
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9552  | https://doi.org/10.1038/s41598-022-13715-y

www.nature.com/scientificreports

The role of the diffusion 
in the predictions of the classical 
nucleation theory for quasi‑real 
systems differ in dipole moment 
value
Kajetan Koperwas1*, Filip Kaśkosz1*, Frederic Affouard2, Andrzej Grzybowski1 & 
Marian Paluch1

In this paper, we examine the crystallization tendency for two quasi‑real systems, which differ 
exclusively in the dipole moment’s value. The main advantage of the studied system is the fact 
that despite that their structures are entirely identical, they exhibit different physical properties. 
Hence, the results obtained for one of the proposed model systems cannot be scaled to reproduce 
the results for another corresponding system, as it can be done for simple model systems, where 
structural differences are modeled by the different parameters of the intermolecular interactions. 
Our results show that both examined systems exhibit similar stability behavior below the melting 
temperature. This finding is contrary to the predictions of the classical nucleation theory, which 
suggests a significantly higher crystallization tendency for a more polar system. Our studies indicate 
that the noted discrepancies are caused by the kinetic aspect of the classical nucleation theory, which 
overestimates the role of diffusion in the nucleation process.

Although the crystallization process is a commonly known phenomenon, the complete understanding of its 
nature is still far from being achieved. It is mainly due to its complexity, which finally makes that some systems 
easily crystallize, whereas others do not exhibit any symptoms of crystallization, even at deep undercooling, and 
finally form the glass. Thus, the complete understanding of this process, including the determination of the physi-
cal factors, which govern its occurrence, seems to be a crucial task for contemporary condensed matter  physics1–5.

Consequently, through the last decades, various theoretical and computational approaches to study the crys-
tallization phenomenon have been proposed. The computational experiments mainly focus on the possibility 
of the precise calculation of the order parameter, which enables, e.g., the estimation of the time scale, at which 
the ordered phase within the liquid system appears for the first time (the mean first passage time method)6–8. 
Then, the structure of the formed  crystal9 and the direct evolution of its size, can be immediately  monitored10. 
However, from the experimental point of view, the theoretical methods employing macroscopic features of the 
system are of more practical importance. Therefore, a variety of theoretical descriptions for the crystallization 
process have been  proposed11. Most of them are grounded on the same concept, i.e., the crystal phase starts to 
spread only if the nuclei of a given (critical) size (and/or shape) are  formed11. Among those models, the most 
widely used (probably due to its remarkable simplicity) is the classical nucleation theory (CNT)5,12,13.  According 
to the CNT, the critical nuclei’s stability is determined by the surface and bulk contributions to the free energy. 
Consequently, discussed concept predicts that the crystallization process consists of two stages—the formation 
of the nuclei of critical size (nucleation) and their growth (crystal grow). The first step can be estimated by the 
number of the nuclei created within the given volume during the fixed time, i.e., the nucleation rate N , whereas 
the second one, i.e., crystal growth rate U  , describes the velocity of the growth of the crystal structure within 
the liquid. As a consequence, the overall crystallization can proceed only when N and U  are coupled. This sim-
ple idea enables explanation of essential experimental observations, i.e., it justifies why some systems can be 
supercooled up to the glass transitions, whereas others crystallize during cooling, and why some supercooled 
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liquids crystallize during the heating from the glass (it is so called cold crystallization)14. In the first case, the 
separation of N and U  plays a key role. The U  curve is located closer to the melting temperature than N curve. 
Hence, at small supercoolings when both components of the crystallization process are substantially separated, 
N is insufficient to create the stable critical nuclei, which would subsequently growth. On the other hand, at a 
deeper supercooling, the critical nuclei can be created, but then their growth is suspended by the scarce value 
of U  . Finally, the substance does not crystallize. At this point, it must also be noted that a slower cooling rate 
implies that the system persists at given thermodynamic conditions for a longer time. Therefore, the chance for 
the creation of (at least one) critical nuclei is higher. Hence, CNT considers the effect of the cooling rate as well. 
In the second case, when a deeply supercooled liquid is heated, the critical nuclei created at a deep supercool-
ing begin to achieve the temperatures at which U  exhibits high values. Thus, we can observe the crystallization 
process, which previously, during cooling, was unable to take place. Contrary, if N and U curves are close to each 
other, the optimal temperature range for the crystallization process appears. Then the critical nuclei are formed, 
and subsequently, they freely grow.

