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Machine learning/molecular 
dynamic protein structure 
prediction approach to investigate 
the protein conformational 
ensemble
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Garegin Papoian4, Lars Tornberg2, Christian Tyrchan1* & Johan Ulander2*

Proteins exist in several different conformations. These structural changes are often associated with 
fluctuations at the residue level. Recent findings show that co-evolutionary analysis coupled with 
machine-learning techniques improves the precision by providing quantitative distance predictions 
between pairs of residues. The predicted statistical distance distribution from Multi Sequence Analysis 
reveals the presence of different local maxima suggesting the flexibility of key residue pairs. Here we 
investigate the ability of the residue-residue distance prediction to provide insights into the protein 
conformational ensemble. We combine deep learning approaches with mechanistic modeling to a 
set of proteins that experimentally showed conformational changes. The predicted protein models 
were filtered based on energy scores, RMSD clustering, and the centroids selected as the lowest 
energy structure per cluster. These models were compared to the experimental-Molecular Dynamics 
(MD) relaxed structure by analyzing the backbone residue torsional distribution and the sidechain 
orientations. Our pipeline allows to retrieve the experimental structural dynamics experimentally 
represented by different X-ray conformations for the same sequence as well the conformational space 
observed with the MD simulations. We show the potential correlation between the experimental 
structure dynamics and the predicted model ensemble demonstrating the susceptibility of the current 
state-of-the-art methods in protein folding and dynamics prediction and pointing out the areas of 
improvement.

Understanding the relationship between protein 3D structure and function is the key to unveil the protein 
biological mechanism and therefore the ability to modulate it. The Anfinsen’s thermodynamic hypothesis states 
that all the information driving the protein folding is encoded in the protein first  sequence1,2. From a kinetic 
perspective, there is an almost linear correlation (R = 0.75) between the natural logarithm of folding rate and the 
percentage of Relative Contact Order (%RCO)3 which shows the dependency of the kinetic folding from the over-
all protein topology. According to the Levinthal  paradox4, despite the huge number of potential conformations, 
a protein can fold to its one conformation, namely native structure, following folding pathways characterized by 
folding  intermediates5,6. Studies of the polymer chain entropies revealed that low-energy intermediate confor-
mational ensembles are less populated compared to high-energy ensembles indicating that the protein-folding 
energy landscapes are funnel-shaped5,7–10. The funneled formulation offers insights into proteins conformational 
heterogeneity and protein chains entropy providing a microscopic framework for folding kinetics.
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There are two main computational approaches used to predict 3D protein structures: (i) the template-based 
modeling (TBM) and (ii) the free-modeling approaches (FM). TBM is based on the observation that homologous 
proteins have similar structure so a known protein structure can be used as template for homologous  protein11. 
This approach is limited by the heterogeneity of the experimentally available structures in the PDB which, up 
to date, count only 1200 different  folds12. The FM approach, also known as ab initio prediction, is required for 
proteins that lack any statistically significant similar protein sequences with known structures. Among the 
plethora of possible FM approaches extensively used ones are the fragment assembly 13–16 or the first principle 
physics-based  methods17–19. These methods are based on physics-based force fields to search for low energy 
states following the Anfinsen’s hypothesis. However, they suffer from the inaccuracy of the force fields potential 
in the description of the thermodynamic protein stability which lead to an inaccurate description of the atomic 
interaction and folds. Moreover, the high degree of freedom prevents an exhaustive investigation of the free 
energy landscape using high resolution interactions.

The application of deep learning methods to the protein structure prediction field is a game changer. In 2019, 
during the CASP13 competition, several groups (Rosetta, DeepMind and FEIG-R2 just to name a few) showed 
that by applying deep learning based methods it was possible to gain fold-level accuracy for proteins lacking 
homologues in the PDB. By combining deep learning approaches with inputs from coevolutionary coupling 
features derived from Multi Sequence Alignment (MSA), the level of accuracy (GDT-TS) reached was ≈ 10% 
higher (for the easy targets) and ≈ 20% higher (for the difficult targets) than in the previous version of  CASP20. 
Indeed, these methods showed that evolutionary information captured in MSA of homologous sequences not 
only offers the template of known structure but also inter-residue correlations that can be decoded into contact 
maps. These contact maps are then translated into distograms (distance probability distribution plots) providing 
quantitative information that can be used as potential restraints to improve the accuracy of de novo structure 
prediction of static protein structure.

The impressive performance of  AlphaFold221 in CASP14 demonstrated that deep learning techniques have 
reached a point where the accuracy of the predicted model, in many cases, is comparable with that of the experi-
mental structure. With this new generation of computational structure prediction tools we can focus on many 
other questions with the highest biological relevance such as (i) small-molecule docking to protein models, (ii) 
protein–protein interaction predictions and (iii) protein conformational ensemble prediction. The latter is the 
focus of the discussion reported in this article.

.Multiple conformations are often linked to different protein functions, e.g. active and inactive conformation 
in enzymes, and inward versus outward facing upon substrate transport binding in transporters. It has been 
long shown that in the  PDB12 one can find entries with similar or even identical sequences that have different 
structures. Since, deep learning methods can be trained over the entire PDB and it has been proven that MSA can 
encode information about functional  conformations22, it is reasonable to hypothesize that the current prediction 
methods would be able to propose biological relevant conformation of a query protein. In CASP14, AlphaFold2 
predicted the accurate structure of 75 targets within the submitted 5 models. Masrati et al.23 superimposed and 
visually inspected all the 5 models for each of the 75 predicted targets finding that 80% showed the same con-
formations while the remaining 20% have more than one single distinct one.

To test the ability of exploring the conformational space of a query protein we built up a pipeline with 
 trRosetta24 as a core. By combining the current state-of-the-art ML technique for MSA (DeepMSA) with deep 
residual-convolutional network transform-restrain Rosetta (trRosetta) and the AWSEM force field, we observed 
that not only the X-ray structures of the different protein states were predicted but also the similar intermediate 
states explored by MD simulation run on the experimental structures.

Currently, it is difficult to assess the ability of AlphaFold2 in predicting multiple biologically relevant con-
formations for several different proteins. Although the code is available, it requires expensive hardware and a 
storage data capability of five TB as reported in the alphafold github (https:// github. com/ deepm ind/ alpha fold). 
A Jupyter Notebook version, namely  ColabFold25, was recently developed. It combines AlphaFold2 with Google 
 Colab25 providing a free and accessible on-line platform for protein folding that does not require any installation. 
We therefore decided to adopt the ColabFold pipeline to generate five models and to compare them with the 
predicted structural ensembles generated by our pipeline.

