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Neural network‑based clustering 
model of ischemic stroke patients 
with a maximally distinct 
distribution of 1‑year vascular 
outcomes
Joon‑Tae Kim1,4*, Nu Ri Kim1,4, Su Hoon Choi2,4, Seungwon Oh2, Man‑Seok Park1, 
Seung‑Han Lee1, Byeong C. Kim1, Jonghyun Choi3 & Min Soo Kim2*

Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events 
is critical. This study aimed to compare several clustering methods, particularly a deep neural network‑
based model, and identify the best clustering method with a maximally distinct 1‑year outcome in 
patients with ischemic stroke. Prospective stroke registry data from a comprehensive stroke center 
from January 2011 to July 2018 were retrospectively analyzed. Patients with acute ischemic stroke 
within 7 days of onset were included. The primary outcomes were the composite of all strokes (either 
hemorrhagic or ischemic), myocardial infarction, and all‑cause mortality within one year. Neural 
network‑based clustering models (deep lifetime clustering) were compared with other clustering 
models (k‑prototype and semi‑supervised clustering, SSC) and a conventional risk score (Stroke 
Prognostic Instrument‑II, SPI‑II) to obtain a distinct distribution of 1‑year vascular events. Ultimately, 
7,650 patients were included, and the 1‑year primary outcome event occurred in 13.1%. The DLC‑
Kuiper UB model had a significantly higher C‑index (0.674), log‑rank score (153.1), and Brier score 
(0.08) than the other cluster models (SSC and DLC‑MMD) and the SPI‑II score. There were significant 
differences in primary outcome events among the 3 clusters (41.7%, 13.4%, and 6.5% in clusters 0, 
1, and 2, respectively) when the DLC‑Kuiper UB model was used. A neural network‑based clustering 
model, the DLC‑Kuiper UB model, can improve the clustering of stroke patients with a maximally 
distinct distribution of 1‑year vascular outcomes among each cluster. Further studies are warranted to 
validate this deep neural network‑based clustering model in ischemic stroke.

Stroke is one of the leading causes of mortality and disability in elderly  patients1,2. The risk of recurrent vas-
cular events is substantially high within the first several months after an index  stroke3. Therefore, research on 
the early prediction of recurrent stroke and identification of high-risk patients is of great importance. Several 
markers, including clinical, radiological and laboratory  findings4 and scoring methods, such as Stroke Prognostic 
Instruments (SPI)-II or the Essen Stroke Risk Score (ESRS), have been reported to be associated with recurrent 
 events5–7. SPI-II and ESRS are commonly used and reliable risk scores because they are relatively simple and 
intuitively expressed through clinically important variables. However, the applications of conventional risk scores 
were limited because complex interactions among diverse factors, such as large artery steno-occlusion, stroke 
subtypes, and initial stroke severity, might exist in real clinical settings. If more variables are used, the degree of 
risk can be distinguished more effectively, but it will be more complex than conventional indicators. Artificial 
intelligence might provide a technical solution to these difficulties.
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In recent years, AI techniques have been used in an increasing number of stroke-related studies. The main 
areas of AI stroke studies are outcome prediction, diagnosis and  treatments8,9. The identification of similar 
clusters according to “time-to-event” also plays an important role in stroke care and future research. However, 
AI clustering models remain a relatively unexplored topic in stroke fields. Clinically, large datasets comprise 
phenotypically heterogeneous subpopulations—i.e., subsets of observations that cluster according to both covari-
ates and time-to-event similarities. For example, in a clinical setting, identifying high-, medium-, and low-risk 
subpopulations equipped with accurate time-to-event estimates can allow more appropriate targeting of interven-
tions, treatments or care delivery. Therefore the use of neural network-based models to identify heterogeneous 
subpopulations in acute ischemic stroke with different time-to-event risks (survival) would be a crucial step 
toward precision  medicine10,11.

Several lifetime clustering methods exist, such as traditional unsupervised clustering methods, including 
k-means12, semi-supervised  clustering13, and supervised sparse clustering  methods14. Recently, a neural network-
based lifetime clustering model, DeepCLife, was  introduced15 that could identify cluster assignments by directly 
maximizing the divergence between the empirical lifetime distributions of the clusters.

This study attempted to show a clearer prognostic difference using more information and more variables 
than those used for SPI-II scores. Thus, a clustering method was used to create risk groups and compare them. 
Additionally, we compared several lifetime clustering methods, including the deep lifetime clustering (DLC) 
method, and assessed the performance of the clustering methods on a real-world survival dataset of patients 
with ischemic stroke.