In this paper, on the basis of the two highly similar systems, we challenge the prediction of the CNT. Interest-
ingly, despite the fact that at given supercooling one of studied systems exhibits significantly higher values of the 
N and U  , the crystallization event for this system is not observed. Our examinations suggest that the observed 
inconsistency between CNT predictions and computational experiment results is caused by the differences in 
the molecular mobility between studied systems. Consequently, we show that the crystallization process’s kinetic 
aspect should not be straightforwardly linked with diffusion, as CNT assumes.

The CNT has frequently been using for the theoretical description of experimental and computational experi-
ments through the last decades. However, the computational experiments deserve particular attention because it 
enables to examine the crystallization tendencies on the most fundamental level of intermolecular interactions. 
For this purpose, the simple model systems characterized by the well-defined intermolecular potentials can be 
used. The most frequently studied systems are those in which pairwise intermolecular interactions are described 
by the Lennard–Jones potential or its approximation valid at short distances, i.e., the soft-sphere  potential15–18. 
The mentioned choice is justified by the fact that the Lennard–Jones potential can be theoretically derived on 
the basis of the interactions between permanent and induced dipole moments. Consequently, those simple 
model systems were used to verification of the  CNT19–21 as well as also to study the influence of the attractive 
and repulsive intermolecular interactions on the crystallization  tendency22–28.  Reported studies suggest that the 
increase in the repulsion results in the decrease in the nucleation barrier and interfacial free  energy29. The other 
examinations focused on the role of the attraction in the crystallization process, deliver the conclusion on the 
positive impact of the intermolecular attraction on the reduction of the time needed for the crystallization at 
given  temperature30. Simultaneously the different approach, i.e., the computational studies performed on the hard 
molecules, revealed that the molecular anisotropy ignored by simple model systems is crucial in determining the 
phase diagram of the  system31–36. However, it must be mentioned that for hard molecules, the temperature enters 
the thermodynamics only in a trivial  way37. Consequently, the alternative models, which consider the interactions 
between non-spherical molecules have been developed, e.g.,  Kihara38 potential, the Gaussian overlap  model39, 
and the Gay-Berne  potential40, and prove the important role of the structural anisotropy in the thermodynamics 
and dynamics of the studied systems. However, from the experimental point of view, the most natural is the all 
atom–atom (or site–site) interactions approach, which unfortunately requires much more computational  effort41. 
Nevertheless, the all atom–atom approach makes that the structure of complex molecules can be reflected, and 
therefore, the closing agreement with the experiments may be expected. As a consequence, the  structural41–44 and 
 dynamical45–49 properties of many model system have been deeply examined concluding that this approach can 
be successfully applied for slightly non-spherical  molecules50. Following this result, the very recent study reports 
that the permanent dipole moment orientation within the anisotropic molecules is of crucial importance for 
the crystallization process. The two analogical systems, which vary exclusively in the orientations of the dipole 
moment, exhibit entirely different stability behavior despite that the same isobaric conditions and identical 
cooling rates are  applied51. Briefly speaking, the perpendicular to the longest molecular axis orientation of the 
dipole moment favors crystallization. In contrast, the deep supercooling of the system with parallel to the long-
est molecular axis orientation of the dipole moment is easily achieved. This outcome is not only relevant from 
the experimental point of view, but it is also important for further computational studies because it emphasizes 
the practical utility of the model systems tested therein. Only slight modifications of the molecular architecture 
result in drastically different crystallization tendency. Hence, model systems from Ref.51, which comprise the 
so-called quasi-real molecules, seem to be promising candidates to examine the crystallization process and then 
the predictions of the CNT. At this point, it is also worth justifying that the use of the quasi-real molecules, i.e., 
the molecules which mimic the real ones but cannot exist in reality, helps to eliminate the uncontrolled effects 
of various intramolecular factors on the considered process or physical quantity. At this point it is also worth 
mentioning that in contrast to simple models, the results obtained for one of the quasi-real systems cannot be 
appropriately scaled to reproduce results registered for another system. Thus study on quasi-real systems provides 
promising alternative to typical computational experiments.

