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Comparison of physiological 
responses of running 
on a nonmotorized 
and conventional motor‑propelled 
treadmill at similar intensities
Filipe A. B. Sousa 1,2,3*, Fúlvia B. Manchado‑Gobatto 1,4, Natália de A. Rodrigues 1, 
Gustavo G. de Araujo 2,3 & Claudio A. Gobatto 1,4

This study aimed to test the agreement of the incremental test’s physiological responses between 
tethered running on a nonmotorized treadmill (NMT) to matched relative intensities while running 
on a conventional motorized treadmill (MT). Using a within‑subject crossover design, nine male 
recreational runners (age = 22 ± 5 years; height = 175 ± 6 cm; weight = 68.0 ± 16.6 kg) underwent two 
test sessions: one was an incremental intensity protocol on an MT; the other was on an instrumented 
NMT. Intensity thresholds at V̇O2max, respiratory compensation point (iRCP), and lactate threshold 
(iLT) were registered for analysis, together with V̇̇O2, V̇̇E, ƒR, and blood lactate concentration 
([Lac]). Comparisons were based on hypothesis testing (Student’s T‑test), effect sizes (Cohen’s d), 
ICC, and Bland Altman analysis. Statistical significance was accepted at p < 0.05. Attained V̇O2max 
(MT = 52.2 ± 7.3 mL·kg‑1·min‑1 vs NMT = 50.1 ± 8.1 mL·kg‑1·min‑1) and V̇̇O2 at iRCP (MT = 46.3 ± 7.2 mL·kg‑

1·min‑1 vs NMT = 42.8 ± 9.3 mL·kg‑1·min‑1) were not different between ergometers (p = 0.15 and 
0.13, respectively), with significant ICCs (0.84 and 0.70, respectively) and Pearson’s correlations 
(r = 0.87 and 0.76, respectively). The [Lac] at iLT presented poor agreement between conditions. 
Significant correlations were found (r between 0.72 and 0.83) for relative power values of i V̇O2max 
(6.56 ± 1.28 W·kg−1), iRCP (4.38 ± 1.50 W·kg−1), and iLT (4.15 ± 1.29 W·kg−1) related to their counterpart 
obtained on MT. Results show that running on an NMT offers a higher glycolytic demand under the 
same relative internal load as running on an MT but with a similar aerobic response and correlated 
intensity determination.

Treadmills have been used for training, rehabilitation, and research protocols whenever there is a need to emulate 
overground running. The use of treadmills has obvious purposes—to control for space, environmental, and load 
conditions while enabling the attachment of fixed measurement  devices1,2. Instrumented treadmills have been 
employed to enhance locomotion gait analysis, allowing the measurement of kinetic parameters with adequate 
 accuracy1,3. Considering the growing presence of strength training in long-distance  preparation4, explained by 
the benefits of neuromuscular gains on endurance performance and high-intensity running  performance5, it is 
expected to see a rising interest in using instrumented treadmills in training and testing routines.

Similar to instrumented treadmills, there is increased attention to nonmotorized treadmills (NMT), because 
they allow for instantaneous variations in running speed and  acceleration6–8. On the other hand, the motorized 
treadmills (MT) are helpful for constant work-rate efforts and an accurate increase in intensity. During long-
duration running, acceleration and decelerations are performed at will, with variations caused by course profile, 
pacing strategy, and  competition9. The possibility of fast variation on running speed enhances the potential of 
NMT for the study of training and simulation of performance, a trait that has been associated to an enhanced 
similarity on kinematics during accelerated running  events3.
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Both MT and NMT can present arguably comparable kinematics to overground  running3,10, despite differ-
ences in kinetics for accelerated  events6,11. From the physiological, perceptual, and performance standpoints, a 
recent meta-analysis has shown that the differences between running overground and treadmills are depend-
ent on the running speed  assessed2. For example, at maximum running intensity, oxygen consumption ( V̇O2) 
and heart rate (HR) on MT were comparable to overground  running2. However, at near maximum running ( V̇
O2 > 80%), V̇̇O2 and blood lactate concentration ([Lac]) were lower for MT than overground.