Methods
Study subjects. This study analyzed data from a single regional comprehensive stroke center registry of 
consecutive patients with acute ischemic stroke. This registry is part of the Clinical Research Collaboration for 
Stroke-Korea (CRCS-K)  registry16,17. A total of 8,136 patients with ischemic symptoms who were admitted to 
our tertiary stroke center between January 2011 and July 2018 were initially screened. We included patients with 
ischemic stroke within 7 days of onset. The detailed eligibility criteria and patient selection flow chart are shown 
in Supplemental Fig. 1.

Ethics statement. Clinical information was obtained from the registry database. The registry has been col-
lecting clinical information for the purpose of monitoring and improving the quality of stroke care since 2011, 
with the approval of the institutional review boards of our hospital. The use of the registry database and the 
supplemental review of medical records in this study were approved by the institutional review boards. A waiver 
for informed consent was provided because of study subject anonymity and minimal risk to the participants by 
an institutional review board at Chonnam National University Hospital. All the methods were performed in 
accordance with the relevant guidelines and regulations (Declaration of Helsinki). The corresponding author 
will provide the data, analytical methods, and study materials to other researchers upon reasonable request. 
Additionally, the GitHub website address for the DLC method is as follows: (https:// github. com/ Purdu eMINDS/ 
DeepL ifeti meClu steri ng).

Data collection. Data were prospectively collected and included demographic, clinical, imaging and labo-
ratory data. Data collection is described in the Supplemental Methods. For continuous variables, if fewer than 
3% of the values were missing, the data were imputed with the median values or as the mode.

Outcomes. The primary outcome was a composite of all types of recurrent stroke (ischemic and hemor-
rhagic), myocardial infarction, and all-cause mortality within one year after the index stroke. Secondary out-
comes consisted of the following individual events: (1) all types of recurrent stroke (ischemic and hemorrhagic) 
and (2) all-cause mortality. As previously  described17, vascular events were prospectively captured during 
hospitalization and the 3-month and 1-year follow-up periods by dedicated stroke nurses or physicians based 
on predefined protocols at routine clinic visits or during telephone interviews. To ensure the accuracy of the 
outcomes and to minimize inter-interviewer discrepancies, a uniformly structured questionnaire was used by 
trained  personnel17.

Clustering models. The clustering method is a type of unsupervised learning that consists of similar char-
acteristics within a group and different characteristics between groups through the characteristics of individuals. 
This means that there are no actual labels, but clustering gives each object a new label (a risk-based cluster in the 
study). The criteria for dividing the degree of risk for the generated clusters are the Kaplan–Meier curve.

As a reference in stroke patient clustering, the SPI-II scores were used. The SPI-II scores were retrospectively 
calculated as the sum score (0–15 points) of 7 clinical factors based on their predictive significance: congestive 
heart failure (3 points), diabetes mellitus (3 points), prior stroke (3 points), age > 70 years (2 points), stroke as 
the index event (2 points), severe hypertension (1 point), and coronary artery disease (1 point)5. To investigate 
the risk of 1-year vascular events, the SPI-II scores were categorized into 3 groups based on previous studies: 
low risk (0–3), medium risk (4–7), and high risk (> 8).

K‑prototype. K-means clustering is a representative clustering method that assigns a given datapoint to preset k 
clusters. The cluster is updated until no further cluster changes occur in the direction of minimizing the sum of 
squares of the center of each cluster and the distance between objects. However, K-means clustering can be used 
in continuous data. The method used for categorical data is called k-mode clustering, which replaces the means 
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of clusters with modes. K-prototypes is a clustering method that combines K-means and K-modes methods for 
use in a mixture of continuous and categorical  data12.

SSC‑Bair. SSC-Bair is a clustering model that groups using K-means by selecting covariates that affect the 
hazard ratio through Cox  models13.

DLC model. DLC proceeds with survival clustering to utilize neural networks to optimize differences between 
empirical lifetimes. Neural networks are learned through covariates of observations, and the final layer of neu-
ral networks is allocated to one of the k-clusters through softmax layers. The empirical lifetime distribution is 
obtained from the Kaplan–Meier estimator using the assigned clusters, and the model is trained to maximize the 
difference in the survival distribution of the clusters. Because DLC does not assume a proportional risk, it can 
cross a lifetime curve. The objective function of the DLC model is as follows:

Ŝ is an empirical distribution, and ∆ is the divergence measure. However, because datasets have information 
concerning the occurrence of events in this study, W2 , indicates that a stochastic estimation of the terminating 
signal is not  considered15.