Results
Test case database. To test the ability of our pipeline to predict protein conformational ensembles, we 
investigated only X-ray structures with a maximum length of roughly 200 amino acids, a resolution equal or less 
than 2.40 Å and where more than one conformation was available in the PDB for the same sequence. Our analy-
sis set is composed of a total of 5 structures: 4 proteins from the Conformational Diversity in the Native State 
database (CoDNas)26, 1 protein from the CASP14 list. These structures represent examples of conformational 
changes in proteins induced by small molecules, metal coordination ion or point mutation. Each of the test cases 
has the peculiarity of having multiple PDB structures for single protein sequences. For our analysis the pairs with 
maximum RMSD between conformers have been considered.. The PDB structures were preprocessed to remove 
small molecules and ions. The list of PDB structures is summarized in Table 1.

Multi sequence alignment generation. Multi Sequence Alignment (MSA) provides useful information 
about the evolutionary conserved positions and motifs that can hardly be derived from a single query sequence. 
In protein structure prediction, MSA is the principal source to retrieve local feature and residue-residue contacts 
which becomes critical for ab initio protein structure  prediction27.

Several sequence construction methods have been derived over the past years. PSI-BLAST is one of the 
most used approaches to query sequence specific profile  generation28.  HHblits29 from the HH-suite has recently 

https://github.com/deepmind/alphafold
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become the general method for profile hidden Markov model (HMM) construction, and HMM search tools 
from HMMER  suite30 are valid alternatives for the applications. However, only few pipelines efficiently provide 
sensitive MSA profiles from the query sequence by scanning multiple large sequence databases.  DeepMSA31 is an 
open-source method for constructing sensitive and highly diverse MSA by merging sequence from three whole 
genome and metagenome databases. It combines HHblits and modified version of Jackhammer/HHsearch32 to 
perform homologous sequence search and further refine the alignment with a custom HHblits database recon-
struction step. It has been proven that DeepMSA consistently improves the accuracy of contact and secondary 
structure prediction which are particularly important for protein-structure  prediction31.

We compared the trRosetta MSA profile generation with HHblits and DeepMSA to ensure the accuracy of 
the MSA input. As a test case we considered the myoglobin protein (PDB: 2EB8) and generated the MSA profile 
with: (i) the default trRosetta MSA  pipeline24, (ii) the default DeepMSA pipeline and (iii) HHblits by iteratively 
scanning three times (− n 3) the Uniref30  database33 for homologous sequence with a minimum master sequence 
coverage (-cov) of 75% and default e-value cutoff. The quality of the MSA profile was determined by comparing 
the probability distance prediction generated by trRosetta (see "trRosetta" section below) between two residues 
H98 and S93 which are observed to be at different distance in the open (d≈6 Å) and close (d≈8 Å) conforma-
tion. The distance prediction with trRosetta-MSA showed a shoulder at 7 Å and a pick at 9 Å (S6.A) while with 
DeepMSA (S6.B) we have a separation between the pick at 6 Å and 8 Å. HHblits-MSA distance prediction 
showed a completely different shift in the trend with only one pick at roughly 8 Å. Due to the importance of the 
MSA quality in the final protein structure prediction we opted for DeepMSA to generate the MSA profile input.

Adenylate kinase (adk). Adenylate kinase isolated from Escherichia coli  (AKe) is a small phosphotrans-
ferase enzyme in which the conversion between active (open) and inactive (closed) conformations is rate limit-
ing for catalysis.  AKe enzyme consists of a CORE subdomain (from N79 to G214 residue), AMP- (from V121 
to Q160 residue) and ATP- (from I26 to R78 residue) binding subdomains which undergo significant confor-
mational changes upon substrate binding. This enzyme catalyzes a reversible phosphoryl transfer reaction with 
the primary purpose of maintaining the energy balance in cells, and is ubiquitously expressed in many different 
 organisms34–36. From a functional point of view, the conformational shift causes the rearrangement of the back-
bone H-bonding patterns without unfolding the entire protein.

The structure of  AKe has been solved for substrate-free (open, PDB:1AKE)35 and inhibitor-bound conforma-
tions (closed, PDB:4AKE)34. It has been experimentally shown that at 35 ̊C the  ATPlid region unfolds selectively. 
This state is denoted as “binding incompetent” state and appears to be an intermediate state on the global folding 
pathway. Recently, Olsson et al.37 experimentally confirmed that the interconversion between open and closed 
state involves partial folding/unfolding of the  ATPlid subdomain. In addition, the  ATPlid and  AMPlid conforma-
tional changes occur in absence of  substrates38,39.

In the  AKe structure prediction the main challenge comes from the lack of small molecules that lock the 
protein in either the open or closed conformation. We selected the AK sequence range for which we have crystal-
lographic information for both the apo (open) and the holo (close) conformations and generated 1000 models 
with our pipeline (see "Method" section for details). All the models were rescored with AWSEM force-field40; we 
have filtered out models with energies higher than − 788 kcal/mol (see S1.A). The 189 remaining models were 
clustered based on their backbone RMSD for a total of two clusters (Fig. 1A). For each of the clusters a centroid 
has been selected as the one with the lowest energy (cluster 1: − 1037.9 kcal/mol; cluster 2: − 924.0 kcal/mol). By 
visually comparing the cluster’s population with the atomistic MD structure ensemble we initially observed that 
the conformational space explored by our models resembles the conformational shift between the apo and holo 
forms observed during the atomistic MD simulation (S1.B and S1.C). It´s interesting to notice that our models 
also explore an amplitude range not observed in the MD simulation. The highest flexibility of  AMPlid and  ATPlid 
regions is observed in both clusters as highlighted by the Root Mean Square Fluctuation (RMSF) analysis reported 
in Fig. 1B. The displacement intensity in the  AMPlid for cluster-2 (green) is roughly double (≈ 0.5 nm) compared 
to the one observed for cluster-1 (orange; ≈ 0.2 nm) and the 4AKE-MD (gray; ≈ 0.3 nm). Regarding the  ATPlid 
fluctuation, a similar displacement intensity is observed in both clusters (≈ 0.7 nm) which is roughly double 
the one observed in 4AKE-MD (≈ 0.4 nm). Principal Component Analysis (PCA) performed on cluster-1 and 
cluster-2 showed that the direction of the first principal component (PC1) involves the typical rearrangement 
of  ATPlid and AMP lid regions experimentally  reported41 and confirmed in the PCA performed on 4AKE-MD 
simulation frames (Fig. 1C). The PC1 density distribution (Fig. 1D) of cluster-1 (orange) exhibited a distribu-
tion mode compatible with the (i) open and close  AKe conformations and (ii) intermediate state conformations 
observed in the 4AKE-MD simulation (gray). Cluster-2 PC1 density distribution range (green) included the  AKe 
open conformation. By correlating the aperture angle with the distance between  ATPlid and AMP lid regions it 

Table 1.  Test cases list.