Among the 34 studies assessed in the Miller et al.2 meta-analysis, only three involved NMT, and all using a 
curved surface, reinforcing the need for further investigation on this topic. At maximal running on NMT, V̇̇O2 
and HR were similar to overground running, but values of [Lac] and RPE were  higher12. However, NMT run-
ning at matched submaximal speeds showed higher V̇̇O2, [Lac], HR, and perception of effort than overground 
 running7,13. So, despite similarities to overground running at maximum effort, NMT and MT running present 
different physiological responses regarding submaximal work-rates, being usually higher for NMT and lower 
for  MT14. Recently, it has been shown the need for a 6 to 8% inclination on an MT when running at 10 kmꞏh−1 to 
achieve comparable physiological and perceptual responses to a curved model of  NMT15. Considering uphill run-
ning at MT to present a higher neuromuscular demand compared to level  running16, this may be the case when 
comparing MT level running to NMT, thus explaining the higher physiological demands at a same absolute speed.

Correlations between physiological responses after running at maximum effort overground compared with 
both NMT and MT suggest their usefulness as part of training and testing  programs2,12. For their use as train-
ing devices, the choice between MT and NMT could be driven by the need for a constant work-rate or rapid 
changes at will in running speed. However, considering the differences in physiological responses at absolute 
submaximal  speeds14,15, it is important to confirm if NMT and MT running are physiologically comparable at 
matched relative workloads. If this premise proves to be true, NMT and MT running at the intensity of a same 
metabolic threshold should result in similar adaptations to training, expanding the interchangeably use of NMT 
and MT during a training program.

This study tested the hypothesis of similar oxygen consumption, ventilation, respiratory frequency, and 
blood lactate concentration at the intensities associated with the lactate threshold, the respiratory compensation 
point, and the maximum oxygen consumption intensities for both NMT and MT ergometers. If confirmed, the 
adjustment of submaximal running physiological demands during NMT and MT would be possible. The current 
study aimed to test the agreement of the physiological responses from an incremental intensity test performed 
at tethered running on an NMT to their matched relative intensities on an MT.

Materials and methods
Participants. Nine male recreational runners (age = 22 ± 5 years; height = 175 ± 6 cm; weight = 68.0 ± 16.6 kg; 
body fat = 7.2 ± 3.8%; training frequency 3/week, minimum 15  km/week) gave written consent to take part 
in this investigation, being informed of the benefits and risks of the investigation prior to signing. All proce-
dures were previously approved by the Research Ethics Committee of the School of Medical Sciences (number 
28442314.0.0000.5404) and complied with the Declaration of Helsinki.

Design and procedures. Previously to the experimental sessions, volunteers visited the laboratory to learn 
about the protocol and give informed consent for participation. The first visit consisted of anthropometric meas-
ures and ergometer familiarization. Then, with a randomized crossover design, volunteers were called back and 
underwent two test sessions set apart by two to seven days. These two sessions consisted of a warm-up followed 
by one incremental test performed on either an NMT (custom build from an ATL, Inbrasport®,  Brazil17,18) or 
MT (Super ATL, Inbrasport, Brazil) (Fig. 1). The volunteers ran equipped with a portable gas analyzer  (K4b2, 
COSMED®, Italy) at all times during MT and NMT testing. Blood samples were taken by the ear lobe at the end 
of each stage of the incremental intensity test and stored into microtubes (Eppendorf®, 1.5 ml) containing 50 μl 
of 1% sodium fluoride (NaF) for later analysis (YSI-2300 STAT PLUS, Yellow Springs®, USA).

Measures. Incremental tests were performed at 0% inclination and had three-minute stages followed by 30-s 
pauses for blood sample collection. For the MT, the test started at 7 km·h−1 with 1 km·h−1 increments. Consid-
ering absolute speeds do not present similar physiological demands between MT and  NMT7,13, the work-rate 
on the NMT was determined by power in the horizontal plane, starting at 80 W with 20 W increments. On the 
NMT, the intensity was held constant by visual and verbal feedback of horizontal plane power performance. 
The protocol design was determined by pilot testing with runners of similar characteristics to enable at least five 
stages for every volunteer. Tests were continued until either exhaustion or the attainment of two of the following 
criteria: (i) a plateau in V̇O2; (ii) R higher than 1.0; (iii) blood lactate concentration higher than 8 mmol·L−1. The 
same criteria were used to determine V̇̇O2max. Criteria for the plateau in V̇O2 was defined based on individual 
variability of V̇̇O2 in respect to the work-rate, i.e. when the difference between stages was less than half of the 
expected increase in V̇O2 obtained from the submaximal work-rate stages regression  analysis19.