Results
Similarly, to our previous examinations of the system I, we began the studies of system II from the constructing 
the perfect FCC crystal structure constructed from 2048 molecules and heating it from 10 K up to the temperature 
which is about 50 K higher than the temperature at which we observe a rapid increase in the volume, see Fig. 1.

On the basis of our recent results for the system I, we can state that the rapid increase in the volume from 
about 0.086 to 0.094nm3 , which is observed around T = 220K , indicates on the melting of the crystal structure. 
Therefore, the thermodynamic conditions at which the system II is in the liquid phase can be recognized in the 
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similar way, see increase in volume from about 0.088 to 0.101nm3 at T = 420K. Next, we cooled the systems up 
to the starting temperatures. During this process the drop in the volume can be observed. The latter indicates on 
occurrence of the crystallization process, which takes place at Tcr = 130 and 280K , respectively for the systems 
I and II.

According to CNT the nucleation rate is expressed as  follows13

where ρliq is the number density of the liquid, D is a diffusion constant, kB is the Boltzmann constant, and 
�W = 16

3
γ 3

(�Gυ )
2 is the nucleation barrier, in which �Gυ denotes the driving force per volume unit (i.e., the dif-

ference between Gibbs free energy for liquid and bulk phases) and γ is the interfacial free energy (IFE). The next 
physical quantity determining the occurrence of the overall crystallization process is the crystal growth rate, role 
of which can be computed by the following expression

where AU (T) describes the molecular mobility and can be approximated by D · a/�2 , in which a is the average 
width of the crystal lattice spacing ( a ≈ ρ

1
3
cr , ρcr denotes the number density of the crystal), � ≈ ρ

−1/3

liq  is the 
atomic jump distance, whilst f (T) describes the grow mechanism, which for the normal growth ≈ 1. For all 
thermodynamic conditions at which during the cooling systems remain in the liquid phase the diffusion con-
stant is determined using the GROMACS software on the basis of the mean square displacement calculated for 
atoms for long times. In this way both translational and rotational contributions to the molecular motion are 
considered. Subsequently, the estimated dependences D(T) are approximated by the Vogel–Fulcher–Tammann 
equation for the needs of further analysis (see Fig. 5a, which we discussed later). To estimate the value of �G we 
use the method proposed by  Gutzow52 with the redefined integration  pathways53, according to which, at isobaric 
conditions, the driving force for the crystallization takes the following form �G(T) = −

