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A quantum‑like cognitive approach 
to modeling human biased 
selection behavior
Aghdas Meghdadi 1, M. R. Akbarzadeh‑T 1* & Kurosh Javidan 2

Cognitive biases of the human mind significantly influence the human decision-making process. 
However, they are often neglected in modeling selection behaviors and hence deemed irrational. 
Here, we introduce a cognitive quantum-like approach for modeling human biases by simulating 
society as a quantum system and using a Quantum-like Bayesian network (QBN) structure. More 
specifically, we take inspiration from the electric field to improve our recent entangled QBN approach 
to model the initial bias due to unequal probabilities in parent nodes. Entangled QBN structure is 
particularly suitable for modeling bias behavior due to changing the state of systems with each 
observation and considering every decision-maker an integral part of society rather than an isolated 
agent. Hence, biases caused by emotions between agents or past personal experiences are also 
modeled by the social entanglement concept motivated by entanglement in quantum physics. In 
this regard, we propose a bias potential function and a new quantum-like entanglement witness in 
Hilbert space to introduce a biased variant of the entangled QBN (BEQBN) model based on quantum 
probability. The predictive BEQBN is evaluated on two well-known empirical tasks. Results indicate 
the superiority of the BEQBN by achieving the first rank compared to classical BN and six QBN 
approaches and presenting more realistic predictions of human behaviors.

With the advent of the Internet of Things and social networks, the reformation of the digital stock market, 
intelligent navigation and traffic systems, disaster management, and energy consumption, in which humans are 
central interlayers, comes a critical need to develop better human–machine interfaces and reach more realistic 
models of human selection behavior. What presents a significant challenge here is the bias behavior observed in 
these human-centered systems that are nonlinear, uncertain, complex, and disobey the ’rational’ decision-making 
processes dictated by the traditional probabilistic structures1,2. Despite extensive studies on the mathematical 
modeling of decision-making in different fields3, modeling the bias behavior in the decision-making process 
remains an open problem.

Past studies have led to different decision-making models, including Bayesian networks (BN)4, prospect 
theory5, Markov decision6, expected utility (EU)7, game theory8, Dempster-Shafer theory (DS)9, and fuzzy deci-
sion making10. Although these models and their variants have achieved significant performance, more psycho-
logical studies indicate behaviors that cannot be explained by the mentioned classical methods2,11. Recently some 
irrational observations, such as order effect12, conjunction/disjunction error13, or violation of classical probability 
rules, including the sure-thing principle (STP)14 and the total probability law (TPL)15, revealed the need for revis-
ing the mathematical structure used in classical models12,16. For this purpose, different quantum-like decision 
theories are proposed based on quantum probability structure in the Hilbert space16. Using the term quantum-
like in these models means that these theories do not deal with quantum modeling of the decision-making in 
the brain nor about using quantum computers. They use only the structure of QP to develop the mathematical 
structure of modeling in the human mind. The main idea of this study is to propose a biased variant of quantum-
like decision-making approaches to provide more accurate predictions of human behavior and to justify a broad 
range of decision-making paradoxes.

Recently, Quantum Probability (QP) has been applied extensively in various fields such as engineering17, 
economics18, psychology19, biology20, and decision-making21, referred to as the Second Quantum Revolution22. 
Applying quantum probability in decision-making theories was introduced by Aerts et al.23. They show that 
classical probability (CP) cannot successfully model the role of the observer in the social sciences. Over the 
years, many studies have been done to develop this idea. Busemeyer et al.19 model the dynamical evolution of 
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the decision-making process in Hilbert space based on solving the Schrödinger equation. Khrennikov et al.24 
use probability interference, the key concept in quantum mechanics (QM), to explain the violation of the STP. 
They use contextual probabilities and wave functions in modeling decision-making processes inspired by the 
double-slit experiment. Then, Wang et al.25 propose a quantum question order model, known as the QQ model, 
to describe the order effect in decision-making. They introduce the q-test value to recognize the order effect in 
empirical experiments and prove the Quantum Question (QQ) equality under some circumstances to predict 
the selection of humans in different order of questions. This model is developed by Ozawa et al.26 to correct for 
the order effect in the data and determine the “genuine” distribution of the opinions in the poll.

Another quantum-like decision approach is a quantum-like Bayesian network (QBN) that can predict human 
selection behavior as well as justify the contradiction of CP’s rules14. In this approach, Moreira et al. replace QP 
with the CP in the BN structure and propose a heuristic function for estimating the interference effect. Recently, 
we introduced a predictive entangled QBN model (PEQBN)27 motivated by quantum information theory (QIT). 
According to QIT, a composite system is entangled when unknown relationships link the individual components 
as a single entity. We simulate a social system as a composite quantum one and model the effect of society on 
each decision-maker (DM) by simulating BN’s nodes as entangled wave functions. In this model, we introduce 
a social entanglement concept inspired by quantum entanglement. The effect of society on the decision-making 
process, using a quantum-like approach, is also studied by Tsarev28.

Recently, a new perspective of quantum mechanics has been proposed in physics and philosophy, which 
discusses the ontological and epistemological architecture of quantum mechanics29 and presents the subjective 
probability interpretation of wave functions30. These theories such as QBism30, introduced by Fuchs, consider that 
many, but not all, aspects of quantum formalism are subjective in nature. According to the Fuchs view, the wave 
functions are mathematical abstractions that help us to organize our thinking like the calculus of probabilities, 
instead of being considered as real entities like ripples on a pond31. Recently, some quantum-like theories of 
cognition have been proposed along with these perspectives32,33. The development of mathematical structures of 
such theories can lead to a better understanding of the concept of the wave function and thus the development 
of quantum-like decision models in the future.