V̇̇O2, carbon dioxide output ( V̇CO2), minute pulmonary ventilation ( V̇E), and respiratory frequency (ƒR) at 
a given stage was the average value of the last 30 s of data. The first intensity to elicit V̇̇O2max was defined as i V̇
̇O2max. At the i V̇̇O2max stage, both ƒR and V̇ E were retained for analysis. The V̇O2 at the respiratory compensation 
point (RCP) and its intensity of occurrence (iRCP) were determined by bi-segmented analysis of V̇E/V̇CO2

20. 
Similarly, the lactate threshold (LT) and its respective intensity (iLT) were determined by the analysis of the blood 
lactate concentration and running work-rate21(Fig. 2). Regression analyses were performed to find the intersec-
tion point for a given parameter′ s first and second linear  regression22. The V̇O2 at iRCP was also normalized to 
V̇O2max. iRCP and iLT were expressed as their respective intensities, as well as normalized for i V̇O2max for paired 
comparison between conditions.
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The NMT ergometer was adapted from a commercial model (Super ATL, Inbrasport®, Brazil) as detailed 
 elsewhere17,18 has a running surface of 196 × 64 cm. Volunteers ran with a load cell in series with an inextensible 
steel cable attached to their waists. The absence of a driving motor enables the runner to perform the propelling 
force needed to run during the entire test. The NMT was upgraded to register vertical forces, mounted on four 
load cells to register the force in the vertical direction. After test completion, the resultant force was calculated 
using the vertical and horizontal plane force measurements, and mechanical power was obtained as the product 
between velocity and resultant force. The signal acquisition system (DAQ module, amplifier, and Hall effect sen-
sor) was set to record data at 1000 Hz. The force sensors were calibrated using known weights before each test. 

Figure 1.  Set-up image for the studied ergometers. (1) conventional MT running; (2) tethered NMT running; 
(3) monitor for visual feedback of horizontal plane power performance; (4) computer and signal acquisition 
equipment; (5) instrumented NMT for vertical force measurement; (6) load cell attached to a fixed metal pole 
enabling heigh adjustment to measure force in the horizontal plane. In both cases, the runners were equipped 
with a portable gas analysis device at all times.

Figure 2.  Example of the nonmotorized treadmill (A) and motorized treadmill (B) set up to determine iRCP 
and iLT; power is expressed as the resultant of horizontal and vertical orientations. Arrows are merely indicative. 
[Lac] blood lactate concentration, V̇E/V̇̇CO2  quotient between ventilation and  CO2 production.
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Force signals were filtered using a low-pass, fourth-order Butterworth filter, with a cutoff frequency of 10 Hz, to 
account for noise from the electrical grid (50–60 Hz) and natural vibrations (> 15 Hz).

Statistical analyses. Data were described as mean and SD. After data normality confirmation (Lilliefors 
test), paired Student’s t-tests were used to verify significant differences in physiological parameters between 
MT and NMT. Pearson’s correlation coefficient was adopted to verify consistency. The sample size was defined 
by convenience but considered the possible statistical power analysis. Using G*Power23, a t-test for depend-
ent means (ES > 0.8 and α > 0.5) and a point biserial model correlation (ρ2 > 0.5 and α > 0.5) returned statistical 
power = 0.7 for a sample size of nine. Cohen’s d was calculated to access effect sizes (ES), being d ≤ 0.20 a small 
effect, d ≤ 0.50 a medium effect, and d ≤ 0.80 a large effect. For concordance level between tests, ICC for absolute 
agreement (3,1) was performed, together with bias (MD) and Limits of Agreement (LA) from Bland Altman’s 
analysis. For ICC, thresholds were 0.99, 0.90, 0.75, 0.50, and 0.20, for extremely-high, very-high, high, moderate, 
and  low24. Both concordance tests were performed using a custom Matlab function (MATLAB 6.0, MathWorks 
Inc.®), while the remaining statistical analysis used Statistica 7.0 (StatSoft®). Statistical significance was accepted 
at p < 0.05.