∫ T
Tm

�S(T)dT , where �S 
is the difference in the entropy between the liquid and the solid phases. Taking into account the melting boundary 
conditions �Sm = �Hm/Tm ,  �S can be calculated using obtained directly from simulation-runs values of the 
enthalpy H(T) and the classical relation between enthalpy and the entropy, T = (∂H/∂S)p . The estimation of 
the melting temperature has been done using the liquid–solid coexistence method. In this order, we visualized 
the structure up to which each system crystallizes. Then, we determined the fragments characterized by a high 
degree of order, which for both systems are characterized by the triclinic shape and consist of molecules placed 
in corners. Based on the latter, we constructed another crystal structure and equilibrate it at the temperature 
close to Tcr for both systems. Since we observed that the small defects occur again, we selected the set of 5 × 5 × 5 
molecules within which the created crystal structures were highly ordered and those crystal fragments are used 
for further examination. On their basis, we construct the crystal structures consisted of 2250 molecules, and 
equilibrate it at the temperatures significantly smaller than Tcr . Subsequently, we heat the systems to confirm 
that the crystals are stable at higher temperatures. The results are presented in Fig. 1 of the main text. It can be 
seen that created crystal structures do not tend to melt, although, during the heating process, the tiny and step 
increase in volume is detected for both systems. Probably, these changes of volume are results of the transforma-
tion to the different polymorphic form, which is more stable at higher temperatures. This scenario seems to be 
supported by the evident visible change in the temperature dependence of volume, which is observed around 
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Figure 1.  The temperature dependences of the volume for two studied model systems registered during heating 
and cooling are shown. The black lines represent the heating of the determined crystal structure. In the insets, 
the schemes of the structures of RM are presented.
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100K during the cooling of the system II. However, to confirm this suspicion further researches are required. 
Nevertheless, it is worth mentioning that created structures are more stable at higher temperatures than the 
ones resulted from starting FCC configuration. This fact encourages that the crystal structures established by 
us can be used to determine Tm . Hence, we constructed the special biphasic simulation box, within which 3456 
molecules had been equally divided between the crystal and liquid phases separated by a small gap. Due to the 
fact that at melting conditions, the solid and liquid phases remain in the thermodynamic equilibrium, Tm can be 
determined by the examination of the behavior of the biphasic system. The performed simulations of biphasic 
box last for 5ns and have been done at range of temperatures differ by 1K . Following the visual examination of 
the obtained configurations we determine that melting temperatures, which equal Tm = 150K and Tm = 326K 
for the systems I and II, respectively. At this point, we have to comment that in our previous  studies51 we deter-
mined the Tm for the system I, using liquid–solid coexistence method as well, and we obtained that Tm = 194K . 
However, in that experiment we did not determine the crystal structure. Instead of that, we employed the struc-
ture up to which the liquid had crystalized. Consequently, we probably employed the structure stable at higher 
temperatures instead of the one, which is the most energetically optimal. However, in this work, we intend to 
focus on the most fundamental case, i.e., we estimate the crystallization tendency against the desired (and the 
most energetically optimal) structure. In this context, it is worth noting that the values of Tm estimated herein 
are in similar relations to those of Tcr and also to the temperature at which initial crystals melt, which suggests 
that the determined structures are mutually appropriate.

However, the most challenging is the determination of the γ . Fortunately, the special computational method 
for calculation of γ have been proposed. The two main approaches are the cleaving potential  method54–56 and 
the capillary fluctuation  method57–61.  Despite that both methods are applicable only at the melting conditions, 
they strongly differ in the way of work. In the cleaving potential method, the biphasic solid–liquid system is 
transformed into two separate systems (liquid and solid) by means of external potentials. Then, γ is estimated 
on the basis of the work which is performed by those potentials during the transformation process. However, the 
precise application of this method is associated with some technical difficulties. It is because the reversibility of 
the transformation process must be ensured, and therefore, the accurate control on the transformation process is 
 needed62. Alternatively, γ can be calculated in the more direct way using the capillary fluctuation method (CFM), 
which requires only one simulation run, during which any knowledge of the complex process of the interface 
creation from separated bulk systems is not needed. Instead of that, through the simulation run, the fluctua-
tions of the interface are measured. It enables the estimation of the interface stiffness, which is related to γ . The 
remarkable advantage of CFM is the fact that it considers the anisotropy of the interface, whereas the cleaving 
method is recognized as more accurate. Till now, both methods have been applied to calculate γ values for model 
systems such as hard-spheres55,63 and Lennard–Jones25,56,60. It must be however noted that for the real materi-
als the CFM is more often employed, which is mainly stimulated by the ease of its application. Consequently, 
using the CFM the γ values have been calculated for metallic  compounds57–59,64,  alloys65,66, and a few molecular 
 systems67 including  pharmaceuticals68–70. Hence we decided to employ CFM to determine γ for studied herein 
systems. The use of CFM requires creation of the biphasic box. However, the considered solid–liquid interface 
must be the quasi-one-dimensional, and therefore the special geometrical conditions of the simulation box have 
to be ensured, i.e., when interface is perpendicular to the length of the system, Lx , its thickness must be much 
smaller than its width, Lz ≪ Ly . Then the interface fluctuates only in the one dimension ( x ). Consequently, we 
construct the box containing 5000 RLM divided equally to the crystal and liquid phases. It is also worth mention-
ing that due to boundary conditions the simulation of the biphasic system implies the existence of two interfaces, 
of which the fluctuations magnitudes are studied. The convenient way used to determine the temporary posi-
tion of the interface is the calculation of the rotational-invariant order  parameter64,71–75 ( RIOP ) for geometrical 
center of the molecules. The RIOP enables the distinction between solid-like and liquid-like molecules, because 
the solid-like molecules are characterized by the significantly higher values of the order parameter. The example 
of obtained results is presented in Fig. 2a, where the calculated RIOP for each molecule of system I is plotted as 
a function of the position of the molecule in the dimension perpendicular to the interface plane ( x direction).