On the other hand, there are some cognitive and neuroscience studies on bias behavior in the human mind. 
The term cognitive bias was first introduced in the decision-making domain by Tversky and Kahneman2. After-
ward, various types of cognitive bias behaviors such as anchoring, availability heuristic, representativeness heuris-
tic, and many more1 have been confirmed during experimental studies. Also, there are some neurological studies 
on bias behavior due to past experiences or emotions in decision making. Sacré et al.34 confirm that rationality 
in financial decision-making may compete with a bias that reflects past outcomes. In another neurological study, 
Nielson et al.35 study irrational economic decisions. Kesteren et al.36 verify that a preceding judgment biases the 
current one if the preceding and current items are of the same perceptual category. Also, the impact of moods and 
emotions experienced on choice behavior and social decision-making is studied by Engelmann et al.37 and Farolfi 
et al.38 based on behavioral and neural research. Ravi et al.39 study the accumulating evidence that prior knowl-
edge about expectations plays an important role in perception. Their findings demonstrate substantial deviations 
from the ideal Bayesian detector, which could be a sign that the brain utilizes a heuristic approximation of the 
Bayesian inference. They discuss the power of Bayesian-like heuristics in the brain, as well as their limitations.

Quantum-like Bayesian network structure is particularly suitable for modeling bias behaviors because this 
structure can model the role of observer/measurements on the state of DM’s mind using the phase parameters 
in the complex Hilbert space. It is noted that there are only a few neurological studies on Bayesian inference40 
in the literature. Matsumori et al. 41 introduce a bias Bayesian inference and discuss its neural implementation. 
Asano et al.42 consider irrational updating in classical Bayesian inference and define quantum-like bias operations 
due to some psychological element acting on the mental state. Recently, Wojciechowski et al.43 applied quantum 
probability to justify constructive biases in clinical judgment.

Here, we extend the PEQBN model and introduce a biased entangled quantum-like Bayesian network 
(BEQBN) as a predictive decision-making approach inspired by the electric fields, the entanglement concept, 
and cognitive studies. We consider different types of biased behaviors due to the emotion between agents such 
as friendship or enmity, personal experience, and unequal probabilities obtained by decisions of other agents in 
the past. To model the different types of bias behavior, we simulate each node in the BN structure as a complex 
wave function, including amplitude and phase. The phase parameters model initial biases in the human mind. 
So the interference term, as a function of initial phase parameters, is estimated by proposing a bias potential 
function and a new quantum-like entangled witness in Hilbert space. Also, the relation between this witness and 
Shannon entropy as a measure of entanglement is presented. Empirical results of two decision-making scenarios 
are used to evaluate our model. One of them is the prisoner’s dilemma (PD), a well-known benchmark in this 
domain with equal probabilities in the first node. And the second one is a categorization and decision-making 
task based on human faces, with unequal probabilities in the first node. These evaluations confirm the superiority 
of the proposed model in predicting human selections compared with the classical BN (CBN) and six predictive 
quantum-like models.

The rest of this paper is organized as follows. Preliminaries about the classical BN, quantum probability, and 
the previous ideas about merging these two approaches are reviewed. Then we propose a biased entangled QBN 
approach as a predictive probabilistic decision theory. After that, evaluations of the proposed model on two 
different scenarios in the literature are presented. Finally, conclusions and recommendations for future works 
are presented in the last section.
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Preliminaries
Classical Bayesian Network.  Real-world agents usually work together as a system rather than acting indi-
vidually. Understanding the agent’s relations is an unavoidable step for reasoning and decision-making effec-
tively. Bayesian networks are powerful graphical tools for modeling relations between agents using directional 
arcs between parent and child nodes. This structure provides a compact probabilistic representation of the joint 
distribution of a set of nodes modeled by random variables ( Xi ). The inference is estimated based on the Bayes’ 
rule:

The probability of child nodes are calculated using conditional probability distributions as follows44 :

Also, probabilities under uncertainty are estimated using the TPL. Let us denote the observed node by ( O ) 
and unobserved ones by ( U  ). The inference for some query X is given by44:

where α is a normalization factor that guarantees the Pr(X|O) adds up to 1. Because of the confluence of artificial 
intelligence and statistics, Bayesian Networks are becoming increasingly popular in different areas including 
medicine, engineering, social sciences, economics, and many more4. An example of a simple BN structure for 
a prisoner’s dilemma (PD) game, the famous benchmark in the decision-making field, is presented in Fig. 1. 
In this game, two prisoners are separated in isolation cells. Each prisoner can choose between two options of 
either cooperating or defecting with another prisoner. Figure 1 presents an example of the payoff matrix for the 
PD game. Before the second prisoner ( B) , makes a decision, he/she is informed that the first prisoner (A) has 
chosen defection ( D ), cooperation ( C ), or ( B) has no information about the first prisoner’s decision (Unknown). 
Prisoner (A) has an equal probability of defecting or cooperating. Pr(B = D) is estimated based on the empirical 
results shown in Table 1 and the TPL rule:

As shown in Table 1, the obtained value by (4) does not match the experimental results. TPL has been violated 
in other experimental observations under uncertainty repeatedly15. Thus, despite the impressive capabilities of 
BNs in inferring and predicting, the violation of TPL challenges the application of this method in predicting 
human behavior under uncertainty. The similarities between these inconsistencies with some contradictions in 
classical physics, such as Young’s two-slit experiment and the ability of QP to model these discrepancies, have 
inspired the use of quantum probability in Bayesian networks12.

Introduction to quantum probability.  Around the 1930s, two different sets of axioms were formulated 
for probability theory. One of them is the Kolmogorov axioms, which are the basis of CP49. The second one is 
the Von Neumann axioms, which are the basis of QP50. A fundamental difference between classical and quan-

(1)Pr(X|Y) = Pr(Y |X)Pr(X)/Pr(Y).