Although many methods are available to measure divergence, sample sizes must be considered. The gradi-
ent calculation should be simple because it serves as an objective function of neural networks. Additionally, 
proportional hazards should not be assumed. We used and compared the Kuiper p-value upper bound (Kuiper 
UB) and maximum mean discrepancy (MMD) as divergence  measures18,19.

Shapley Additive exPlanations (SHAP). We applied the Shapley Additive ExPlanations (SHAP) method 
to verify the importance of variables for each cluster. SHAP is a unified framework for predictive  interpretation20, 
which expresses the importance of variables by comparing predictions of situations with baseline values when 
there are certain values for a given feature.

Detailed instruction of applied models. The percentage of missing values for variables was less than 
3%, the categorical variables were replaced by values that did not result in events, and the continuous vari-
ables were replaced by median values for nonmissing data. The analysis was conducted after preprocessing each 
method. Among the application methods, SPI-II scores distinguished each group by labeling divided by scores. 
For comparison with groups of SPI-II scores, the number of groups in other models was set to 3. SSC-Bair 
selected only variables with p-values less than 0.1 through the Cox model, classifying them into three clusters 
through k-means clustering. DLC is a neural network-based clustering model that used 30 characteristics in this 
study (Table 1). DLC included the patient’s gender and age as input, and information on whether an event occurs 
within a year of the patient and the time of event occurrence as a target. Continuous input variables were scaled 
using a minimax scaler, and categorical variables were analyzed as one-hot encoding. By optimizing the loss 
function that maximizes the difference in the empirical distribution of K (set to 3 in this study) clusters through 
input and target, weights are updated to allocate patients to three clusters considering the characteristics and life-
time distribution. Because the results differed according to the change in the hyperparameters, the final model 
was selected by the validation set after the experiment by changing the hyperparameters such as the number of 
layers, learning rate, and activation function (Supplemental Table 1). Using the final selection model, when a 
new patient occurs, the risk group of the patient can be presented by entering the patient’s characteristics. SHAP 
used DeepExplainer to perform the analysis among the Explorers provided by the library. In general, a dataset is 
divided into training, validation, and test sets. The training set is required for learning to generate a model, and 
the validation set is used to avoid overfitting of the learned model and determine appropriate hyperparameters. 
The pre-set hyperparameters (such as those shown in Supplementary Table 1 for the DLC model) are applied 
to the model learned in each combination. From these many candidate models, the model with the best per-
formance based on the evaluation index is selected and used as the final model. The test set is used to evaluate 
the performance of the final model selected using the validation set. The training, validation, and test sets were 
divided 60:20:20 using stratified sampling based on the outcome rate to reduce bias.

Statistical methods. The data are reported as percentages, means (standard deviations), or medians (IQRs), 
depending on the variable characteristics. Categorical variables were analyzed using Pearson’s chi-squared test 
or Fisher’s exact test, and continuous variables were analyzed using analysis of variance or the Kruskal–Wallis 
test, as appropriate. The following parameters had missing data that were substituted using median values: BMI 
(2.2%), creatinine (0.2%), hemoglobin (0.1%), white blood cell count (0.1%), and initial random glucose (0.7%). 
The metrics used to evaluate the clusters obtained from the methods were the concordance index, Brier score, 
and Log-rank score test. The results of the metrics represented the mean and standard deviation in 30 iterations. 
In addition, we also conducted conventional statistical analyses for associations of each cluster with 1-year vas-
cular outcomes according to the cluster methods in the study cohort. A p-value < 0.05 was considered statisti-
cally significant. All analyses were conducted in Python (version 3.7.9) and PyTorch (version 1.6.0).

Ethics approval. The current study was approved by the institutional review board at Chonnam National 
University Hospital.
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Consent to participate. A waiver for informed consent was provided because of study subject anonymity 
and minimal risk to the participants by the institutional review board at Chonnam National University Hospital.

Results
General characteristics. Among 8136 patients with stroke registered in the registry during the study 
period, 7650 patients (age 68.6 ± 12.4 years, male 57.9%) were ultimately analyzed for the study (Supplemental 
Fig. 1). The median National Institutes of Health Stroke Scale (NIHSS) score was 3 (IQR 1–9) (Table 1). The 
proportions of the SPI-II risk groups were as follows: low risk (SPI-II score of 0–3), 30.3%; medium risk (SPI-II 
score of 4–7), 50.2%; and high risk (SPI-II scores > 7), 19.5%. In the DLC-Kuiper UB methods for the training 
sets, 3 distinct clusters (clusters 0, 1, and 2) were 10.3%, 44.4%, and 45.3%, respectively (Supplemental Table 2).