Results
Descriptive data for V̇O2 and blood lactate concentration for both incremental tests are depicted in Fig. 3. It is 
possible to see a linear increase in V̇̇O2 related to exercise intensity and a plateau for the last stages of incremental 
tests performed on both NMT and MT. Additionally, blood lactate concentration showed higher values for NMT 
than MT, with wider SDs. Of the nine runners, six presented a V̇̇O2 plateau at the end of the test for MT and five 
for NMT. All runners presented a V̇O2 plateau under at least one studied condition. For the remaining tests, V̇
̇O2max was confirmed by the meeting of the other two criteria.

Attained V̇̇O2max (MT = 52.2 ± 7.3 mL·kg−1·min−1 vs NMT = 50.1 ± 8.1 mL·kg−1·min−1) did not present signifi-
cant difference between tests (Fig. 4A), with ES = 0.27. Correlation between them was also high and significant 

Figure 3.  Descriptive data for V̇O2 (A), blood lactate concentration (B), ƒR (C), and V̇ E (D) for the incremental 
intensity test performed on NMT (filled circles) and MT (open circles). Power data in NMT is expressed 
considering only the horizontal orientation, to maintain the same intensity for each subject (see “Methods” 
section for detail).
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(Fig. 4D). High ICC (0.84; p < 0.001) confirmed agreement between V̇̇O2max in the two incremental tests, with 
only little bias presented by Bland Alan plots (Fig. 4G). Additionally, no significant difference was registered 
between ergometers (p = 0.54 and 0.07, respectively; ES = 0.28 and 0.68) for values of ƒR (MT = 55 ± 5 b·min−1 and 
NMT = 57 ± 9 b·min−1) and V̇ E (MT = 121.1 ± 14.7 L·min−1 and NMT = 131.9 ± 16.8 L·min−1) at i V̇̇O2max. However, 
ƒR and V̇ E did not present significant Pearson’s correlation between conditions (r = 0.21; p = 0.59 and r = 0.55; 
p = 0.13, respectively) and had low ICCs (ICC = 0.18; p = 0.31 and ICC = 0.46 p = 0.06, respectively). Additionally, 
Bland Altman analysis for ƒR and V̇ E at i V̇O2max reinforced an inconsistency between conditions, based on high 
Limits of Agreement for ƒR (MD = −1.75 and LA = 19.25 b·min−1) and V̇ E (MD = −10.81 and LA = 29.64 L·min−1).

The V̇O2 at iRCP (MT = 46.3 ± 7.2 mL·kg−1·min−1 vs. NMT = 42.8 ± 9.3 mL·kg−1·min−1) was not statistically dif-
ferent between tests (Fig. 4B), with ES = 0.42, and there was a significant Pearson correlation coefficient between 
the two measures (Fig. 4E). Also, V̇̇O2 at iRCP presented moderate but significant ICC (ICC = 0.70; p = 0.008) 
and low bias (Fig. 4H) between the two ergometers. Lactate concentration in iLT (MT = 2.29 ± 0.61 mmol·L−1 vs 
NMT = 3.33 ± 1.32 mmol·L−1) presented only a tendency towards significant difference (Fig. 4C), yet with ES being 
equal to 0.66, an absence of a significant Pearson correlation coefficient (Fig. 4F), low ICC (ICC = 0.04; p = 0.43) 
and high bias (Fig. 4–I). No significant correlation was found in the Bland Altman analysis for all parameters, 
indicating no tendency in bias along the range of  observations25.