(2)Pr(X1,X2, . . . ,Xn) =
n
∏

i=1

Pr(Xi

∣

∣parents(Xi)
)

.

(3)Pr(X|O) = αPr(X,O) = α
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u∈U
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Figure 1.   An example of the payoff matrix and classical Bayesian network for the prisoner’s dilemma game. 
Each node is related to a prisoner. The conditional probabilities are presented in related tables in this structure.

Table 1.   The probability of choosing defection by a second player according to average results of different 
versions of PD task reported in12.

Known to Under uncertainty

Defect Cooperate Experimental CP (TPL)

Shafir and Tversky45 0.97 0.84 0.63 0.905

Li and Taplini46 0.82 0.77 0.72 0.795

Busemeyer et al.47 0.91 0.84 0.66 0.875

Hristova and Grinberg48 0.97 0.93 0.88 0.950
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tum probability theory is that CP is represented by the set theory, while QP is founded upon the Hilbert vector 
space51. QP was initially used in quantum computing, but recently the range of its applications has expanded 
considerably. The equivalent of a classical bit in QIT is called the qubit. The spin of an electron is an example of 
a qubit. In quantum computing, two eigenstate vectors |0� =

(

1 0
)T  and |1� =

(

0 1
)T are defined to model 

the up and down spin states52. Before measurement (under an uncertainty situation), the state of a qubit can be 
represented as a linear combination of |0� and |1� in a two-dimensional Hilbert space ( C2) as follows:

So we deal with the complex coefficients, including amplitude and the phase. A unique feature of QM is that 
a qubit can be simultaneously in states |0� and |1�.

However, when a measurement is done |ψ� will collapse into |0� or |1� . (c1)2 and (c2)2 are the probability of 
finding the system in |0� and |1� , respectively. |ψ� , which is known as the initial state vector, is formed based on 
our knowledge about the initial state of a system. For each event |i� ( i=0,1), a projection operator Pi = |i��i| is 
assigned to reduce the state vector |ψ� into an eigenstate |i�.The probability of finding the system in the state |i� 
is obtained by Eq. (6)52:

We can extend these concepts to higher dimensions using the tensor product of |0� or |1� 52. For example, the 
state of a system including two qubits can be represented by a superposition of the following four vector states:

Quantum‑like Bayesian Network.  Quantum-like Bayesian networks achieve a significant capacity by 
merging the ability of QP in dealing with uncertainty and powerful features of Bayesian networks in certain situ-
ations. In 1995, Tucci53 applied quantum probability in the BN structure for solving a problem in the physical 
domain. In their approach, each probability function Prn in the real space is replaced by a complex wave func-
tion ψn =

√
Prne

iθn where θn is a phase factor. But Tucci does not provide a solution for estimating the phase 
parameters. By considering different values for the phase factor, every CBN can be represented as an unlimited 
number of QBNs. Here, we present an example of QBN for the PD task. As shown in11, the probability of choos-
ing defection by the second prisoner (B) is estimated by applying the quantum counterpart of Eqs. (1–3) and 
Born rule52 in QIT.

where α is a normalizations factor which is obtained by (10):

Similar to considering wave-particle duality in Young’s two-slit experiment, the wave behavior is removed in 
certain situations. However, there may be destructive or constructive interferences under uncertainty if at least 
two wave functions interact with each other. There were different attempts to describe Young’s two-slit experi-
ment by non-Kolmogorovean probabilistic model such as proposing the p-adic theory of probability54. Inspired 
by this experiment, Khrennikov55 introduces the measure of statistical perturbations and considers interference 
terms in total probability law. He proposes the Quantum-like Representation Algorithm (QLRA) and modifies 
the classical TPL by assuming a trigonometric or hyperbolic interference term56. Considering the interference 
effects in TPL is a key idea to justify the contradictions in most quantum-like decision models. Including this 
effect is also the most important challenge of these models to provide predictions of human selections.

Most quantum-like decision theories only justify the observations by selecting suitable interference-effect. 
While implementing the predictive decision theory needs to estimate the interference term instead. Quantum 
decision theory (QDT)57 is one of the first predictive approaches for estimating the interference term. This model 
takes into account objective utility related to expected benefit, as well as subjective interference. By applying 
some quantum parameters, this model assumes the interference term at a static value of 0.25. Wang et al.25 show 
that Bayesian and Markov models cannot account for empirical data on human behavior. In addition to justify-
ing empirical data of human selections by considering a static value of interference term for each scenario, they 
present a predictive QQ model which is supported by empirical tests of order effects. After that, Moreira et al.14 
added a predictive feature to the QBN structure using a piecewise heuristic function based on probabilities in the 
equivalent CBN. In 2019, Huang et al.58 presented a solution based on the belief entropy concept. They use Deng 
entropy59 to estimate the interference term, which is a generalized form of Shannon entropy and is defined as59:

(5)|ψ� = c1e
iθ1 |0� + c2e

iθ2 |1� =
(

c1e
iθ1 c2e

iθ2
)T

(6)Pr(|i�) = |Pi|ψ�|2 = �ψ |Pi|ψ�.

(7)
|00� = |0� ⊗ |0� = ( 1 0 0 0 )

T ; |01� = |0� ⊗ |1� = ( 0 1 0 0 )
T ;

|10� = |1� ⊗ |0� = ( 0 0 1 0 )
T ; |11� = |1� ⊗ |1� = ( 0 0 0 1 )

T
.

(8)|ψ� = c1e
iθ1 |00� + c2e

iθ2 |01� + c3e
iθ3 |10� + c4e

iθ4 |11� =
(

c1e
iθ1 c2e

iθ2 c3e
iθ3 c4e

iθ4
)T

.