The performances of each clustering method are shown in Table 2 and Fig. 1. In the training, validation, and 
test sets, the DLC-Kuiper UB method produced significantly better clusters with distinct “time-to-composite 

Figure 1.  C-index (A), log-rank score (B), and Brier score (C) for different clustering methods applied to the 
datasets.
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Table 1.  General characteristics of subjects. BMI; body mass index, NIHSS; National Institutes of Health 
Stroke Scale, TOAST; Trials of Org.

Variables Values

N 7650

Age, yr, mean (SD) 68.6 (12.4)

Male, N (%) 4433 (57.9)

Arrival time, N (%)

Within 24 h 5830 (76.2)

Beyond 24 h 1820 (23.8)

BMI, mean (SD) 23.5 (3.3)

Initial NIHSS, med (IQR) 3 (1, 9)

Prestroke disability (pre-mRS > 1), N (%) 1154 (15.1)

TOAST classification, N (%)

LAA 2269 (29.7)

SVO 801 (10.5)

CE 1899 (24.8)

OE 125 (1.6)

UD 2556 (33.4)

Medical history, N (%)

History of TIA 114 (1.5)

History of stroke 1308 (17.1)

History of peripheral artery diseases 47 (0.6)

History of coronary artery diseases 432 (5.6)

HTN 4435 (58.0)

DM 2078 (27.2)

Dyslipidemia 1190 (15.6)

Smoking

  Never 5128 (67.0)

  Current 1496 (19.6)

  Ex-smoker (quit >  = 5 yr) 444 (5.8)

  Recent smoker (quit < 5 yr) 582 (7.6)

Atrial fibrillation 1889 (24.7)

High risk of cardioembolism 1709 (22.3)

Congestive heart failure 31 (0.4)

Medication history, N (%)

Antiplatelet 1750 (22.9)

Anticoagulant 337 (4.4)

Antihypertensive 3619 (47.3)

Antidiabetic 1696 (22.2)

Statin 855 (11.2)

Laboratory findings, mean (SD)

White blood cell counts,  103/µL 8.43 (3.13)

Hemoglobin, mg/dL 13.6 (1.9)

Platelet counts,  103/µL 221.6 (65.9)

Glucose, mg/dL 136.6 (55.2)

Creatinine, mg/dL 0.90 (0.73)

Systolic blood pressure, mmHg 139.1 (114.0)

Large artery disease, N (%)

No stenosis 3073 (40.2)

Mild stenosis < 50% 479 (6.3)

Moderate-to-severe stenosis > 50% 1171 (15.3)

Complete occlusion 2927 (38.3)
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vascular event” distributions, as evaluated by the C-index (0.709, 0.690, and 0.674, respectively), log-rank score 
(817.736, 170.533, and 153.099, respectively), and Brier score (0.076, 0.077, and 0.079, respectively), than the 
SPI-II, K-prototype, SSC-Bair, and DLC-MMD methods.

Outcomes. The 1-year primary composite outcome events occurred in 1,005 (1-year cumulative event rate; 
13.1%) patients. Regarding individual outcomes, the 1-year cumulative event rates were 2.9% for recurrent 
stroke and 10.7% for all-cause mortality. MI occurred in 0.2% of patients.

The one-year vascular events of each cluster according to the clustering methods are shown in Table 3 and 
Supplemental Tables 3 and 4. We set the rate of occurrence of events within the group as a criterion for dividing 
the risk groups. For the training, validation, and test sets of the DLC-Kuiper UB method, 3 clusters had signifi-
cantly different 1-year primary vascular outcomes (training set: 53.7%, 10.7%, and 6.3%, validation set: 38.4%, 
13.2%, and 7.2%, and test set: 41.7%, 13.4%, and 6.5%, respectively, all P-values < 0.001). As there are no actual 

Table 2.  C-index, Log-rank score, and Brier score for different clustering methods in datasets. P-value; One-
Way ANOVA.

SPI-II K-prototype SSC-Bair DLC-MMD DLC-Kuiper UB P-value

(A) Training set, mean (SD)

C-index 0.615 (0.015) 0.523 (0.012) 0.523 (0.013) 0.673 (0.030) 0.709 (0.019)  < 0.001

Log-rank score 116.990 (12.122) 4.061 (2.356) 4.515 (2.971) 476.833 (110.306) 817.736 (140.927)  < 0.001

Brier score 0.085 (0.001) 0.086 (0.001) 0.086 (0.001) 0.081 (0.002) 0.076 (0.002)  < 0.001

(B) Validation set, mean (SD)

C-index 0.628 (0.022) 0.531 (0.018) 0.532 (0.024) 0.654 (0.032) 0.690 (0.018)  < 0.001