Intensity parameters for the MT incremental test (iV̇O2max = 14.7 ± 0.9 km·h–1; iRCP = 12.3 ± 1.6 km·h–1; 
iLT = 11.8 ± 1.4 km·h–1) were better correlated with the ones obtained on the NMT test when relativized by body 
mass (iV̇O2max = 6.56 ± 1.28 W·kg–1; iRCP = 4.38 ± 1.50 W·kg–1; iLT = 4.15 ± 1.29 W·kg–1) than in absolute units (iV̇
O2max = 440 ± 107 W; iRCP = 284 ± 81 W; iLT = 271 ± 71 W) (Table 1). Despite correlation, when normalized by i V̇
O2max, iRCP (MT = 83.9 ± 8.3%; NMT = 66.6 ± 17.4%; p = 0.01) and iLT (MT = 80.4 ± 6.9%; NMT = 63.3 ± 14.6%; 

Figure 4.  Comparison of V̇O2max (A), V̇O2 in iRCP (B) and [Lac] values in iLT (C) between the incremental 
tests in different ergometers, with their respective correlation (D–F) and Bland Altman plots (G–I); [Lac] 
blood lactate concentration, iRCP second metabolic threshold intensity determined by respiratory parameters, 
iLT second metabolic threshold intensity determined by lactate; V̇O2max maximal oxygen consumption, MT 
motorized treadmill, NMT nonmotorized treadmill.
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p < 0.01) presented significantly higher values during the MT test than the NMT. Even then, V̇O2 at iRCP normal-
ized by V̇O2max was not different between conditions (MT = 88.5 ± 5.8%; NMT = 84.8 ± 7.0%; p = 0.01).

Discussion
The current study aimed to compare parameters of an incremental intensity test performed on an NMT and an 
MT, matched by physiological thresholds. Results indicated similar oxygen consumption at i V̇̇O2max and iRCP. 
The poor agreement between conditions for blood lactate concentration at iLT may be justified by different exer-
tion of force between ergometers. In general, the intensities (iRCP, iLT, and i V̇̇O2max) presented higher correlation 
coefficients when power was relativized by body mass.

Comparisons between NMT and MT have been made, often considering absolute work-rates and using a 
curved NMT. The maximal attained speed and the self-selected submaximal intensities referred to as easy and 
moderate are always lower in NMT than  MT13,14,26. For speeds ranging from 5 to 16 km·h−1, differences in V̇
̇O2, heart rate, and rate of perceived exertion were found between NMT and MT  running7,13,14,26. There were no 
significant differences between NMT and MT for [Lac] while running at 12 km·h−1, while it was higher on the 
NMT for 14 and 16 km·h−113. The present study furthers these results by comparing the two ergometers when 
running at intensities matched by individual physiological thresholds.

For oxygen consumption at both i V̇̇O2max and iRCP, the absence of significant difference, together with 
lower bias and significant correlation between running conditions, supports the hypothesis of a physiological 
equivalence in these intensities for the two ergometers. Previous studies have shown oxygen consumption and 
blood lactate concentration responses to be modality dependent for the same relative intensity, attributing this 
to differences in the activated muscle mass and body position between cycle and running or swimming and 
 running27–29. Despite this, both ergometers used in this study simulated the exercise pattern of running; hence, 
differences in V̇̇O2 for these relative intensities of exercise were not found.

The comparison between ergometers for blood lactate concentration at iLT, however, presented p = 0.06, with 
no correlation and significant bias between MT and NMT. There is a notion that the runner does not exert as 
much force in propelling the body while running on an MT as during overground running, decreasing anterior 
and medial ground reaction forces and presenting changes in electromyographical  activity10,11,30. The evidence 
on why does this may happen is conflicting. Among the possible explanations for having less propulsive forces 
during MT than during overground running are the lack of air drag force, intra-belt fluctuations, differences in 
surface stiffness, and lack of familiarization – which could result in higher stride frequency and lower push of 
per  step10. In constant submaximal work-rate, air resistance and belt fluctuations may be considered low and 
thus negligible.

Differences in surface stiffness could be present when comparing the NMT and MT used here, considering 
that despite being from the same manufacturer, the NTM had its running surface adapted to register force. A 
stiffer running surface presents lower vertical deformation and shock absorption but higher energy  restitution31. 
However, this difference in surface stiffness between treadmills is expected to produce differences in oxygen 
consumption at submaximal work-rates32, which was not the case for iRCP in this study.

On the NMT, the force to push the body forward is simulated when the runner himself propels the treadmill 
belt. Whatever the explanations for it (surface stiffness, belt speed variations, a higher need to push-off, or all), 
it seems that running on an NMT may require higher muscular forces and recruit less oxidative muscle fibers 
than on an MT. A higher force exertion could explain the high effect size, poor correlations (Pearson and ICC), 
and higher bias for blood lactate profile at iLT between the NMT test and the conventional treadmill.