(9)

Pr (B = D) = α
(

|ψ(D,D)+ ψ(D,D)|2
)

= α
(

|ψ(D,D)|2 + |ψ(C,D)|2 + 2|ψ(D,D)||ψ(C,D)| cos (θ)
)

= α
(

Pr(D,D)+ Pr(C,D)+ interference term
)

(10)α =
1

√
Pr(B = D)+ Pr(B = C)

.
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where m is a mass function defined on X , A is the focal element of m and |A| is equal to the cardinality of A 59. 
Their model has some drawbacks leading to an estimated value of more than one for the cosine function in the 
interference term27. So, according to probability values in certain situations presented in BN tables, it is possible 
to achieve the unadmitted complex number for probability in some cases27. Another heuristics approach is pro-
posed by Dia et al. 60. In this method, a coefficient r , based on wave functions in QBN, is defined to estimate the 
interference term. At the same time, Wichert et al.61 propose the Balanced Quantum-Like Bayesian Networks. 
They introduce the law of balance based on the notion of balanced intensity waves and the law of maximum 
uncertainty based on the entropy concept. The main idea of this method is to balance the intensity waves result-
ing from quantum interference in such a way that, during Bayes normalization, they cancel each other. Finally, 
a predictive entangled QBN (PEQBN) structure is introduced in our previous study27, motivated by the QIT 
instead of heuristics approaches. Entangled nodes in the PEQBN model mean that each node/DM is considered 
a part of the whole system. Therefore, the effect of indirect relations that cannot be modeled as classical arcs are 
estimated by two entanglement measures in QIT, and the proposed qW witness27.

Method
Here we present a biased variant of entangled quantum-like BN from a cognitive perspective to examine bias 
behavior in the decision-making process. We consider different bias behaviors due to the emotions between 
agents or past personal experiences motivated by the entanglement concept. Besides, the effect of unequal 
probabilities in the parent node, obtained from past experiences of other agents, is modeled that is inspired 
by electric fields. We simulate a two-step binary decision-making experiment in an entangled quantum-like 
BN structure27 and predict the probabilities in the child nodes without any observations of parent nodes. The 
dynamical evolution of selecting each choice under uncertainty is simulated by overlapped wave functions12 that 
cause an interference effect because of the existence of phase parameters.

The problem of justifying the phase parameter from the perspective of social systems is the most important 
unsolved challenge of quantum-like models. Providing an acceptable justification for these parameters can pave 
the way to estimating the interference terms and proposing predictive quantum-like models. The phase param-
eters in the superposition state of a quantum system are related to the environmental condition and obtained from 
the initial experimental setting in a physical system. Although these parameters are unknown in social systems, 
they are attributed to the contextual conditions of the DM33, the correlation between the phenomena42, or the 
degree of uncertainty of the DM62 to the decision scenario, in different quantum-like models. In this study, we 
attribute the phases in the superposition state to the initial mental conditions of the decision-maker, which is a 
function of personal experiences, spiritual conditions, and the decision-maker’s relations with the other agents 
in the society. So we use these parameters to mode bias behavior in the human mind and unknown relationships 
between agents. In this regard, the introduced social entanglement concept, inspired by quantum entanglement in 
our previous study27, has a key role in our method. This means that although we are not dealing with a quantum 
system, the concept of quantum-like entanglement has been borrowed from quantum physics due to the similar-
ity between entangled quantum systems and social systems. Similar to entangled quantum systems, information 
about the social system is not complete and the information is shared in the whole system. Also, as it is not pos-
sible to separate the information of each particle in an entangled quantum system, decision-makers in a social 
system are not considered isolated agents. Unknown relations between agents influence the decision-making 
process, and so it is impossible to measure the initial mental conditions of each decision-maker separately.

On the other hand, as quantum interference is related to entanglement in quantum physics, we assume that the 
interference term in the social system is related to the social entanglement. The fundamental differences between 
quantum and classical interference arise from non-separability in quantum systems which leads to interference 
between probability amplitudes rather than between physically existing realistic objects, like the electromagnetic 
waves 57,63. There are several common properties between decision-making processes and quantum interference. 
The intention interference and non-commutativity of subsequent decisions are critical characteristics of human 
decision-making. The non-commutativity of actions (in the framework of quantum operators) and entanglement 
are essential properties of quantum interference. In contrast, classical interference cannot include these effects in 
the system due to its commutative nature and locality. So, as assumed in our previous PEQBN model, we relate 
the interference term to the entanglement between agents27 E(ρ) : 

where ρ = |ψ >< ψ | . In QIT, entanglement considers long-range effects because of uncertainty sources in the 
dynamical behavior of physical system. Although there is no exact tool for measuring the entanglement of a quan-
tum composite system, there are many criteria, known as quantum measures, to estimate entanglement values or 
at least find the boundaries of this parameter. In addition, there are necessary and sufficient entanglement criteria 
in terms of directly measurable observables, called entanglement witnesses64. Because entanglement witnesses are 
directly measurable quantities, they are very useful for the experimental analysis of entanglement64. So, because 
the initial conditions of social systems are not well known, we cannot estimate entanglement measures directly, 
and we introduce a measurable function as a quantum-like witness of social entanglement. Then we obtain its 
relations to the concurrence entanglement measure, based on empirical data, to estimate entanglement in the 
social system and hence the interference term.

(11)Ed(m) = −
∑

A⊆X

m(A)log2

(

m(x)/(2|A| − 1)
)

.