PDBs Resolution (Å) Ligands

1AKE; 4AKE 2.00; 2.20 AP5 ; –

1LFA; 3HI6 1.80; 2.30 Mn2+;  Mn2+

2EB8;2JHO 1.65; 1.40 CUP ; HEME

150L;256L 2.20; 1.80 – ; –

6TMM; 6Y75 2.40; 2.30 – ;  Zn2+
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Figure 1.  Adenylate kinase. (A) Cartoon representation of the cluster centroids (orange and green) and 
4AKE-MD snapshot (grey); (B) Root Mean Square Fluctuation (RMSF) analysis showed a cluster flexibility 
in the  ATPlid and  AMPlid regions comparable to the one observed in the 4AKE-MD simulation; (C) Principal 
Component Analysis for both clusters and MD simulations highlighted the protein internal movement 
showing for cluster-2 wider conformations than 4AKE-MD simulation; (D) First principal component density 
distribution plot for 4AKE-MD (grey), cluster-1 (orange) and cluster-2 (green) unveiled that the cluster internal 
movement explored is compatible with the 4AKE-MD simulation; (E) distance/angle correlation analysis of 
cluster-1 (orange) and cluster-2 (green) overlap with the conformational space explored by the 4AKE-MD 
closed and open conformations (gray). AlphaFold2 prediction from EMBLDB (red star) and Google Colab (red 
spheres) are also reported. The closed and open X-ray adenylate kinase conformation are specified with a black 
dot. The images were generated using 3D protein imaging webserver (https:// 3dpro teini maging. com/ prote in- 
imager/).

https://3dproteinimaging.com/protein-imager/
https://3dproteinimaging.com/protein-imager/
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can be observed that cluster-1 (orange) and cluster-2 (green) explored both the close and open conformations 
respectively (Fig. 1E). The intermediate modes observed during the 4AKE-MD simulation (gray) were reca-
pitulated by our models as well. RMSD clustering analysis on the currently available experimental structures 
deposited in the PDB showed that 35% of the adenylate kinase structures have an open-like conformation while 
the remaining 65% displayed a close-like conformation. The model clustering distribution is in agreement with 
the current experimentally available conformations showing 15% open-like models and 85% close-like models. 
AlphaFold2 models from ColabFold  pipeline25 (red sphere) reviewed close and intermediate  AKe conformations, 
while the AlphaFold2 prediction deposited in the AlphaFold Protein Structure Database (red star)21 provides 
only the close  AKe conformation.

αI-domains of LFA-1. Lymphocyte function-associated antigen 1 (LFA-1, integrin αLβ2) is a metal binding 
seven domain protein composed of a head piece (β-propeller, αI and βI) and two leg parts (β-propeller, Thigh, 
Calf-1/2, I-like domain, Hybrid Domain, I-EGF’s, β-tail). It belongs to the Integrin family of cell surface recep-
tors whose functions are associated with leukocyte diapedesis, migration within tissue and the cell-adhesion 
recognition process. Precisely, LFA-1 binding to intercellular adhesion molecule 1 (ICAM-1) mediates the adhe-
sion of leukocytes to blood vessels or antigen presenting cells (APC)42–45. Many integrins do not normally exhibit 
high affinity for ligands and must be activated in order to observe the  binding46–48. This has led to the hypoth-
esis that the change into the high affinity state is resulted in a conformational change. In response to several 
 mechanical49,50 and biochemical  signals43,44,51, integrins undergo global and local conformational changes and 
ligand binding affinity variations. Under physiological conditions, LFA-1 ectodomains may assume a global bent 
conformation with a low binding affinity (PDB:5ES452). Changing the metal ion from  Ca2+/Mg2+ to  Mn2+ results 
in an extended integrin conformation accompanied by a higher ligand binding  affinity43,44,53 (PDB:5E6U52). In 
addition, local conformational changes occur at the level of the αI domain influencing the ligand binding affinity 
of LFA-145,53. The αI domain is the ligand binding domain of LFA-1 with a gradually decreasing affinity for metal 
ions in the order  Mn2+  >  Mg2+  >  Ca2+53,54. Indeed, structural studies on LFA-1 revealed a metal ion binding site 
called Metal  Ion55 Dependent Adhesion Site (MIDAS) located at the top of the αI domain [9,  32]56–61. The MIDAS 
directly coordinates the sidechains of polar/acidic residues (S139, T206 and D239) discriminating between open 
and close conformations which correspond to high and low binding affinities respectively 62–65. In both open and 
close conformations the MIDAS ion shared S139 as primary coordinator. In the closed structure,T206 and D239 
form direct bonds to MIDAS metal  ion58,59 while in the open conformations the metal ion is directly coordinated 
by T206 and the MIDAS ion undergoes inward movement by about 0.2  nm66. Surface plasmon resonance experi-
ments suggest an inverse relationship between αI ligand affinities and metal binding: the closest conformation 
corresponding to the highest-ligand  affinity54. Steering Molecular Dynamics simulation in explicit solvent con-
firms that the position of the metal ion is coupled with the α7-helix location (S283-T300): when the α7-helix is 
in the middle down position, the MIDAS ion has a strong tendency to move inward to its open position binding 
ligands with high  affinity66. Indeed structural analysis on the αI  domains56–61 shows that in the open conforma-
tion the metal ion coordination translates in a downward displacement of the α7-helix highlighting the presence 
of a transmission signal from the MIDAS of αI to the other integrin  domains67–69. Lastly, the key residues in the 
“rachet ”-like αI region (L289, F292 and L295) have also been observed to be correlated with the movement of 
the α7-helix.

In this study we focused on the αI domain of the LFA-1 protein. The main challenge in the structure prediction 
of the αI/LFA-1 protein comes from the absence of the metal ion located at the MIDAS ion site which position 
is tied with the α7-helix location. All the MD simulations on the X-ray structures have been performed without 
the metal ions.

Two X-ray structures have been chosen as representative for the closed and open αI conformations:  1LFA58 
and  3HI641 respectively. We selected the αI sequence for which we have crystallographic information for both the 
open and close conformations and generated 1000 models with our pipeline (see "Method" section for details). All 
the models were rescored with AWSEM force-field40 and the ones with energy higher than − 813 kcal/mol (see S1) 
filtered out. The 212 remaining models were clustered based on their backbone RMSD for a total of one cluster 
(Fig. 2A) while the centroid has been selected as the one with the lowest energy (cluster-1: − 1038.5 kcal/mol). 
Visual inspection of cluster-1 revealed that our models sampled exclusively the closed conformation represented 
by 1LFA. The RMSD plot of the atomistic MD simulation on 1LFA and 3HI6 showed the stability of the initial 
X-ray structure (S2.B) confirming the inability to observe the transition between open and closed conformation 
without specific computational approach as  SMD70. RMSF analysis (Fig. 2B) confirmed the low flexibility of the 
α7-helix (S283-T300; blue) for both cluster-1 (orange) and the 1LFA-MD simulation (dark gray). The difference 
in displacement between cluster-1/α7-helix (orange) and 3HI6-MD/α7-helix (light gray) is roughly 0.2 nm as 
observed between the crystal structures 1LFA and 3HI6. The “rachet ”-like αI movements in cluster-1 resembles 
the residue movement observed in 1LFA with the only exception of the cluster-1/F292 residue that showed higher 
displacement. The MIDAS residues flexibility (green) of cluster-1 appeared to be higher than 1LFA for residues 
S139 and T206 reflecting the lower sensitivity of  Ca2+,  Mg2+ and  Mn2+ to the position amino acid conservation 
 estimation71 and therefore in the resulting model prediction.