As we already mentioned the liquid-like and the solid like molecules can be clearly distinct. The evolution of 
the RIOP can be described by the following function RIOP

(

y
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=
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where os,l are the average values of the RIOP in the solid and liquid, δ1,2 are effective widths of the interfaces, and 
h1,2(x) are functions describing the positions of the interfaces in capillaries, i.e., sections from x to x +�x , which 
are orthogonal to the interface. During the simulation run the h(x) describes the interface fluctuations. The latter 
can be Fourier-transformed leading to the following expression for power spectrum of the quasi-one dimensional 
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 is the one-dimensional Fourier transform of h(x) with q as the wave 
number, 〈〉 denotes the time average, kB is the Boltzman constant, and Lx,Lz are width and thickness of the simula-
tion box. The interfacial stiffness, ∼γm , is used as a fair estimation of the γm , whereas different orientations of the 
crystal structure enable the determination of γm anisotropy. Nevertheless, at this point, it is worth mentioning 
that the direct studies of  model57,59,60,76 and  realistic62,67,77,78 systems suggest that this effect is usually relatively 
weak, and therefore γm can be obtained from ∼γm determined from a single crystallographic orientation. Then, 
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Thus, γm can be estimated by fitting the obtained dependence of 〈
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to the linear function with the constant slope equal to − 2 and analyzing its intercept, see Fig. 2b, where discussed 
fits are presented for both studied systems. As the initial stage of this analysis we determined the region at which 
〈
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〉  is characterized by the linear dependence on  ln
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 with slope equal to − 2. Subsequently the linear 
function was adjusted to the chosen points. Estimated in this way values of γm are equal to 2.53± 0.44mJ/m2 
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and 4.15± 0.29mJ/m2 respectively for the systems I and II. Subsequently, the temperature dependence of γ was 
estimated according the Turnbull  law79, 

Finally, the calculated values of the N and U  are presented in Fig. 3.
It can be clearly seen that N  and U  possess maxima located close to each other for both studied systems. 

Interestingly, the above maxima are located around the temperature at which the given system crystallizes during 
cooling. Arrows in Fig. 3 indicate the mentioned temperatures. Thus, CNT fairly predicts the thermodynamic 
conditions of crystallization. However, at this point, it is worth noting that despite the fact that both systems 
are very similar and that the procedures of the performed experiments are identical the system II crystallizes 
at temperatures much lower than Tm ( Tm − T = 45K for system I, whereas for system II this difference equals 
20K ). This observation is even more intriguing when one takes into account that around 20K below the melting 
temperature, N for system II is about 3 times higher than for system I. Additionally, at discussed thermodynamic 
conditions U  for system II is also much higher than for system I, and therefore from the CNT point of view, 
neither N nor U  suspend the crystallization. Consequently, the system II should easily crystallize much faster 
than it is observed during cooling experiments. Moreover, we would like to put the reader’s attention on another 
intriguing fact. Examining the cooling procedure, one might observe that despite the fact that at Tcr the system 

γ (T) = γm

(

ρcr(T)

ρcr(Tm)

)2/3(
�H(T)

�Hm

)

.

Figure 2.  In the panel (a), the value of the rotational-invariant order parameter along the direction 
perpendicular to the solid–liquid interface for the system I is presented. In the panel (b), the fluctuation 
spectrum of the interface height for two RLM systems is shown. The straight lines represent the fit of the linear 
function with a constant slope equal to − 2.