(12)cos(θ) = −E(ρ).
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Modeling the bias behavior inspired by the entanglement concept.  This section introduces a new 
quantum-like entangled witness in Hilbert space for modeling bias behavior caused by emotions such as friend-
ship or enmity between agents or past personal experiences from a cognitive viewpoint. It is noted that bias is 
usually interpreted as prior information in Bayes’ formula. Still, this interpretation only considers the effect of 
bias behavior on the amplitude of wave function in a QBN structure. In this study, we consider the effect of bias 
behavior on phase parameters too. So, we assume that prior information such as past experiences or relation-
ships with other agents can change the decision-maker’s initial state, including amplitude and phase parameters.

Here we explain the proposed model by considering a BN including two nodes (A and B ) in Fig. 2. These nodes 
are entangled as well as related to each other by a classical arc. The wave functions presented in Fig. 2 are obtained 
based on empirical probability values in the absence of uncertainty. In QIT, each quantum event in QP is mod-
eled by a state vector in Hilbert space. In a binary choice, two options for each node, including |a1� =

(

1 0
)T 

and |a2� =
(

0 1
)T , are defined in Hilbert space H1 . For a two-stage problem, we also can define |b1� =

(

1 0
)T 

and |b2� =
(

0 1
)T in Hilbert space H2 . So for extending the decision-making problem to the four dimensions, 

the composite Hilbert space ( H) is formed based on four basis eigenvectors obtained by the tensor product52:

The above Hilbert space represents all possible results after a measurement. So until we are not informed 
about the results of a decision-making process (doing a measurement) in nodes A and B , the superposition state 
is formed as follows:

where ci and θi are defined in Table 2. The first step for estimating the Pr(B = b1) without measuring A is applying 
the projector PB=b1 = |b1��b1| on the superposition state |ψ�.

This equation is obtained by applying Eq. (6) on the wave function |ψ� . The third term in Eq. (15) is related to 
the interference effect, which adds a stochastic long-range impact to the problem. If we remove the uncertainty 
from the first node by doing an observation, the third term becomes equal to zero. So, Pr(B = b1) becomes equal 
to c12 or c32 according to the result of measuring A . Now let us consider the unknown situations in which there 
is no information about node A . In this case, we need to estimate the interference term related to the initial 
condition in the superposition state/initial bias in mind. The key parameter of the interference term is cos(θ) , 
which is a function of initial phase parameters, used for modeling bias behavior in this study. So, inspired by 
physical systems, we relate the interference term to the initial experimental situation. But in social system, ini-
tial experimental situations are the function of experiences of DM or unknown relations between agents in the 
society. Inspired by the entanglement concept in quantum physics, which models the unknown relation between 

(13)H = H1 ⊗H2;
∣

∣aibj
〉

= |ai� ⊗
∣

∣bj
〉

.

(14)|ψ� = c1e
iθ1 |a1b1�+c2e

iθ2 |a1b2�+c3e
iθ3 |a2b1�+c4e

iθ4 |a2b2� =
(

c1e
iθ1 c2e

iθ2 c3e
iθ3 c4e

iθ4
)T

(15)

Pr(B = b1) =
∣

∣PB=b1 |ψ�
∣

∣

2 = �ψ
∣

∣PB=b1

∣

∣ψ� = (|b1��b1|ψ�)†(|b1��b1|ψ�)

=
(

|�b1|a1��a1|ψ�|2 + |�b1|a2��a2|ψ�|2 + (|�b1|a1�||�a1|ψ�||�ψ |a2�||�a2|b1�|cos θ)
)

= c21 + c23 + (|�b1|a1�||�a1|ψ�||�ψ |a2�||�a2|b1�|cos θ).

A 

B

1

Figure 2.   An entangled bayesian network including two nodes. Each node (A and B) is considered a part of 
the whole system (illustrated by a yellow oval). The nodes in the social system are entangled due to unknown 
sources such as trust and cooperation between agents. In the BEQBN, probabilities in BNs are replaced by 
suitable complex wave functions.

Table 2.   Wave functions in the BEQBN model presented in Fig. 2.

A B ψ(A,B)

a1 b1 ψ(a1, b1) = κ1e
iγ1κ2e

iγ3 = c1e
iθ1

a1 b2 ψ(a1, b2) = κ1e
iγ1

√

1− κ22e
iγ4 = c2e

iθ2

a2 b1 ψ(a2, b1) =
√

1− κ12e
iγ2κ3e

iγ5 = c3e
iθ3

a2 b2 ψ(a2, b2) =
√

1− κ12e
iγ2

√

1− κ32e
iγ6 = c4e

iθ4
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particles in a whole system, we introduce a similar concept called social entanglement in a quantum-like multi-
agent system that is only partially known. So, here we simulate the social system as a composite quantum system. 
Then we attribute the interference effects to Shannon entropy as a measure of entanglement. Based on quantum 
studies Shannon entropy ( ESh ) is related to the concurrence (C) , a common measure of quantum entanglement, 
as shown below:

Because the initial conditions of a social system and density matrix ( ρ ) are not well known, we cannot esti-
mate E(ρ) directly, so an observable function called quantum-like entanglement witness (qlw) is introduced 
in situations with certainty. By finding the relation between 

(

qlw
)

 and (C) based on empirical data, we estimate 
social entanglement in the uncertain case. Afterward, Shannon entropy and the interference term (cos (θ)) are 
estimated by measuring the system entanglement in a practical way.

Let us review this approach in more details. For estimating this parameter that is inspired by the entanglement 
concept, a novel quantum-like witness in Hilbert space is introduced in this study. Unlike previous methods, we 
use a quantum solution in a four-dimensional Hilbert space based on QP for solving a quantum-like problem. 
In the QBN structure, such as shown in Fig. 2, regardless of the condition in the first node, the uncertainty in 
the second node is eliminated by observing node B.