Principal Component Analysis (PCA) performed on cluster-1 highlighted the stability of both α7-helix and 
MIDAS residues confirming the adoption of a close LFA-1 conformation rather than the flexible open confor-
mations (Fig. 2C). The PC1 density distribution (Fig. 2D) of cluster-1 (orange) exhibited a distribution mode 
compatible with the close LFA-1 conformations observed in the 1LFA-MD simulation (dark gray). The correlation 
analysis between the angle and the distance of the α7-helix with respect to the body of the LFA1 protein con-
firmed that both our models (orange) and the AlphaFold2 models from ColabFold  pipeline25(red dot) resembled 
a close LFA1 conformation (Fig. 2E). The intermediate modes observed during the 1LFA-MD simulation (dark 
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Figure 2.  αI-domains of LFA-1. (A) Cartoon representation of the cluster centroid (orange), 1LFA-MD snapshot 
(dark-grey) and 3HI6-MD snapshot (light-gray); (B) Root Mean Square Fluctuation (RMSF) analysis showed 
the cluster rigidity α7-helix regions (orange) comparable to the closed 1LFA-MD conformation (dark-grey); (C) 
Principal Component Analysis for the cluster and MD simulations highlighted the protein internal movement 
showing the cluster low flexibility compatible with the 1LFA-MD simulation; (D) First component density 
distribution plot for 1LFA-MD (dark-grey), 3HI6-MD (light-gray) and cluster-1 (orange) unveiled that the cluster 
internal movement explored is compatible with the 1LFA-MD simulation; (E) distance/angle correlation analysis 
of cluster-1 (orange) overlaps with the conformational space explored by the 1LFA-MD closed conformations 
(dark-gray), while none of our predictions explored the open 3HI6 conformation. AlphaFold2 prediction from 
EMBLDB (red star) and Google Colab (red spheres) are also reported showing conformations near the closed 
X-ray structure. The closed and open X-ray αI-domains of LFA-1 conformations are specified with a black dot. 
The images were generated using 3D protein imaging webserver (https:// 3dpro teini maging. com/ prote in- imager/).

https://3dproteinimaging.com/protein-imager/
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gray) were recapitulated by our models as well, while the AlphaFold2 prediction deposited in the AlphaFold 
Protein Structure Database (red star)21 provides only the closed LFA1 conformation. RMSD clustering analysis 
on the current available experimental structures deposited in the PDB showed that 6% of the αI/LFA-1 structures 
have an open-like conformations and 79% displayed a close-like conformations. Interesting to notice 15% of the 
total experimental αI/LFA-1 structures have an intermediate-like conformations characterized by a displace-
ment of the α7-helix position. The model clustering distribution captured only the most abundant experimental 
conformations correspondent to the closed-like α7-helix positions.

Myoglobin protein. Myoglobin is a heme-containing globular protein that is abundant in myocyte cells of 
heart and skeletal  muscle72. Its function involves (i) the reversible binding of oxygen to facilitate its  diffusion73 
and (ii) the scavenging of nitric oxide to prevent the inhibition of the mitochondrial enzyme cytochrome C-oxi-
dase74,75. Myoglobin has a molecular mass of roughly 17 kDa and consists of a single polypeptide of 153 amino 
acids with a secondary structure of eight α-helices. Between the fifth and the sixth α-helix there is a hydrophobic 
region that accommodates the heme moiety.

Several crystallographic structures have been solved for both the apo- and holo-  Myoglobin76–78 showing that 
the main variation is due to the location of the α6-helix (from H82 to K98) where the heme pocket is located. 
The heme is bound to H95 providing extra stabilization and steric bulk that prevents  collapse79. Previous protein 
structure prediction of the Myoglobin conformation showed that the absence of the heme made it impossible to 
provide stabilization and leading to greater structural heterogeneity of the α6-helix80.

We considered two forms of Myoglobin, the apo structure without its heme cofactor (PDB: 2EB8)81, and 
the holo form containing the cofactor (PDB: 2JHO)82. The overlap between the two X-ray structures showed a 
deviation in the α6-helix region of 4.3 Å: in the apo-form the α-helix is unfolded occupying the heme-pocket 
and coordinating the copper complex  (CuII(sal-X)), while in the holo-form the α6-helix is folded establishing the 
side of the heme pocket. The main challenge in the structure prediction of Myoglobin comes from the absence 
of both the heme cofactor and the metal coordinator. Our atomistic MD simulations on the X-ray structures 
have been performed without the heme and the copper complex  CuII(sal-X) showing that the α6-helix of the 
apo conformation assumed the same location of the α6-helix of the holo conformation during the first 10 ns of 
simulation (S3.A). Indeed, backbone RMSD analysis on the MD simulations revealed an increment of a factor 
of 2 Å for 2EB8 confirming the structural deviation from the initial X-ray position (S3.B).

The same sequence coverage for both the apo- and holo-conformation was selected as input for our pipeline 
to generate up to 1000 models (see "Method" section for details). All the models were rescored with AWSEM 
force-field40 and models with energy higher than − 664 kcal/mol were filtered out. The 212 remaining models 
were clustered based on their backbone RMSD for a total of one cluster (Fig. 3A) while the centroid was selected 
as the one with the lowest energy (cluster-1: − 804.7 kcal/mol). Visual inspection of cluster-1 revealed a folded 
α6-helix which explores a similar location as the one observed on the MD simulation of the holo-structure (2JHO; 
Fig. 3B). RMSF analysis (Fig. 3C) showed a lower α6-helix residue flexibility for cluster-1 (orange) as compared 
to the holo- (dark gray) and apo-conformations (light gray) with main differences in the region between L40 
and D60. PC1 eigenvector representation in Fig. 3C displayed less movement in the α6-helix region confirming 
the overall helical rigidity of the predicted models in contrast with the higher flexibility observed for the apo 
2EB8-MD. The PC1 density distribution (Fig. 3D) of cluster-1 (orange) exhibited a distribution mode compatible 
with the holo-conformation partially sampling intermediate mode states between the apo- and holo- conforma-
tion. By correlating the aperture angle with the distance between α6- and α5-helix as heme pocket descriptors 
(Fig. 3E; see Supplementary Information) we observed an overlap between the conformational space explored 
by holo- (dark gray) and apo-conformation (light gray) showing the transition of apo-2EB8 structure to a 2JHO-
like structure in the absence of metal coordinator  (CuII(sal-X)). This conformational conversion revealed that 
in the absence of any metal complex only one heme pocket arrangement is observed, which translates into one 
models. Cluster-1 (orange) explored the conformational space observed in the MD simulations (light and dark 
gray). RMSD clustering analysis on the current available experimental structures deposited in the PDB showed 
that 99% of the myoglobin structures have a holo-like conformation and 1% displayed an apo-like conformation. 
The α6-loop arrangement is observed only in two PDB structures (2EB8 and 2EB9). For this example, we were 
able to compare our results only with the ColabFold pipeline  models25 (red dot) since the no prediction is avail-
able for myoglobinin the AlphaFold Protein Structure Database. ColabFold  pipeline25 predictions explored only 
a limited region of the conformational space covered by the MD simulations in between the X-ray structures. 
It is worth mentioning that from this analysis we observed that the two clusters obtained are not representative 
of the two experimental conformations but reflect the flexibility observed in the region between L40 and D60.