Exercise at iLT is characterized as within the intense exercise  domain33. At this intensity, it is expected that 
three phases will represent V̇̇O2 kinetices: phase 1 is a delay in pulmonary responses due to  O2 stores within 
the muscles and blood; phase 2 is characterized by a rapid increase in V̇̇O2 until phase 3, where stabilization 
of physiological parameters  occurs33. During phase 3, pulmonary V̇̇O2 reflects muscle oxygen usage. However, 
the exponential rise in V̇O2 along phase 2 is supplemented by ATP re-phosphorylation by oxygen-independent 
pathways, such as the anaerobic phase of glycolysis, which results in blood lactate accumulation.

As previously mentioned, on the NMT, the muscular effort must be higher than on MT due to the absence of 
a motor-driven treadmill belt or surface stiffness. Training on an NMT is known to enhance concentric strength 
of the quadriceps in detriment to the hamstrings compared to  MT34. A higher muscular mass recruitment or 
even recruitment of more type II muscle  fibers35,36 may be responsible for increases in blood lactate concentra-
tion at a given intensity. The type of fiber recruitment may explain the higher values for this variable when using 

Table 1.  Correlations between intensity parameters measured on the nonmotorized treadmill and motorized 
treadmill, expressed as r(p). iRCP metabolic threshold intensity determined by respiratory parameters, iLT 
metabolic threshold intensity determined by lactate; iV̇O2max maximal oxygen consumption intensity. *p < 0.05.

iRCP (km·h−1) iLT (km·h−1) iV̇O2max (km·h−1)

iRCP (W) 0.62 (0.08) 0.66 (0.05) 0.50 (0.17)

iRCP (W·kg−1) 0.80 (0.01)* 0.81 (0.008)* 0.71 (0.03)*

iLT (W) 0.53 (0.14) 0.62 (0.08) 0.49 (0.18)

iLT (W·kg−1) 0.78 (0.01)* 0.83 (0.006)* 0.79 (0.01)*

iV̇O2max (W) 0.06 (0.89) 0.07 (0.85) − 0.08 (0.84)

iV̇O2max (W·kg−1) 0.73 (0.02)* 0.75 (0.02)* 0.72 (0.03)*
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the NMT than on the MT, as found in our study, and for overground running, as found  elsewhere37–39. This way, 
running on an NMT could offer higher stress for the glycolytic pathway of ATP resynthesis, even with similar 
relative intensities than on the MT. Higher glycolytic demand and recruitment of less efficient fiber types may 
be corroborated by iRCP and iLT, occurring earlier on the NMT than the MT in relation to i V̇O2max. At first, 
it is possible that there is an overall lower running efficiency when running on the NMT than the MT. However, 
the relative and absolute aerobic demand is similar at iRCP under both conditions. This way, earlier blood lactate 
production while running on NMT could explain iRCP lower intensities relative to V̇̇O2max.

Furthermore, studies comparing blood lactate concentration at iLT obtained by an incremental test performed 
on different surfaces have often found lower values on the MT than the on-field  testing37–39. Furthermore, 
although the results presented here could not compare running on an NMT with overground, one previous 
investigation on 5-km performance registered higher post-exercise blood lactate concentration on the NMT 
than overground, without differences in V̇O2

12. In contrast, submaximal intensities while running on MT elicited 
lower [Lac] (around 1.26 mmol·L−1 less whit 0% grade and 0.52 mmol·L−1 with 1%), compared to overground, 
also without differences in V̇̇O2

2. These results corroborated with our data on similarities of V̇O2 at iRCP and 
the higher [Lac] at LT, which suggest that blood lactate concentration is more sensitive to changes in the run-
ning ergometry than V̇̇O2.