According to QIT, the operator I ⊗ PB=b1 tells us to leave the first node unobserved and apply the PB=b1 
operator to the second node 52. Here we define two input vectors v1 , and v2 as follows:

These input vectors are defined in four-dimensional Hilbert space by applying a quantum view to the problem 
instead of the classical view used to define two-dimensional vectors in other QBN models. Finally, an observable 
function called quantum-like witness ( qlw ) is suggested based on these vectors as shown below:

For estimating the interference term, a relationship between the introduced qlw witness and C is obtained by 
applying the SRTLBO optimization algorithm65. This relationship is defined in a way that optimizes the concur-
rence as much as possible to achieve the best fit between predicted and experimental probabilities. Applying 
optimization in this procedure is meaningful because optimization is used in the definition of many quantum 
entanglement measures and witnesses due to some reasons such as considering the best initial conditions66. So 
we use the following equation to estimate the concurrence entanglement measure:

where n is equal to 24 . This equation guarantees that the C value is obtained between 0 and 1, which is compatible 
with the acceptable range for this entanglement measure. By applying Eq. (16), Shannon entropy, as a measure 
of entanglement, is estimated. After that, cos(θ) in the interference term is obtained by Eq. (12), inspired by QIT.

Modeling the bias behavior inspired by electric fields.  The main advantage of this study is modeling 
the mind’s initial bias in the decision-making process due to unequal probabilities in the parent node obtained 
from past decisions of other agents in society. In most studies on QBN structures, the quantum-like approaches 
are evaluated on simple two-step binary decision-making tasks, with equal probability in the parent node, such 
as prisoner’s dilemma and two-step gambling games67. Let us focus on situations in which Pr(a1) ∼= Pr(a2 ) in 
the first node. When a decision between two choices has not been made yet, we think about both options simul-
taneously, and a superposition state is formed in the QBN structure. The coefficients of each state in the superpo-
sition are complex numbers. Unequal probabilities affect the amplitude of these coefficients, but we also consider 
the effect of unequal probabilities on the initial phase. For modeling this effect, we are inspired by the deviation 
of the proton during the passage between two plates. Imagine some electrons being transferred from one plate 
to another. In this case, the percentage of positive charges of each plate changes from 50%, and an electric field 
is created between two charged plates, which diverts the passing proton to one of the plates (Fig. 3a). Similarly, 
imagine that the probability of one option in a binary problem is more than 50%, despite being unaware of the 
results, the initial condition of our mind tends toward the option with a higher probability. In this regard, we 
propose a hypothetical bias potential field to model this bias behavior on initial phase parameters (Fig. 3b).

Classical models consider that DMs think about each option separately (Fig. 4a), even in the presence of 
uncertainty in node A (parent node). The proposed method considers this situation, only if uncertainty is 

(16)E(ρ) = ESh(ρ) = −mlog2m− (1−m)log2(1−m),m = (1+
√

1− C(ρ)2)/2.

(17)

v1 = I ⊗ PB=b1 |ψ� =
�

PB=b1 0

0 PB=b1

�

|ψ� =







1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0















c1e
iθ1

c2e
iθ2

c3e
iθ3

c4e
iθ4









=







c1e
iθ1

0

c3e
iθ3

0






,

v2 = I ⊗ PB=b2 |ψ� =
�

PB=b2 0

0 PB=b2

�

|ψ� =







0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1















c1e
iθ1

c2e
iθ2

c3e
iθ3

c4e
iθ4






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=







0

c2e
iθ2

0

c4e
iθ4


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.

(18)qlw(v1, v2) = cos−1

(

(|v1 − v2|)2 + |v1|2 − |v2|2

2 ∗ |v1 − v2| ∗ |v1|

)

.

(19)C =
√

0.136− 0.03 cos
(

n qlw
)

+ 0.02 ∗ sin
(

n qlw
)

− 0.029 ∗ cos
(

2n qlw
)

− 0.12 ∗ sin
(

2n qlw
)

.
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removed by an observation. While from a quantum-like viewpoint, node A can exist in the following superposi-
tion state (Fig. 4b) under uncertainty:

where κ2 =
√

1− κ12 . The effect of unequal probabilities has appeared in the amplitude parameters (κ i) . How-
ever, phase parameters (γ i) and, therefore, interference terms are also affected, indirectly. When a DM wants 
to choose an option in the second node that can be beneficial or detrimental, both options with unequal prob-
abilities in the first node are considered simultaneously (Fig. 4b). Here, we suggest that DM’s mind tends to the 
event that is more likely to happen. Since we attribute the initial phases to the DM’s mental conditions, we need 
to model the effect of this bias on (γ i) parameters and, therefore, the interference term. We model the bias effect 
to initial phases by a hypothetical field motivated by the behavior of particles in an electric field (Fig. 4c). So 
most DMs/qubits tend to have a particular bias. In this regard, a potential function U(κ1) is defined to model 
bias behavior (Fig. 5), and the supplementary term shown in Eq. (21) is added to Eq. (15):

If two options have equal probabilities, no significant bias is observed and U
(√

0.5
)

≈ 0 . Also, 
U(0) = U(1) ≈ 0 because there is no uncertainty in these situations. But if the probability of choosing one option 
is 0.75 and the other one is 0.25, U(κ1) is maximized. The proposed bias function (Fig. 5) is symmetric because 
the probability of one option Pr(A = a1) is equivalent to the probability value of (1− Pr(A = a1)) for the second 
option. So, we can predict Pr(B = b1) without measuring A as follows:

(20)|ψA� = κ1e
iγ1 |a1� + κ2e

iγ2 |a2� =
(

κ1e
iγ1 κ2e

iγ2
)T

.

(21)U
�

κ1 =
�

Pr(A = a1)
�

=























e−100 (κ1
2−0.75)2

√
2π

Pr(A = a1) ≥ 0.5

e−100 (κ1
2−0.25)2

√
2π

Pr(A = a1) < 0.5

.