T4 lysozyme. T4 lysozyme (T4L) is a globular protein of roughly 18 kDa that helps release mature phages 
by breaking down the Escherichia coli cell wall during  infection83. The three-dimensional structure is organized 
in two domains joined by a long helix: the N-terminal (residue 12–60) and the C-terminal (residue 80–164). The 
active site cleft is located at the interface between the two domains. An occluded active site were observed in early 
X-ray structures suggesting the hypothesis that relative movements between the N-and C-terminal domains 
enable substrate  access84. Later crystal structures of point mutants (e.g. M6I) showed conformations where the 
active site is more open, suggesting that the two domains undergo a ‘hinge-bending’  motion85,86. Direct evidence 
of the hinge-bending transformation was obtained by Electron Magnetic Resonance (EPR) analysis showing an 
equilibrium between open and close conformation in  solution87. EPR distance analysis confirmed that the open 
structures are not purely distortions caused by the mutations and crystal packing but represent the consequence 
of intrinsic hinge-bending motions. This motion was furthermore supported by  NMR83 data and  MD88,89 simu-
lations, corroborating the presence of ‘hinge-bending’ motion in T4 lysozyme. Moreover, Fluorescence Correla-
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Figure 3.  Myoglobin protein. (A) Cartoon representation of the cluster centroid (orange), 2JH0-MD snapshot 
(dark-grey) and 2EB8-MD snapshot (light-gray); (B) Root Mean Square Fluctuation (RMSF) analysis showed 
the cluster rigidity α6-helix regions (orange) comparable to the holo 2JH0-MD conformation (dark-grey); (C). 
Principal Component Analysis for the cluster and MD simulations highlighted the protein internal movement 
showing the cluster low flexibility compatible with the 2JH0-MD simulation; (D). First principal component 
density distribution plot for 2JH0-MD (dark-grey), 2EB8-MD (light-gray) and cluster-1 (orange) unveiled 
that the cluster internal movement explored is compatible with the 2JH0-MD simulation; (E). distance/angle 
correlation analysis of cluster-1 (orange) overlaps with the conformational space explored by both the holo 
2JH0-MD and apo 2EB8-MD (dark-gray). AlphaFold2 prediction from EMBL-DB was not public available. 
Google Colab predictions are reported as red spheres and explored intermediate states. The closed and open 
X-ray αI-domains of LFA-1 conformations are specified with a black dot. The images were generated using 3D 
protein imaging webserver (https:// 3dpro teini maging. com/ prote in- imager/).

https://3dproteinimaging.com/protein-imager/
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tion Microscopy (FSC) established the presence of multiple intermediate conformations, in contrast to the two 
state  model90.

We considered two X-ray structures representing the open (PDB:150L) and closed (PDB:256L) T4-lysozyme 
conformations. The main challenge in the structure prediction of the T4-lysozyme comes from considering the 
mutated protein sequence M6I as starting point of our prediction to test the ability of our pipeline in predicting 
conformational changes in the presence of point mutation.

The same sequence coverage for both the open- and closed-conformation was selected as input for our pipe-
line to generate up to 1000 models (see "Method" section for details). All models were rescored with AWSEM 
force-field40 and the ones with energy higher than − 537 kcal/mol (S4.A) filtered out. The 182 remaining models 
were clustered based on their backbone RMSD for a total of two clusters (Fig. 4A) and the centroid selected as 
the one with the lowest energy (cluster-1:− 699 kcal/mol; cluster-2:− 627 kcal/mol). Initial visual inspection of 
the two clusters showed a representative open and closed conformation for cluster-1 and cluster-2 respectively. 
RMSF analysis (Fig. 4B) displayed high flexibility in correspondence of the N- and C-terminal domains. In par-
ticular, we noticed higher flexibility for both domains in 150L-MD simulation (dark gray) while lower flexibility 
for C-terminal domain in 256L-MD simulation (light gray). A similar behavior is observed for the clusters: (i) 
cluster-1 (orange) showed high flexibility in both the protein domains as for 256L-MD and cluster-2 (green) 
exhibited higher rigidity in the C-terminal region as for 150L-MD. Analysis on the PC1 eigenvector projection 
(Fig. 4C) revealed higher N- and C-terminal distance for cluster-2 as compared to cluster-1 while 256L PC1 
seems to keep a more closed conformation during the MD simulation. Further analysis on the PC1 density 
distribution (Fig. 4D) showed a tendency for cluster-1 to explore modes nearer the closed conformation while 
for cluster-2 to explore modes near the open conformations. The correlation plot between the distance and the 
angle formed by N- and C-terminal (Fig. 4E) confirmed the open conformational sampling for cluster-2 (green) 
and closed and intermediate conformational sampling for cluster-1 (orange). During the MD simulation 256L 
kept a closed conformation while 150L showed the typical ‘hinge-bending’ motion discussed above (S4.B). 
RMSD clustering analysis on the current available experimental structures deposited in the PDB showed that 
21% of the T4 lysozyme structures have an open-like conformation while the remaining 79% displayed a close-
like conformations. The model clustering distribution is in agreement with the current experimentally available 
conformations showing 11% for the open-like models and 89% for the closed-like models. For this example, we 
were able to compare our results only with the ColabFold pipeline  models25(red dot) since the AlphaFold Protein 
Structure Database prediction is not available. ColabFold  pipeline25 predictions explore only the closed region 
of the conformational space covered by the 256L-MD simulations.