Figure 3.  The values of the nucleation and crystal growth rates for different temperatures are shown. The 
arrows indicate N and U value obtained at the temperature at which the studied RM system crystallized during 
cooling.
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II possesses almost 10 times higher maximal values of the N and U  , the time needed to crystallization of both 
systems are similar, i.e., the initial liquid structures become entirely solid within the same simulation time ( 10 ns).

Discussion
Nevertheless, it must be noted that the crystallization process starts from the stochastic formation of the critical 
nuclei within the liquid. Therefore, to examine the crystallization tendency in detail, and then to confirm that the 
characteristics of crystallization process for examining systems are indeed similar we simulate the liquid structure 
at temperature 5K higher than Tcr for 200ns or till the time at which we observed the crystallization event. The 
results are presented in Fig. 4a, where one can see that increase in the temperature implies an extension of the 
time needed for registration of the crystallization for both systems.

This observation corresponds with a prediction of the CNT. Additionally, it is worth mentioning that system 
I is more sensitive for applied temperature changes because 3 from 5 simulation runs did not end in the crystal-
lization, whereas system II always crystallized. Summarizing, we can state that at temperature equals Tcr + 5K 
the time needed for the registration of crystallization is slightly shorter for system II. However, at discussed 
temperature conditions the nucleation rate is more than 25 times higher for system II than for system I. It implies 
that assuming that the time needed for crystallization is equal to about 100ns for system II (see Fig. 4a), we could 
anticipate that system I would persist in liquid state for 2500ns (the total time would be 25 time longer than 
100 ns). However, within only 200ns , the system I crystallized twice. Thus, comparing both systems the prediction 
of CNT does not correspond to the observed results. Subsequently, we simulated both systems at temperature 5K 
lower than Tcr . The results are shown in Fig. 4b. As one can observe both systems always crystallize within 5 ns, 
i.e., within the time which is 2 times shorter than in the case of cooling experiment. Similar to previous results the 
crystallization process proceeds slightly faster for system II. However, in this case, the differences between both 
systems are less prominent. Hence, at temperatures 5K lower than Tcr the stability behaviors of studied systems 
can be considered as comparable. Moreover, we would like to note that CNT predicts that at temperature lower 
than Tcr the crystallization process for system II should slow down due to the decrease in N and U  , which is not 
observed in the performed experiments, see Fig. 5b.

At this point it has to be noted that N values presented in Fig. 3 are expressed in the unit of 1/nm3s , which 
implies that N , and hence the number of the created critical nucleuses depends on the system size. The two stud-
ied systems, which are comprised of the same amount of the molecules, are simulated at various temperatures. 
Therefore, they exhibit different volumes. Nevertheless, as it can be seen in Fig. 4, the differences in υ equal only 
about 5% and therefore its impact on N can be neglected.

Figure 4.  The time evolution of systems volumes at temperatures 5 K higher (top) and lower (bottom) than the 
temperature at which RMs systems crystallized during cooling.
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Putting an attention on  Eqs. (1) and  (2), the possible explanations of observed differences between prediction 
of CNT and computational experiment can be found. Both equations consider the diffusion of the molecules. It 
immediately implies that systems possessing a higher value of D exhibit higher values of N and U  . It is crucial 
in the case of comparison between systems which are characterized by the significant differences in Tm because 
the diffusion strongly depends on the temperature. The higher Tm implies the faster diffusion of the system and 
consequently the greater N and U  values are predicted by CNT. The latter seems to be crucial especially in the 
case of the system characterized by similar structure. In Fig. 5a one can see that D(Tm) for system II is higher 
for about one decade than for system I.

The latter immediately implies 10 times higher values of N  and U  for system II. Interestingly, one can see 
in Fig. 3 that N and U  between both systems differ also about 10 times. Hence, the reported variation in CNT 
predictions for both systems is consistent with differences in D . Following this observation, in Fig. 5b we pre-
sent N/D values for both systems, which indeed are very similar. This finding confirms that the main reason for 
divergences in CNT predictions for studied herein system is the noticeable difference in D values. At this point 
it is worth mentioning that for liquid close to the melting conditions the ratio between rotational and transla-
tional diffusion is constant and independent on the  temperature80. Hence, neither translation nor rotation can 
be treated as a limiting factor for crystallization process of system I.