Log-rank score 43.690 (9.587) 3.555 (2.547) 3.673 (2.706) 106.983 (30.735) 170.533 (24.017)  < 0.001

Brier score 0.084 (0.002) 0.086 (0.002) 0.086 (0.002) 0.080 (0.001) 0.077 (0.001)  < 0.001

(C) Test set, mean (SD)

C-index 0.614 (0.024) 0.525 (0.022) 0.524 (0.020) 0.657 (0.039) 0.674 (0.027)  < 0.001

Log-rank score 38.247 (9.315) 2.810 (2.769) 2.796 (2.753) 106.249 (33.097) 153.099 (32.740)  < 0.001

Brier score 0.085 (0.002) 0.086 (0.002) 0.086 (0.002) 0.081 (0.002) 0.079 (0.001)  < 0.001

Table 3.  One-year outcomes of patient groups according to the clustering method (k = 3/test set). P-value; 
Chi-squared test.

Cluster 0 Cluster 1 Cluster 2 P-value

(A) K-prototype

N 949 168 413

Primary outcome 136 (14.3%) 16 (9.5%) 49 (11.9%) 0.158

Stroke 26 (2.7%) 3 (1.8%) 14 (3.4%) 0.557

MI 0 (0.0%) 0 (0.0%) 2 (0.5%) 0.067

All-cause mortality 117 (12.3%) 14 (8.3%) 37 (9.0%) 0.096

(B) SSC-Bair

N 164 952 414

Primary outcome 15 (9.1%) 136 (14.3%) 50 (12.1%) 0.150

Stroke 3 (1.8%) 26 (2.7%) 14 (3.4%) 0.579

MI 0 (0.0%) 0 (0.0%) 2 (0.5%) 0.067

All-cause mortality 13 (7.9%) 117 (12.3%) 38 (9.2%) 0.100

(C) DLC-MMD

N 966 527 37

Primary outcome 69 (7.1%) 117 (22.2%) 15 (40.5%)  < 0.001

Stroke 20 (2.1%) 23 (4.4%) 0 (0.0%) 0.022

MI 1 (0.1%) 1 (0.2%) 0 (0.0%) 0.885

All-cause mortality 52 (5.4%) 101 (19.2%) 15 (40.5%)  < 0.001

(D) DLC-Kuiper

N 156 677 697

Primary outcome 65 (41.7%) 91 (13.4%) 45 (6.5%)  < 0.001

Stroke 8 (5.1%) 23 (3.4%) 12 (1.7%) 0.031

MI 0 (0.0%) 2 (0.3%) 0 (0.0%) 0.283

All-cause mortality 63 (40.4%) 69 (10.2%) 36 (5.2%)  < 0.001
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labels of high-, medium-, and low risk in the unsupervised clustering method, the Kaplan–Meier curves for 3 
clusters could generate risk groups based on the risk of 1-year vascular events. Therefore, Cluster 0 is judged as 
the high-risk group, Cluster 1 as the medium-risk group, and Cluster 2 as the low-risk group.

However, for the SSC-Bair method, the primary vascular outcome within 1 year was not significantly dif-
ferent among the 3 clusters. As a comparator, primary vascular outcomes within 1 year were significantly dif-
ferent among the SPI-II subgroups (5.6%, 14.7%, and 20.7% in the low-, medium-, and high-risk subgroups, 
respectively) (Supplemental Table 5). Kaplan–Meier survival curves according to the cluster methods are shown 
in Fig. 2.

Identification of important factors. SHAP feature importance matrix plots show the important features 
according to the degree of contribution (Fig. 3). Among them, initial NIHSS score, never smoking, and hyper-
tension (HTN) contributed maximally to each cluster. Other features contributed to the model at a similar or 
decreasing level.

Discussion
This study provides validation of the neural network-based clustering model, the DLC-Kuiper UB method, as 
a tool for stroke patient clustering with maximally distinct 1-year vascular outcome events. Compared with 
the SPI-II stroke risk score and other clustering methods, the DLC-Kuiper UB model presented significantly 
better clustering performance, with a high C-index, Log-rank score, and Brier score. These results suggest that 
the DLC-Kuiper UB method could be useful for grouping stroke patients with similar outcome risks. Further 
research with independent cohorts is warranted to confirm the results.