Tetrahymena thermophila-BIL2. BIL2 is a part of the polyubiquitin locus of Tetrahymena thermophila 
(BUBL) where two bacterial-intein like (BIL) domains are flanked by two independent ubiquitin like domains 
(ubl4*ubl5). Generally, inteins are protein sequences known to perform protein splicing producing an intein 
domain and an inteinless host protein without  insertion91. On the contrary, the BIL2 domain does not dis-
rupt the structural continuity of the protein but rather interposes between two independently folded  domains92. 
Their ability of acting as promiscuous catalytic elements that exercise protein splicing between several different 
domains has been extensively used in protein engineering and synthetic  biology93–95. From a biological func-
tion perspective, the intein protein-splicing translates into a benefit for the host by constituting a switch from 
inactive to active native protein. In particular, BIL2 presents another interesting aspect: the presence of a highly 
conserved motif, RGG, that represents the biological hallmark for ubiquitin activation and  conjugation96. It has 
been experimentally observed that T. thermophila BIL domains are able to provide a perfect activated ubl protein 
without energy  consumption97.

Recently, two structures of the splicing element TthBIL2 (PDBs:6TMM, 6Y75) have been deposited in the 
PDB shedding light on the protein splicing reaction and the role of the metal ion as reaction promoter rather 
than  inhibitor98–100. The BIL2 displayed a well recognizable horseshoe-like fold typical for HINT domains, but in 
contrast to the majority of them, no α-helix structural elements are present. At the moment, only these two struc-
tures are publicly available representing both the inactive and unprecedent zinc-induced active forms. Structural 
comparison between the apo (PDB:6TMM) and the zinc-bound form (PDB:6Y75) allowed the elucidation of the 
role of zinc for protein splicing . The zinc is bound away from the catalytic center to which it is connected only 
through a H-bond network. It is coordinated by H48 and H125 disrupting the secondary structural arrangement 
between the two exteins. Based on the latest model, the zinc-binding regulates the splicing reaction by inhibiting 
the premature C-cleavage through the H125 interaction and by inducing a conformational change upon activa-
tion of N-S acyl shift which induces the thio-ester bond formation with the N-extein.

The same sequence coverage for both the apo- and holo-conformation was selected as input for our pipeline 
to generate up to 1000 models (see "Method" section for details). All the models were rescored with AWSEM 
force-field40 and the models with energy higher than − 564 kcal/mol (S5.A) filtered out. The 179 remaining models 
were clustered based on their backbone RMSD for a total of one cluster (Fig. 5A) and the centroid selected as the 
one with the lowest energy (cluster-1:− 659 kcal/mol). Initial visual inspection of the cluster (Fig. 5A) showed 
the same global folding of both the experimental structure, in agreement with the MD simulations of the X-ray 
structures (S5.B). RMSF analysis showed a cluster flexibility (orange) comparable with the 6TMM-MD (light-
grey) and 6Y75-MD (dark-grey) with the exception of the region between D20 and I40 where higher move-
ment is observed for the cluster. It´s important to mention that the flexibility of the key histidine residues (H48 
and H125) in cluster-1 is in agreement with the experimental MD simulations (Fig. 5B). Analysis on the PC1 
eigenvector projection (Fig. 5C) confirmed a correlation between the flexibility of cluster-1 with the 6Y75-MD 
and 6TMM-MD showing that the apo and Zn-bound conformations are sampled in all the structure ensemble. 
We noticed once more that the protein region between I40-Q60 present in cluster-1 is flexible as compared 
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Figure 4.  T4 lysozyme. (A) Cartoon representation of the cluster centroids (orange and green), 150L-MD snapshot (dark-
grey) and 256L-MD snapshot; (B). Root Mean Square Fluctuation (RMSF) analysis shows high flexibility in both the region 
for cluster-1 (orange) as observed for 150L-MD (dark-gray), while cluster-2 exhibited low flexibility in the correspondence of 
C-terminal as observed for 256L-MD (light-gray); (C). Principal Component Analysis for both clusters and MD simulations 
highlighted the protein internal movement showing a cluster-1 (orange) flexibility comparable to 150L-MD (dark-gray) 
and cluster-2 (green) flexibility comparable to 256L-MD (light gray); (D). First principal component density distribution 
plot for 150L-MD (dark-grey), 256L-MD (light-grey), cluster-1 (orange) and cluster-2 (green) unveiled that the clustered-1 
and clustered-2 models resemble the closed and open conformation respectively; (E) distance/angle correlation analysis of 
cluster-1 (orange) and cluster-2 (green) overlap with the conformational space explored by the closed 150L-MD and open 
256L-MD conformation respectively. AlphaFold2 prediction from EMBLDB was not public available. Google Colab model 
prediction (red spheres) explored closed conformation space. The closed and open X-ray T4 lysozyme conformations are 
specified with a black dot. The images were generated using 3D protein imaging webserver (https:// 3dpro teini maging. com/ 
prote in- imager/).

https://3dproteinimaging.com/protein-imager/
https://3dproteinimaging.com/protein-imager/
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Figure 5.  Tetrahymena thermophila-BIL2. (A) Cartoon representation of the cluster centroid (orange), 6Y75-MD snapshot 
(dark-grey) and 6TMM-MD snapshot ; (B) Root Mean Square Fluctuation (RMSF) analysis shows H48 rigidity for both the 
cluster (orange) and the experimental structures (6Y75 in dark grey; 6TMM in light-gray). The H125 flexibility is lower for 
cluster-1 compare to 6Y75 and 6TMM; (C). Principal Component Analysis for cluster-1 and MD simulations highlighted the 
protein internal movement showing a cluster-1 (orange) flexibility comparable to both 6Y75-MD (dark-gray) and 6TMM-MD 
(light gray); (D) Graphical representation of the H48 and H125 orientations for cluster-1 (orange); 6Y75-MD (dark-grey) and 
Google Colab predictions (red); (E) distance/angle correlation analysis of cluster-1 (orange) overlap with the conformational 
space explored by both the Zn-bounded 6Y75-MD and apo 6TMM-MD conformation respectively. AlphaFold2 prediction 
from EMBLDB was not public available. AlphaFold2 prediction from EMBLDB (red star) and Google Colab (red spheres) are 
also reported. The Zn-bounded and apo Tetrahymena thermophila-BIL2 conformations are specified with a black dot. The 
images were generated using 3D protein imaging webserver (https:// 3dpro teini maging. com/ prote in- imager/).

https://3dproteinimaging.com/protein-imager/
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to the X-ray MD simulations (Fig. 5D). Detailed analysis on the H48 and H125 residue orientations revealed 
that both the experimental structures sampled the apo and Zn-bounded histidine residue orientations in the 
absence of the  Zn2+ ion. Cluster-1 (orange) sampled as well an orientation space compatible with both the apo 
and Zn-bounded, while the five models generated by ColabFold  pipeline25 explored orientation closer to the 
apo-form (red dots) (Fig. 5E). AlphaFold2 prediction from EMBL database provides a conformation closer to 
the Zn-bound conformation.