Summarizing, in this paper we calculate the N and U  curves according to CNT for two RM systems, which 
differ exclusively in the value of the dipole moment. The use of proposed model molecules enables entire elimina-
tion of the molecular structure role in the crystallization process. Importantly, it makes also that, in contrast to 
standard simple model systems, obtained results for the system I cannot be uses to reproduce the results deter-
mined for the system II. It is also worth noting that, we calculate γ using CFM, instead of estimation of its value. 
Our results show that N and U curves differ strongly for two studied system. The system with higher value of the 
dipole moment is characterized by about 10 times higher N and U . Interestingly, despite the fact that the system 
II exhibits drastically higher values of N and U  , it does not crystallize at expected thermodynamic conditions 
i.e., at conditions at which N and U  for second system are sufficient to observe the crystallization process. Our 
results suggest that the main reason for observed discrepancies between results of performed computational 
experiments and CNT predictions is the diffusion constant.

Methods
We employ the previously proposed the quasi-real molecules of the rhombus shape, i.e., rhombus-like molecules 
(RMs), which remarkable advantage is that keeping the simplicity of classical model systems, they display the 
structural anisotropy typical for the real molecules and simultaneously enable the creation of the differently 
oriented dipole moments, µ51,81–83. On the basis of the results reported in Ref.51, we know that only one of the 
5 different systems, which vary in the values and orientation of µ , crystallizes. Therefore, we use this system as 
a reference one. It consists of 4 identical atoms (of carbon atom mass) arranged, as we already mentioned, in 
a rhombus shape, which implies that RM possess short and long molecular axes (along diagonals of rhombus) 
simultaneously keeping identical bonds lengths. The latter is set to equal 0.14982 nm, which is close to 0.14 nm, 
i.e., a length of the bond linking two carbon atoms in the benzene ring. Additionally, the angles between bonds 
in RM are established to make one diagonal two times longer than the other. To ensure the best mimic of the real 
molecules by RM, the stiffness of bonds, angles, and dihedrals, as well as the non-bonded interaction between 
atoms of different RM molecules, are defined by OPLS all-atom force field  parameters84 provided for carbon 
atoms of the benzene ring. Then, the permanent µ is obtained by redefining charges of given atoms, i.e., those 
arranged along the longer axis are set to 0.0e ( e is an elementary charge), whereas those places along shorter one 

Figure 5.  In the left panel the temperature dependences of diffusion constant for RMs systems are presented. 
The black lines represent the fit of the VFT equation, log

(

1
D

)

= log
(

1
D0

)

+ log(e)( B
T−T0

) . The fit parameters 
are log

(

1
D0

)

= −(1068± 4)10−2 , B = (52± 3)101K , T0 = 35± 4K for system I and 
log

(

1
D0

)

= −(1110± 7)10−2 , B = (12± 1)102K , T0 = 17± 2K for system II. The right panel shows the values 
of the nucleation rate divided by the diffusion constant for studied systems.
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equal ±0.5e . In this way, we obtain the reference system I (i.e., system C2 from Ref.51). The second examined 
herein system, i.e., system II, is identical to the previous one except of the difference in charges’ values, which are 
set to ±0.75e for system II. Consequently, the two model systems differ only in the value of the dipole moment, 
µII =

3
2
µI . Schemes of two studied molecules are presented in the insets of Fig. 1. At this point is worth recalling 

that consistently to our previous mention the applied method for RM molecules creation makes results obtained 
for one of them cannot be somehow used to reproduce the results for another one. However, the identity of the 
molecular structure is preserved.

The heating process was performed by the use of the GROMACS  software85–88 at conditions of constant 
temperature and pressure, which were controlled by the Nose–Hoover  thermostat89–91 and Martyna–Tucker-
man–Tobias–Klein  barostat92,93 ( p = 1000bar ) respectively. The increase in the temperature between subsequent 
steps is equal to 5K . The first half of simulations, which last for 5 ns (the time step dt = 0.001 ps), was spared for 
equilibration of the system, whilst the data was collected during the second half.
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