charging/ discharging. The constant 
phase element  (C1) and resistance  (R1) makes resistor–capacitor (RC) networks used as model of reactivity cap-
turing model of electrode and the other second RC network combination of  R2 and  C2 denote the resistance and 
capacitance of charge transfer respectively. The current (I) shows charging/discharging current of the system, the 
performance of a battery pack is greatly affected by the parameters like current, internal resistance and terminal 
voltage. These parameters are responsible to regulate inconsistency quality, the mode of connection, the variable 
capacity of cells at different discharge current rate, etc. The resistance–capacitance electrical circuits can be used 
to model a third order system for battery cells. The each elements of the circuit are the function of SOC and 
temperature. In the present study the temperature is kept constant, the voltage is varied as a function of SOC and 
aging dynamics have been kept aside in the model. The significant aspect to be considered is that, the signature 
fault which may occur in the battery while in operation can be modeled to study behavior of the system under 
abnormal situations. Effective control of fault estimation also improves the battery life to a large extent. The 
failure of battery due to overcharging leads to generation of excessive heat due to increase in temperature may 
cause violent thermal runaways. Moreover, the detrimental copper plating which occurs at the negative elec-
trode of the battery significantly influences the failure of over discharging leading to further thermal runaways. 
Different types of variation in parameters are noticed during failure of the battery cells due to overcharging and 
over discharging. It is observed that the increase in bulk resistance  (Rb) is more during overcharging than that 
of over discharging. Also, the charge transfer resistance  (R1,  R2) varies proportionally with both overcharging 
and over discharging condition. The variation of double layer capacitance  (C1) and the charge transfer capacitor 
 (C2) show a steep increase with over discharging, but the same is very small with gradual dipping in nature is 
seen in case of overcharging.

The dynamic equations of the equivalent model of the battery can be represented by

where, VT, V1 and V2 denote the terminal voltage and capacitor voltage across C1 and C2 respectively. Open circuit 
voltage Voc is a nonlinear function of SOC and described by

where, coefficients Ck, for k = 0,1,2,……..,m are obtained from OCV-SOC characteristic shown in Fig. 4.
The SOC, calculated by the coulomb counting method is given as:
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Figure 4.  OCV-SOC characteristic for  LiFePO4 battery cell.
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where, Ca is the battery available capacity, and η is the coulomb efficiency that is the function of the current and 

temperature. η =

{
1 for charging
0.95 for discharging

.

The model parameter are kept constant neglecting changes occurred due to ageing effect. To simulate with 
the discrete Kalman filter, the filter model is discretized using Taylor series expansion and neglecting higher 
terms given as

These can be expressed as state variable form as

Simulation result and discussion
A 123 26650  LiFePO4 battery (3.3 Volts, 2.5 Ah) cell was used in the experiment. Tables 2 and 3 illustrate the 
impedance spectroscopy results for the selected circuit parameters variation when the battery cell was under 
over-charge and over-discharge fault conditions. During over-charge condition battery cell is kept with 120% 
charge and 100% nominal discharge while during over–discharge condition it is kept in reverse way. In each 
fault condition spectroscopy measurement for parameter variation of some specific cycles are taken and shown 
in Tables 2 and 3. Various faults in lithium ion battery cells can be observed by different parameter variation in 
battery during operation. The paper primarily focused on over-charging (OC) fault, over-discharging (OD) fault 
and short circuit fault between inter cell power of lithium-ion batteries. The OC condition is achieved by charging 
the battery to 120% and 100% nominal discharge at a favorable current rate. The variation of system parameters 
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Table 2.  Variation of system parameters (over-charge).

Cycle Rb (�) C1 (F) R2 (�) C2 (F) R1 (�)

1 0.0771 0.0265 0.0156 0.4177 0.0282

5 0.2433 0.00041 0.0369 0.2463 0.0329

10 0.1387 0.00012 0.1429 0.3421 0.0342

12 0.1661 0.0001 0.1734 0.3657 0.0389

15 0.2865 0.0007 0.2134 0.3867 0.04327

Table 3.  Variation of system parameters (over-discharge).

Cycle Rb (�) C1 (F) R2 (�) C2 (F) R1 (�)

1 0.0771 0.0265 0.0156 0.4177 0.0282

5 0.2433 0.00041 0.0369 0.2463 0.0329

10 0.1387 0.00012 0.1429 0.2567 0.0438

12 0.1661 0.00010 0.1654 0.3569 0.0541

15 0.2865 0.0007 0.1875 0.6541 0.0654
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such as  Rb,  R1,  R2,  C1 and  C2, which significantly contributed in faults during OC and over-discharging (OD) of 
battery cell parameter variation as seen in the impedance spectroscopy are shown in Tables 2 and 3.