Discussion
ML behavior in predicting protein conformational changes and current limitations. The cur-
rent protein structure prediction methods have been tested on the ability to predict static X-ray structures as 
the best represented in the training set which is generally the most predominant conformation in the PDB. 
However, proteins in their biological environment exist in a dynamic ensemble of conformations distributed 
across a free energy landscape according to their Boltzmann-weighted probability of occurrence. Experimental 
methods as X-ray  diffraction101,  NMR102 and Förster resonance  energy103 normally provide either the average 
position of a large number of structures or the distribution of small numbers of structural properties restrict-
ing the conformational protein space to a trivial number of conformational snapshots rarely obtained under 
biological conditions. Therefore, the necessity to investigate the computational ability in predicting the protein 
conformational space. The deep learning protein prediction algorithms provide models with a resolution com-
parable to the experimental techniques listed above starting a new era in the folding problem field. Recently, a 
correlation between co-evolutionary analysis and protein flexibility has been observed showing the possibility to 
predict protein conformations with the only knowledge from the 1st protein sequence. Therefore, we decided to 
investigate the ability of the current deep learning algorithms to predict protein conformational space.

In this study we compared the performance of trRosetta with the current state-of-the-art method AlphaFold 
from ColabFold Google  implementation25. The main difference between  trRosetta24 and  AlphaFold21 is the way 
the structural information is retrieved from the MSA profile: trRosetta explicitly calculates the distance prob-
ability from the MSA coevolutionary analysis, retrieves the potential restraints to reduce the degree of freedom 
during the minimization and proposes the final structure. Alternatively, AlphaFold enables end-to-end structure 
prediction for which no additional post-processing steps is required and the final result can be directly evalu-
ated with the error passing back along the network. The conformational analysis performed on the five models 
generated by AlphaFold confirmed the high atomic accuracy in predicting models closer to the X-ray structure 
exploring a conformational space near one of the experimental conformations. On the other hand, the models 
generated with our pipeline covered a greater conformational area sampling also intermediate conformations 
observed in MD simulations. On average, the delta backbone RMSD covered by the AlphaFold models in all the 
test cases is smaller (ΔRMSD ≈ 2 Å) than the one covered by the trRosetta ensemble (ΔRMSD ≈ 7 Å) indicat-
ing the higher precision of AlphaFold in describing the experimental structure as well as the limited protein 
dynamic space explored. It is important to mention that with ColabFold implementation of AlphaFold we were 
only able to generate five models rather than the 1000 models generated with our pipeline. Further investigation 
on the influence of number of models onto the AlphaFold conformational exploration needs to be performed.

The depth of the initial MSA as well as the choice of the energy function represent key points in protein 
conformational prediction. We observed that the number of effective sequences considered and the choice of 
the approach used to generate the MSA profile are fundamentals in the ability of deep learning algorithms as 
trRosetta to retrieve flexible information. The accuracy of the energy functions is an essential component in 
computational protein structure prediction. Assuming that we have a good discrimination between folded and 
unfolded structures we should satisfy both low energy and low RMSD. The native state of the protein is expected 
to be found at the minimum of the energy function in order to discriminate between native and non-native 
structure. We adopted the AWSEM forcefield which has been trained to differentiate decoys and identify the 
near-native structure as the one with low energy. The correlation between AWSEM energy function and RMSD 
shows the ability of the forcefield to discriminate between conformations allowing to energy filter the models. 
The energy evaluation of the experimental structures showed the presence of decoys with energies comparable 
to the experimental structure for all the test cases except the αI-domains of LFA-1 where only the energy of the 
experimental apo structure is considered in the energy filtered ensemble.

A further limitation of the current deep learning techniques is the uncertainty in the prediction accuracy 
of the protein active site. AlphaFold and trRosetta have been trained with the apo protein structures and only 
consider X-ray structures limiting the data set to static information. We investigated the ability of these deep 
learning algorithms to predict the side chain orientations for the test case Tetrahymena thermophila-BIL2 which 
experimentally discriminates the holo- and apo-form on the basis of H48 and H125 orientations. Our pipeline 
was able to predict the presence of the only global fold experimentally observed as well as to sample the sev-
eral histidine orientations. ColabFold predicted the apo conformation and AlphaFold the Zn-bound structure. 
However, we failed on clustering out the different orientations showing the limitations of the current pipeline in 
discriminating between side chain conformations. It is important to notice that if the conformational transition 
depends on the presence of coordinated metal ions, the prediction is challenging and only one conformation 
was generated by our pipeline as well as ColabFold platform.

Conclusions
Proteins are not static entities but in motion in the cell. Switching between structurally distinct states is common 
in proteins carrying out functions such as catalysis or molecular recognition. X-ray crystallography provides a 
static snapshot of the possible conformations assumed by the protein in a crystallization setting that is not repre-
sentative of the physiological environment. NMR structures offer dynamic information of the protein in solution 
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but the protein size is a limit difficult to overcome. Cryo-EM delivers an overview of the protein orientations but 
current technical limitations (e.g. low signal to noise ratio) hamper high-throughput experiments preventing high 
numbers of structures to be available at high resolution. Hence the necessity of providing new approaches that 
allow to accurately and robustly predict conformational space and motions that are critical for protein function.

Alternative protein states are still a largely open question in the field of protein folding. With the advent of 
machine learning techniques for protein structure predictions as AlphaFold or trRosetta we reach accuracies 
of the overall fold prediction comparable with the experimental structures provided in the PDB. However the 
quality of the prediction is still evaluated on the basis of static experimental structure. Here, we tested the abil-
ity of the current state-of-the-art machine learning methods in predicting protein conformational space. We 
have observed a potential correlation between residue-residue distance prediction and protein flexibility. MSA 
seems to encode information regarding the conformational flexibility of the protein which can in turn translate 
into bimodal behavior of the probability distance and angle distribution used in machine learning approaches 
as trRosetta. By combining  trRosetta24 with.

DeepMSA for MSA profile  generation31 and AWSEM force  field40 for rescoring the predicted models, we 
observed that the conformational space explored by the predicted models was similar to the one observed during 
the MD simulations of the target experimental protein structure. In particular, for the adenylate kinase and the 
T4 lysozyme predictions it was possible to predict the active and inactive structures as well as the intermediate 
conformations observed during the MD simulations. Although the trRosetta algorithm has been trained on static 
PDB structures, it was able to a certain extent to reproduce the protein flexibility.

Limitations of the technique have been observed in the case where metal ions (LFA1 test case) and cofactor 
(Myoglobin test case) were influencing the conformational equilibrium. The clear conformational distinction 
observed experimentally was also lost during the MD simulations without the protein counterpart. It is important 
to notice that the ability to predict protein flexibility is correlated to the number of available structures for the 
different protein conformations in the PDB, and this is the strongest limitation of the current machine learning 
techniques. Another important aspect is the quality of the initial MSA profile. We observed in our study that the 
choice of the MSA algorithm can hamper the model prediction by favoring one conformation (see Supplemen-
tary Material). Not only the MSA profile quality but also mutations in the initial target sequence could have an 
impact in the performance of the final prediction with the current deep learning methods. A recent study on the 
end-to-end RoseTTAFold protein prediction showed that small perturbation in the input sequence lead to radi-
cally different predicted protein in contrast with the observation that similar sequence lead to similar structure. 
By modifying 5 residues in the target sequence the RMSD was spanning from 0.9 A to 34.2 A. This highlighted 
the sensitivity of  RoseTTAFold104 to the variation in MSA profile confirming the low correlation between MSA 
depth and model accuracy previous  observed104. On the contrary, trRosetta showed higher correlation between 
MSA depth and model accuracy that could in principle be translated in higher robustness of the method and 
ability to predict relevant conformational change upon mutation.