Finding similar clusters among stroke patients can be helpful from a medical perspective, as it may lead to 
the discovery of new patterns and more effective ways to manage stroke. Several studies have sought to identify 
clusters among stroke patients. Clustering stroke patients based on clinical data using the expectation–maxi-
mization algorithm to estimate the parameters of Gaussian mixture models resulted in two suitable clustering 
schemes that divided stroke patients into two and three clusters,  respectively21. However, for the 3-months modi-
fied Rankin Scale score, significant variations were observed among the three clusters. Another study explored 
effective prediction models for discharge planning based on a machine learning algorithm derived from data 
gathered during hospitalization in the acute phase of ischemic stroke. That study found that the use of cluster-
ing learning algorithms permits the unsupervised identification of a set of clinical variables that achieve good 
prediction of clinical  outcomes22.

Figure 2.  Kaplan–Meier curves of the primary outcome within 1 year from different clustering methods for 
K = 3 (3 clusters). (A) K-prototype, (B) SSC-Bair, (C) DLC-MMD, and (D) DLC-Kuiper UB, all test set results.
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However, clustering based on risk-profiles in survival analysis is relatively unexplored in machine learning 
but would be critical in applications such as (clinical) decision making. Several conventional risk scores for 
stratifying the risk of stroke recurrence  exist23,24. The SPI-II is a validated and reliable stroke risk  score25. However, 
classic tools to predict stroke outcome risks might have limitations because each possible variable cannot be 
considered. For example, the SPI-II could predict outcomes using only 7 clinical factors based on their predictive 
significance; congestive heart failure, diabetes mellitus, prior stroke, age > 70 years, stroke as the index event, 
severe hypertension, and coronary artery disease. However, there may be interactions with many crucial variables 
related to outcomes, such as large artery steno-occlusion, LAA or CE stroke subtypes, and initial stroke severity. 
Additionally, feature-based clustering in covariate space may produce clusters that are inconsistent with survival 
 outcomes13,26, particularly high-dimensional datasets. Methods that account for survival outcomes in clustering 
include Cox Proportional Hazards (PH)-inspired techniques, but Cox PH-based approaches are limited by the 
proportional hazards assumptions.

Neural network-based clustering methods could automatically consider the significance/interaction of indi-
vidual clinical factors. Xia et al. proposed an outcome-driven, attention-based multi-task deep learning model 
for classification and subtyping in patients with acute coronary  syndrome27. With recent advances in machine 
learning, deep learning methods have improved classical survival analysis methods by leveraging non-linear 
relationship between covariates, for improved time-to-event or risk score predictions. Compared with classic 
methods such as the k-prototype and SSC-Bair methods, the DLC-Kuiper UB model is robust to the modeling 
issues associated with the inability to observe termination signals and does not assume proportional  hazards15. 
Our results, therefore, found that the neural network-based DLC-Kuiper UB method could produce similar 
clusters with maximally distinctive 1-year vascular outcomes by using patient information on real-world stroke 
datasets. However, this method may be limited because it does not investigate clustering based on the severity of 
outcomes. Further validations for stroke subgroups, may also be warranted to confirm the results. In addition, 
the ability of the DLC-Kuiper UB model to incorporate more clinical variables to obtain better performance may 
not indicate a better AI-based DLC-Kuiper UB algorithm at the algorithmic level.

Better treatment has been determined by comparing the efficacy and safety of A treatment versus B treat-
ment by randomized controlled trials. However, individually tailored treatment would eventually be needed in 
acute ischemic stroke due to diverse stroke mechanisms and different risks of recurrence. Before that is possible, 
identifying similar clusters in stroke patients would be helpful to determine which groups would be better in 

Figure 3.  Feature importance matrix plots. In the bar plot, the SHAP value implies the degree of contribution 
of a specific feature. The higher the SHAP value is, the larger the model contribution of a specific feature.
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group-specific research, including treatment. Additionally, because ‘time-to-event’ would be unlabeled, cluster-
ing relies on unsupervised machine learning. If the examples are labeled such as stroke subtypes, then clustering 
becomes classification. Our study found that the DLC-Kuiper UB methods consistently clustered similar patients 
in both the training and test sets (C-index 0.709 and 0.674, respectively) compared with the classic methods. The 
results might be the basis for future research applying different treatments according to the different clusters.

As mentioned in the Introduction, survival clustering is important but is not being actively studied. Nev-
ertheless, new methods continue to be proposed. Mouli et al. proposed a survival clustering method based on 
a decision tree prior to  DeepCLife15,28. Liverani et al. proposed a Dirichlet process mixture model suitable for 
cases where it is difficult to apply usual survival models due to multicollinearity and identified clusters using 
both censored survival data and  predictors29. Chapfuwa et al. proposed a time-to-event prediction model with 
structured latent representations that can be clustered through a prior for infinite mixture of  distributions30. 
Among these various methods, our study used DLC because it was judged that a neural network-based model 
that maximizes the divergence of the empirical lifetime distribution among clusters considering censored events 
would more clearly distinguish groups according to the risk levels of stroke patients.