Figure 3.   (a) The deviation of the proton p under the influence of the electric field, created due to the unequal 
percentage of positive charges in the plates under the classical view, (b) The deviation of the initial superposition 
state including phase parameters in the human mind of the second prisoner (under unequal probabilities of 
defection and cooperation of the first prisoner) due to considering a hypothetical bias field under the quantum-
like view.

Figure 4.   According to BEQBN, humans made their decisions by interpreting the information for each choice 
separately in the absence of uncertainty (a) or by thinking about two choices simultaneously (b and c) under 
uncertainty. Also, this model considers a biased decision-making process inspired by electric fields when the 
probabilities of finding the system in two options are not equal (c).
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The pseudo-code of the proposed BEQBN method is presented in Table 3.

Results
Here, the proposed BEQBN is evaluated on two decision-making scenarios with equal and unequal probabilities 
in the first node. To provide a fair comparison, Obtained results by BEQBN compare to the estimated value by 
CBN and six quantum-like decision-making models.

Evaluation of the proposed BEQBN on PD game.  The PD game is a benchmark in the decision-
making domain with equal probabilities in the first node, described in more detail in the preliminaries sec-
tion. We apply the proposed model, CBN, and six other predictive quantum-like methods, including QDT57, 
QBN14, QBN58, QBN60, BQBN61, and PEQBN27, to different versions of the PD game. This evaluation is based 
on the empirical results reported in Table 1. The predicted probability for choosing the defect option by the 
second player is estimated by each method. The errors between predicted and empirical probabilities for these 

(22)Pr(B = b1) =
∣

∣PB=b1 |ψ�
∣

∣

2 = min{1, c12+c3
2−(|�b1|a1�||�a1|ψ�||�ψ |a2�||�a2|b1�|∗ ESh)+U(κ1)} .

Figure 5.   The proposed bias potential function Eq. (21) for modeling biased decision-making. The value of 
this function is added to the interference term. U(0.5) ≈ 0, due to an unbiased situation in the case of finding 
equal probabilities in the first node. Also, U(0) = U(1) ≈ 0 because the interference term is removed in certain 
situations.

Table 3.   The Pseudo-code of the BEQBN model for a binary decision-making problem.

Step 1: Two vectors for states of each binary node are presented as |a1� =
(

1 0
)T and |a2� =

(

0 1
)T in Hilbert space H1 and 

|b1� =
(

1 0
)T and |b2� =

(

0 1
)T in H2

Step 2: The composite Hilbert space H = H1 ⊗ H2 and four basis vectors are obtained by applying the tensor product

Step 3: Superposition model |ψ� is formed as presented in Eq. (14)

Step 4: Two input vectors v1 , and v2 , are obtained by Eq. (17)

Step 5: Quantum-like witness ( qlw ) is calculated by Eq. (18)

Step 6: The concurrence entanglement measure ( C ) is calculated by Eq. (19)

Step 7: Shannon entropy ESh is calculated by Eq. (16)

Step 8: The biased operator U is estimated by Eq. (21)

Step 9: The projector PB=1 is applied on |ψ� , and cos(θ) in Eq. (15) is considered equal to −ESh .

Step 10: Pr(B = b1) is estimated by Eq. (22)

Table 4.   Errors between predicted probability and empirical results for Pr(B = defect) in the PD game under 
uncertainty. Predicted values are obtained by applying the BEQBN model CBN, QDT57, QBN14, QBN58, QBN60, 
BQBN61, and QBN27 to the PD game. Significant values are in [bold].

PD game CBN QDT57 QBN14 QBN58 QBN60 BQBN61 PEQBN27 The proposed BEQBN

Shafir and Tversky45 27.50 2.50 1.08 − 11.16 17.01 20.57 0.54 − 4.54

Li and Taplin46 7.50 − 17.50 − 0.78 − 14.07 − 6.96 − 12.84 − 6.98 − 2.98

Busemeyer et al.47 21.50 − 3.50 13.95 − 5.31 8.25 9.5 5.58 3.40

Hristova and Grinberg48 7.00 − 18.00 2.64 2.45 − 0.51 2.42 1.14 − 2.33

RMSE 18.19 12.74 7.13 9.44 10.07 13.08 4.51 3.40
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approaches are reported in Table 4. Also, these results along with their root mean square error ( RMSE ) values are 
plotted in Fig. 6. According to this evaluation, the predictions by the proposed BEQBN model are in good agree-
ment with the empirical data. Due to considering bias behavior, BEQBN achieves the first rank in this evaluation 
by obtaining an RMSE value equal to 3.4.

Because of the equal probability of defection or cooperation of the first prisoner, mental bias modeled by 
bias potential function is neglected in this task. However, mental bias due to emotions between two prisoners is 
modeled by the qlw witness and two entanglement measures. This effect is justified by the previous knowledge 
of the two prisoners of moral character and cooperation between them, although they have been in separate 
cells. Our previous entangled BN27 and the heuristic method presented by Moreira et al.14, rank second to third 
in this evaluation, respectively. Other compared approaches, including QBN58, QBN60, QDT57, BQBN61, and 
classical BN, are ranked fourth to eighth.

Evaluation of BEQBN on face categorization and decision.  In the second evaluation, the proposed 
model is applied to a two-step scenario with unequal probabilities in the first node, while selection in the second 
node has benefit or loss for the DM. This task is presented by Busemeyer et al.68 about categorizing people based 
on their faces. In this task, there are two separated conditions: (1) categorization before decision-making (C-D), 
and (2) decision-making (D alone).