With our study we only begin to explore the capability of deep learning methods in conformational protein 
structure prediction. We observed the potential to extrapolate flexibility from MSA that translates into restraints 
providing models with biologically relevant conformations. However, all these methods currently rely strongly 
on the current structures available in the PDB—limiting the prediction performance on novel fold and unseen 
conformations. Introducing dynamic information from FRET experiments, conformational heterogeneity data 
from cross-linking Mass Spectrometry as well as increased numbers of cryo-EM structures in the training data 
set would bring a new set of information that would enhance the description of protein flexibility. A complete 
and accurate description of the protein conformational space would impact drug discovery by providing initial 
starting points for active and inactive conformations changing the way to approach the drug discovery campaign 
and allowing to focus on biologically relevant questions rather than methodological issues.

Method
For each of the 5 test cases (4 from deposited PDB structures publicly available, 1 AZ internal PDB) the following 
pipeline has been applied to generate the initial coarse models (Fig. 6).

trRosetta and the energy filtered step. The key components of our pipeline include (1) the deep resid-
ual convolutional network transform-restrained Rosetta (trRosetta) and (2) the rescoring step with ASWEM 
force field.

1000 models have been generated with the XML version of transform-restrained Rosetta pipeline (trRosetta) 
used during CASP13 and available at https:// github. com/ gjoni/ trRos etta24. The procedure adopted in our study 
does not involve the use of templates to test the ability of the deep residual network to predict structural informa-
tion for proteins that lack structural homologues in the PDB (https:// github. com/ audag notto/ trRos etta_ xml).

Initially, the Multi Sequence Alignment (MSA) profile has been generated following the open-source pipeline 
DeepMSA which takes as input the target sequence and iterates over 3 different databases (Uniclust30, Uniref 
and Metaclust). This consecutive approach adopts a cutoff based on the number of effective sequence (Nf) to 
quantify the homologous sequence coverage allowing the collection of a deep and sensitive MSA from metage-
nome sequence databases.

The MSA profile generated is provided as input to trRosetta convolutional network delivering the probability 
distributions for Cβ-Cβ distance and inter residue orientations and converts them into spline restraints. Fur-
thermore, the Rosetta model building minimization protocol guided by the restrains generates final predictions 
which are scored with the Rosetta score function  ref2015105 as well as the Associative memory, Water mediated, 
Structure and Energy Model (AWSEM) force  field40 . AWSEM is a coarse-grained protein force field used for de 
novo protein structure prediction which contains physical motivated terms and bioinformatically based local 

https://github.com/gjoni/trRosetta
https://github.com/audagnotto/trRosetta_xml
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structure biasing terms that take into account many-body effects modulated by the local sequence. For each of 
the model generated by trRosetta a short NPT minimization at 300 K was running for 2000 steps with LAMMPS 
engine and AWSEM force field following the guideline provided by the Papoian Lab (https:// github. com/ adavt 
yan/ awsem md/ wiki).

The comparison between the RMSD/Rosetta-Energy plot with the RMSD/AWSEM plot (S8) showed a higher 
correlation for the latter consenting to filter out the models with energy higher than the mean Energy and pro-
ceed with the further analysis.

RMSD clustering and centroid selection:. The energy filtered models have been hierarchically clus-
tered using pairwise RMSD implemented in MDAnalysis  Tools106. The number of clusters that best represent 
the heterogeneity of the data set has been chosen with the Elbow  method107. For each of the generated clusters 
a representative model is selected as the one with the lowest energy among all the other models in the cluster. 
Furthermore each of the lowest energy models per cluster is refined.

Ensemble analysis. For each of the test cases we performed a series of analysis to evaluate the conforma-
tional space explored by the models. The Principal Component Analysis (PCA) has been adopted to characterize 
the overall motion changes of apo and holo conformations over the simulated time. The PCA calculation has 
been performed with GROMACS 2020.3 on the MD trajectories using gmx covar and gmx anaeig utility toolkits. 
In all the studies, the first eigenvectors captured on average 80% of the total motions for both the apo and holo 
conformations indicating that this vector represent the essential subspace of the system. The visual representa-
tion and the density plot of the first principal component captures and describes in detail the overall dynamics 
of a system while relative residue fluctuations are examined by the Root Mean-Square Fluctuation GROMACS 
toolkit (gmx rmsf). We considered as ground truth the conformational space explored by the Molecular Dynam-
ics simulation of the experimental X-ray structure.

Molecular dynamics protocol. The initial experimental structure is downloaded from the PDB and only 
the protein coordinates are considered for the simulation. The resulting cleaned-model was fully solvated with 
TIP3P water  models108 in a water box of the dimension 80 × 80 × 80 Å and neutralized by the addition of NaCl 
at a concentration of 150 mM. Amber99SB force  field109 was used for running the simulation. MD simulations 
were performed in GROMACS.2019  software110. The system was minimized for 1,000 steps and equilibrated in 
the isothermal-isobaric (NPT) ensemble for 2 ns with a timestep of 2 fs to bring the temperature and the pressure 
in a range of 300 K and 1 atm respectively. The system was simulated for on average 300 ns in the NPT ensemble 
(for myoglobin and Tetrahymena thermophila-BIL2, the system was simulated up to 500 ns). The temperature 
was controlled using the modified Berendsen thermostat with a coupling time of 0.1 ps while the pressure was 
controlled by Parrinello-Rahman with a reference pressure of 1.0 bar and a compressibility of 4.5Xe−5 bar −1. 
The periodic electrostatic interactions were computed using particle mesh Ewald (PME) summation with a grid 
spacing smaller than 1 Å. The protein was unconstrained during the MD simulation.

Received: 12 November 2021; Accepted: 11 May 2022

Figure 6.  Flowchart of the AZ protein-folding pipeline. Four stages of the protein-folding prediction are 
performed consecutively: (1) MSA profile generation with DeepMSA, (2) protein model predictions with 
trRosetta, (3) energy rescoring with AWSEM Hamiltonian and energy filtering and (4) Hierarchical RMSD 
clustering with MDTraj. The image was generated with Adobe Illustrator CC 2019.

https://github.com/adavtyan/awsemmd/wiki
https://github.com/adavtyan/awsemmd/wiki
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