Our results additionally provide the level of contribution of specific input features selected from the model 
using the whole dataset as well as individual patient information by using SHAP. The features that contributed the 
most to clustering were the initial NIHSS score and age among all 3 clusters. Our results support previous studies, 
as NIHSS scores and age were very important factors in grouping stroke patients and predicting  outcomes31–33. In 
the future, however, the addition of imaging findings, including brain MRI and clinical features, might improve 
the clustering and prediction of outcomes in acute ischemic stroke. In particular, further studies should be 
conducted only on patients with large vessel occlusions because these cases require endovascular treatment.

There are several limitations in our study. First, our study had the inherent limitation of including data 
from only a single stroke center registry in South Korea. Further studies using multicenter, multiethnic or 
multiracial datasets are warranted. Although datasets were divided and analyzed into training, validation, and 
test sets, further research with independent cohorts is warranted. In addition, the dataset was maintained at a 
constant outcome ratio through stratified sampling for analysis, but this may not necessarily be the case with a 
new dataset. Nonetheless, a neural network-based cluster model was first applied to stroke patients from a real-
world dataset. Second, as available data in the registry might be limited, the results have limited generalizability. 
External validation would be warranted. Third, the clinical implications of clustering in stroke patients should 
be further investigated. Therefore, further verification and research are warranted by conducting well-designed 
clinical research in the future.

In conclusion, our study found that a neural network-based clustering method, the DLC-Kuiper UB model, 
could be a good tool for clustering stroke patients with similar 1-year vascular outcomes. Further studies are 
warranted to verify and validate this AI-based clustering model in ischemic stroke.

Data availability
The corresponding author will provide the data, analytic methods, and study materials to other researchers upon 
reasonable request.

Received: 26 July 2021; Accepted: 17 May 2022

References
 1. Johnson, C. O. et al. Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of 

Disease Study 2016. Lancet Neurol. 18, 439–458 (2019).
 2. Katan, M. & Luft, A. Global burden of stroke. Semin. Neurol. 38, 208–211 (2018).
 3. Amarenco, P. et al. One-year risk of stroke after transient ischemic attack or minor stroke. N. Engl. J. Med. 374, 1533–1542 (2016).
 4. Saenger, A. K. & Christenson, R. H. Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and 

treatment. Clin. Chem. 56, 21–33 (2010).
 5. Navi, B. B. et al. Validation of the Stroke Prognostic Instrument-II in a large, modern, community-based cohort of ischemic stroke 

survivors. Stroke 42, 3392–3396 (2011).
 6. Weimar, C. et al. The Essen stroke risk score predicts recurrent cardiovascular events: a validation within the REduction of Athero-

thrombosis for Continued Health (REACH) registry. Stroke 40, 350–354 (2009).
 7. Weimar, C. et al. Prediction of recurrent stroke and vascular death in patients with transient ischemic attack or nondisabling stroke: 

a prospective comparison of validated prognostic scores. Stroke 41, 487–493 (2010).
 8. Yedavalli, V. S. et al. Artificial intelligence in stroke imaging: current and future perspectives. Clin. Imaging. 69, 246–254 (2021).
 9. Jiang, F. et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc. Neurol. 2, 230–243 (2017).
 10. Djuric, U., Zadeh, G., Aldape, K. & Diamandis, P. Precision histology: how deep learning is poised to revitalize histomorphology 

for personalized cancer care. NPJ Precis. Oncol. 1, 1–5 (2017).
 11. Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).
 12. Huang, Z. Clustering large data sets with mixed numeric and categorical values, in Proceedings of the 1st Pacific‑Asia Conference 

on Knowledge Discovery and Data Mining (PAKDD) 21–34 (1997).
 13. Bair, E., Tibshirani, R. & Golub, T. Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol. 2, 

e108 (2004).
 14. Witten, D. M. & Tibshirani, R. A framework for feature selection in clustering. J. Am. Stat. Assoc. 105, 713–726 (2010).
 15. Mouli, S. C., Teixeira, L., Neville, J. & Ribeiro, B. Deep lifetime clustering. arXiv preprint. https:// arxiv. org/ abs/ 1910. 00547 (2019).
 16. Kim, B. J. et al. Current status of acute stroke management in Korea: a report on a multicenter, comprehensive acute stroke registry. 