Same pictures of faces are shown to participants in both situations that varied in two dimensions: face width 
and lip thickness. Participants in the C-D condition are asked to classify the face as either a "good" or "bad" and 
then choose whether to "attack" or "withdraw." Faces are classified into two groups: "narrow faces" with a narrow 
breadth and thick lips and "wide faces" with a wide breadth and thin lips. The participants are informed that "nar-
row" faces have a 0.83 chance of being in the "bad guy" population, whereas "wide" faces have a 0.84 probability 
of being in the "good guy" population. Attacking the "bad man" and retreating from the "good guy" are rewarded. 
The participants in the D alone condition are instructed to decide without any classifications.

We apply the proposed BEQBN and seven other predictive methods, including CBN, QDT57, QBN14, QBN58, 
QBN60, BQBN61, and PEQBN27, to this scenario and predict the probability of choosing "attack" in the D alone 
condition based on information presented in Table 5. According to our approach, categorization in the first round 
changes the initial conditions of the DM’s mind and therefore the superposition state of each DM. So catego-
rization and decision-making in this task are two entangled processes. In D alone scenario, participants think 
about categorization as good or bad guys simultaneously. The interference term is estimated by entanglement 
measures and caused by changing the initial state of the mind in the categorization process. Another human 
bias is also considered, due to the unequal probabilities of whether each face is good or bad in the first node. 

Figure 6.   Graphical illustration of errors between empirical results (Table 1) and predicted values of Pr(B = D) . 
The results are obtained by applying seven models, including CBN, six recent quantum-like decision models, 
and the proposed BEQBN model in this study to the PD game.

Table 5.   The probability of taking defensive action under two different situations of the C-D condition and the 
D-alone condition12,68.

Pr(good)

Categorization then decision-making (C-D) Decision-making only (D alone)

(Attack|good) (Attack|bad) Experimental (attack)

Wide face 0.84 0.35 0.52 0.39

Narrow face 0.17 0.41 0.63 0.69

Table 6.   Errors between the empirical results and predicted probability of taking defensive action without 
categorization based on eight predictive models including CBN, QDT57, QBN14, QBN58, QBN60, BQBN61, 
QBN27, and the proposed BEQBN model in this study. Significant values are in [bold].

CBN QDT57 QBN14 QBN58 QBN60 BQBN61 PEQBN27 The proposed BEQBN

Wide face − 1.28 − 26.28 − 15.80 4.24 − 14.96 29.72 − 6.01 7.05

Narrow face − 9.74 − 34.74 9.89 − 16.85 7.96 − 33.90 − 20.69 − 1.30

RMSE 6.94 30.80 13.18 12.29 11.98 31.88 15.24 5.07
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Decision-makers think simultaneously about two options, but they are more inclined towards one of them. This 
bias is modeled by adding the potential function U  introduced in Eq. (21) As shown in Table 6, this correction 
reduces the error between predicted and empirical results.

In this table, BEQBN wins the first rank by achieving the RMSE value equal to 5.07. The results obtained by 
other compared methods are shown in Table 6 and Fig. 7. According to these results, the other six quantum-like 
models are no more successful than classical Bayesian network structure, and CBN, QBN60, QBN58, QBN14, 
PEQBN27, QDT57, and BQBN61 are ranked second to eighth, respectively. Therefore, in the situations where we 
deal with unequal probabilities in the first node, considering only one aspect of interference does not improve 
the performance of BN structures.

Conclusion
Future autonomous systems will need cognitive capabilities, including reasoning and decision making. Hence, 
modeling human selection behavior is one of the grand challenges in the future of control and systems. This 
work extends quantum-like approaches to modeling human choice behavior by focusing on human biases from 
a cognitive viewpoint. The proposed model is built upon the basis of the entangled quantum-like BN due to the 
synergy of three powerful approaches, including (1) classical BN for modeling causal relationships, (2) quantum 
probability for adding a new dimension for modeling the states of the human mind in the complex domain, 
and (3) entanglement property for modeling the long-range effects due to uncertainty sources in the dynamical 
behavior of the decision-making process. By simulating a two-step binary choice task as a composite entangled 
quantum system, we consider each node of a BN structure as a particle or wave in certain and uncertain situa-
tions, respectively.

The point of departure in this study is modeling the initial bias behavior of the DM’s mind due to unequal 
probabilities in the unmeasured parent node of the BN structure. To this end, we define a potential function 
inspired by an electric field to estimate the effect of bias behaviors on the interference effect under uncertainty. 
Also, a novel quantum-like witness in the Hilbert space is introduced to model bias behavior due to emotions 
between agents in the social systems and past personal experiences. By applying the proposed quantum-like 
witness, a quantum solution in Hilbert space rather than classical ones in other models is used to solve a quan-
tum-like problem. We also present a periodic relationship between the proposed quantum-like witness and 
the well-known concurrence entanglement measure in QIT. Then Shannon entropy is estimated based on the 
relations in quantum information theory and applied for modeling the destructive or constructive interference 
effects between the two choices in a binary task under uncertainty.

Finally, the proposed BEQBN is evaluated successfully on two decision-making scenarios with equal and 
unequal probabilities in the first node. According to experimental results, BEQBN predicts the probability of 
selecting each option under uncertainty with minimum error compared to classical BN and six recent quantum-
like Bayesian networks. The results indicate that the proposed model in this study archives the first rank in overall 
evaluations by considering mind’s biased behaviors.

In the future, we hope to extend our approach for modeling more complex situations with three different 
options for each step. For this purpose, we also plan to design new tasks for gathering empirical data and creating 
new databases. Then, we can evaluate the application of the proposed model in solving human challenges such 
as crisis management, energy management, or traffic forecasting.

Data availability
All data generated or analyzed during this study are included in this published article [and its supplementary 
information files].
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