It should be noted here that ƒR and V̇ ̇E were not as consistent between ergometers as V̇̇O2 was at the same 
relative intensity (iV̇̇O2max). Nicolo and  colleagues40 recently presented an interesting insight into the myriad of 
inputs which controls V̇̇E, being both biochemical (e.g., blood lactate concentration) and oxidative demands, 
together with muscle afferent feedback and central command as the fast inputs to drive the ƒR response to exer-
cise. Specifically, research showing a strong relationship between the rating of perceived exertion and ƒR during 
cycling  exercise41 supports the possibility of this parameter’s sensitivity to the overall effort. Considering the 
ergometer comparison scenario presented here, the metabolic demand between conditions is similar from an 
oxidative standpoint but differs in its glycolytic requirement. Ventilatory parameters such as V̇ ̇E and ƒR are, to 
some extent, are being influenced by both inputs. This way, blood lactate concentration and V̇̇O2 may be more 
specific for glycolytic and oxidative exercise demands, respectively, whereas V̇ E and ƒR may respond to the 
overall effort being performed.

We used a tethered running set-up and an instrumented NMT to obtain these results and compared them to 
the physiological demands of running at a conventional MT. The NMT incremental protocol had its work-rate 
controlled by power rather than speed. Controlling for power was the case, considering that absolute speeds 
already had been shown to present significant differences between NMT and MT submaximal  running7,13,14,26. 
The measurement of power considers speed and exerted force; this latter is expected to be different between 
ergometers, although this particular experimental design may not prove such an assumption. Nevertheless, the 
work-rates associated with thresholds were correlated between ergometers. The improvement of the relationship 
between velocity on MT and power on NMT at i V̇̇O2max, iRCP, and iLT relative to body mass, may be explained 
by differences in running efficiency between heavier and lighter  runners29. Body mass is a known factor that 
influences running efficiency and the cost of  running42. Heavier runners are at a disadvantage because of their 
need to exert disproportionally more force, which is not entirely converted to velocity.

Sirotic and  Coutts43 performed a team sports simulation using a nonmotorized treadmill (NMT). They justi-
fied using an NMT by considering volitional acceleration changes inherent to the type of exercise. The authors 
categorized efforts relative to maximum sprinting speed, not focusing on physiological alterations dependent 
on exercise intensity domains. In sports simulations of this nature, the determination of i V̇̇O2max, iRCP, and iLT 
on an NMT, as shown here, could help to improve how to categorize relative internal load.

Results presented here indicate the possibility of controlling relative intensity using an incremental test on an 
NMT with work-rate results related to those from an MT. A possible difference in the glycolytic demand between 
running on NMT and MT must be considered. Training adaptations of the athlete′s running profile could be 
monitored using power units, which improve comparison to other ergometers and enable the evaluation of team 
sports athletes, where force and power may be even more critical for success. Athletes and coaches may use MT 
and NMT as training options for submaximal and maximal efforts. We suggest relativizing the work-rate for RCP 
or LT if there is any intent to use those ergometers interchangeably. Even though, at the same relative intensities, 
NMT running seems to present higher [Lac] than MT running, which should be considered for training aspects.

Among the study’s limitations are the training level of the runners. Previous literature has shown that absolute 
running speed is a factor to be considered when studying the difference of physiological demands between tread-
mill and overground  running2,7. So, it is necessary to investigate if experienced long-distance runners present the 
same differences in physiological responses as shown for recreational runners at comparable relative intensities. 
It is known that the fitness level, based on higher anaerobic capacity and higher RCP in relation to V̇̇O2max, can 
change V̇̇O2 plateau  occurrence44, for example. The sample size is also a limitation to be considered, even if the 
statistical power able to be achieved in this study was described in the methods section. The report of achieved 
effect sizes, alpha levels, ICC for absolute agreement, and Bland–Altman analysis intended to enhance the qual-
ity of the data compared to other investigations. Future studies may consider comparing NMT and MT running 
regarding the push-off forces during work-rates matched relative to the physiological thresholds to verify if this 
can explain the [Lac] differences at the iLT found here.

Conclusions
This study’s results show similar V̇̇O2max and V̇̇O2 at iRCP between tethered running at NMT and conventional 
running at MT, but poor agreement for blood lactate concentrations at iLT, as determined by an incremental 
intensity test. Intensities associated with these thresholds were significantly correlated between NMT and MT, 
reinforcing concurrent validity. Therefore, running on an NMT offers higher glycolytic demand at the same 
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relative internal load as the MT but with a similar aerobic response and correlated intensity determination 
(Supplementary Information).
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