Int. J. Stroke 9, 514–518 (2014).
 17. Kim, B. J. et al. Case characteristics, hyperacute treatment, and outcome information from the clinical research center for stroke-

fifth division registry in South Korea. J. Stroke 17, 38 (2015).
 18. Kuiper, N. H. Tests concerning random points on a circle. Nederl. Akad. Wetensch. Proc. Ser. A. 63, 38–47 (1960).
 19. Gretton, A. et al. A kernel two-sample test. J. Mach. Learn. Res. 13, 723–773 (2012).

https://arxiv.org/abs/1910.00547


10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9420  | https://doi.org/10.1038/s41598-022-13636-w

www.nature.com/scientificreports/

 20. Štrumbelj, E. & Kononenko, I. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. 
Syst. 41, 647–665 (2014).

 21. Kabir, A., Ruiz, C., Alvarez, S.A., Riaz, N. & Moonis, M. Model-based clustering of ischemic stroke patients, in Proceedings of the 
International Conference of Health Informatics 172–181 (2015).

 22. Lella, L., Gentile, L., Pristipino, C. & Toni, D. Predictive clustering learning algorithms for stroke patients discharge planning, in 
Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies 296–303 (2021).

 23. Cucchiara, B. et al. Disability after minor stroke and TIA: a secondary analysis of the SOCRATES trial. Neurology 93, e708–e716 
(2019).

 24. Nedeltchev, K. et al. Ischaemic stroke in young adults: predictors of outcome and recurrence. J. Neurol. Neurosurg. Psychiatry 76, 
191–195 (2005).

 25. Kernan, W. N. et al. The stroke prognosis instrument II (SPI-II) a clinical prediction instrument for patients with transient ischemia 
and nondisabling ischemic stroke. Stroke 31, 456–462 (2000).

 26. Gaynor, S. & Bair, E. Identification of relevant subtypes via preweighted sparse clustering. Comput. Stat. Data Anal. 116, 139–154 
(2017).

 27. Xia, E. et al. Outcome-driven clustering of acute coronary syndrome patients using multi-task neural network with attention. Stud. 
Health Technol. Inform. 457–461 (2019).

 28. Mouli, S. C. et al. Identifying user survival types via clustering of censored social network data. arXiv preprint. https:// arxiv. org/ 
abs/ 1703. 03401 (2017).

 29. Liverani, S. et al. Clustering method for censored and collinear survival data. Comput. Stat. 36, 35–60 (2021).
 30. Chapfuwa, P. et al. Survival cluster analysis, in Proceedings of the ACM Conference on Health, Inference, and Learning 60–68 (2020).
 31. Rost, N. S. et al. Stroke severity is a crucial predictor of outcome: an international prospective validation study. J. Am. Heart Assoc. 

5, e002433 (2016).
 32. Smith, E. E. et al. Risk score for in-hospital ischemic stroke mortality derived and validated within the Get With the Guidelines-

Stroke Program. Circulation 122, 1496–1504 (2010).
 33. Knoflach, M. et al. Functional recovery after ischemic stroke—a matter of age: data from the Austrian Stroke Unit Registry. Neurol‑

ogy 78, 279–285 (2012).

Author contributions
Study concept and design: JT Kim, M Kim- Acquisition of data: N Kim, JT Kim, MS Park, SH Lee, B Kim- Analy-
sis and interpretation of data: N Kim, S Choi, S Oh, JT Kim, J Choi- Drafting of the manuscript: N Kim, S Choi, 
JT Kim- Critical revision of the manuscript for important intellectual content: N Kim, S Choi, S Oh, JT Kim, J 
Choi, MS Park, SH Lee, B Kim, M Kim- Statistical analysis: N Kim, S Choi, S Oh, JT Kim.

Funding
This study was supported by a grant of the Korea Health Technology R&D Project through the Korea Health 
Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea 
(Grant Number: HR20C0021). This study was supported by the "GIST-CNUH research Collaboration" Grant 
(BCRI20050) funded by the GIST and Chonnam National University Hospital Biomedical Research Institutes.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 13636-w.

Correspondence and requests for materials should be addressed to J.-T.K. or M.S.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://arxiv.org/abs/1703.03401
https://arxiv.org/abs/1703.03401
https://doi.org/10.1038/s41598-022-13636-w
https://doi.org/10.1038/s41598-022-13636-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Neural network-based clustering model of ischemic stroke patients with a maximally distinct distribution of 1-year vascular outcomes
	Methods
	Study subjects. 
	Ethics statement. 
	Data collection. 
	Outcomes. 
	Clustering models. 
	K-prototype. 
	SSC-Bair. 
	DLC model. 

	Shapley Additive exPlanations (SHAP). 
	Detailed instruction of applied models. 
	Statistical methods. 
	Ethics approval. 
	Consent to participate. 

	Results
	General characteristics. 
	Outcomes. 
	Identification of important factors. 

	Discussion
	References