Sinusoidal current as input signal is used as charging or discharging current of the model.
The terminal voltage, state of charge, voltage across C1 and C2 in each sampling time is evaluated from the 

Eqs. (21) and (22).The battery model is run by bank of UKF and EKF to calculate the estimated state of charge, 
voltage across C1 and C2 in each sampling time with healthy and faulty state while the input signal is corrupted 
with Gaussian white noise with process noise covariance Qk and measurement noise covariance Rk are taken as 

Q =  10–6 

[
1 0 0

0 1 0

0 0 1

]
 and R = 1 ×  10–6 respectively.

Simulation result deals with performance comparison between UKF and EKF while fault diagnosis of lithium 
ion battery of electric vehicle. Over-charging, over-discharging and short circuit faults are experimented in 
battery model and each case for fault diagnosis bank of UKF and EKF are operated. The three states of battery 
models, those are state of charge, voltage across C1 and C2 are estimated and compared to get residual signal in 
each time step.

The charging current is taken as input signal considered as I = 5sin100πt with initial values of voltage across 
charge transfer capacitance and double layer capacitances are taken as 0.1 V each. The model is simulated with 
healthy condition and at 50th sampling instant a fault is injected as overcharge and at 120th sampling instant 
second fault occurs. As the system is modeled with three state variables as SOC,  V1 and  V2, the occurrences of 
any fault will affect the states of battery model. By comparing the true state and estimated state during healthy 
and faulty condition is easily detected by residual signal generation.

Single fault diagnosis. In the proposed battery model is first run healthy condition and at 50th sampling 
instant a fault is injected as overcharge. Figure 5 represents the true state and estimated state of SOC by EKF and 
UKF. Figure 6 represents the residual of SOC of both the filter. For both cases the change of residual signal from 
zero to other value is more appropriate in UKF than EKF.

Figures 7 and 8 shows the estimated state of voltage across charge transfer capacitance and the residual sig-
nal of both the filter. The residual measurement and state estimation do not reflect the occurrences of fault as 
overcharge does not affect the voltage across charge transfer capacitances.
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0 50 100 150 200
-0.1

-0.05

0

0.05

0.1

Time (sec)

E
rr

or
 in

 v
ol

ta
ge

 (
v)

Error (UKF)
Error (EKF)

Figure 8.  Error/residual evaluation for voltage across charge transfer capacitance estimation by EKF and UKF.

0 50 100 150 200
-0.1

0

0.1

0.2

0.3

Time (sec)

V
ol

ta
ge

 a
cr

os
s 

ca
pa

ci
ta

nc
e 

(v
)

True voltage
Estimated voltage (UKF)
Estimated voltage (EKF)

Figure 9.  Voltage across charge transfer capacitance estimated by EKF and UKF during over discharging.



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9800  | https://doi.org/10.1038/s41598-022-13771-4

www.nature.com/scientificreports/

When over discharging fault occurs at 120th second, the true voltage and estimated voltage across charge 
transfer capacitance by both filters are represented by Fig. 9. The residual signal of both the filters is shown in 
Fig. 10.

The shift of residual for second fault is clear for UKF than EKF. Under this condition the residual for SOC is 
unaffected showing zero.

Multiple fault diagnosis. When overcharging fault at 50th s and short circuit fault across charge transfer 
resistance at 120th s both fault occurs on battery model simultaneously, the residual of SOC and voltage across 
charge transfer capacitance and double layer capacitance are depicted in Figs. 11a–c and 12a–c.

Conclusion
In the present study, a discrete non-linear mathematical model of lithium-ion battery has been developed for 
multiple fault detection using two non-linear Kalman filters. The performance comparison using bank of UKF 
and EKF for single and simultaneous occurrences of multiple fault diagnosis such as over-charge, over-discharge 
and short circuit fault between inter cell power in lithium-ion battery has been carried out. In the proposed fault 
diagnosis scheme both (UKF and EKF) bank of filters are employed separately on lithium-ion battery model 
during normal and faulty situation so that the filters output and measured output are compared to generate 
residual signals. It has been shown from the simulation results of statistical test that residual signal under no 
fault indicates zero mean signal within threshold value whereas it exceeds the threshold value with non-zero 
mean signal during faulty condition. The comparison result for both the filter (UKF and EKF) from simulation 
study proves that UKF model exhibits better and quicker response than that of EKF for multiple fault diagnosis 
of lithium-ion battery model.
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Figure 10.  Error/residual evaluation for Voltage across charge transfer capacitance estimation by EKF and UKF 
during discharging.
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Figure 11.  (a) Residual estimation of SOC, (b) residual estimation of voltage across charge transfer capacitance. 
(c) Residual estimation of voltage across double layer capacitance by EKF.
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