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Quantum algorithm for electronic 
band structures with local 
tight‑binding orbitals
Kyle Sherbert, Anooja Jayaraj & Marco Buongiorno Nardelli*

While the main thrust of quantum computing research in materials science is to accurately measure 
the classically intractable electron correlation effects due to Coulomb repulsion, designing optimal 
quantum algorithms for simpler problems with well‑understood solutions is a useful tactic to advance 
our quantum “toolbox”. With this in mind, we consider the quantum calculation of a periodic system’s 
single‑electron band structure over a path through reciprocal space. Previous efforts have used 
the Variational Quantum Eigensolver algorithm to solve the energy of each band, which involves 
numerically optimizing the parameters of a variational quantum circuit to minimize a cost function, 
constructed as the expectation value of a Hamiltonian operator. Traditionally, a unique Hamiltonian 
operator is constructed for each k‑point, so that many cost functions, each with their own parameter 
space, must be optimized to generate a single band. Similarly, calculating higher bands than the 
first has traditionally involved modifying the cost function with additional overlap terms to ensure 
higher‑energy eigenstates are orthogonal to those of lower bands. In this paper, we adopt a direct 
space approach, using a novel hybrid first/second‑quantized qubit mapping which allows us to 
construct a single Hamiltonian, and a single cost‑function, suitable for solving the entire electronic 
band structure. In contrast to previous approaches, the k‑point and the band index are selected by 
additional parameters in our quantum circuit, rather than through modifications to the cost function. 
The result is a technically and conceptually simpler approach to band structure calculations on a 
quantum computer. Moreover, we expect that the tools developed herein will motivate new strategies 
for tackling highly‑correlated materials beyond the grasp of classical computing.

Electronic band structures plot the energy eigenstates of an electron in the presence of a periodic potential as a 
function of momentum. They yield many useful properties of solid-state materials: for example, the presence of 
band gaps is one prerequisite of designing a semi-conductor, and the shape of a band informs electronic transport 
properties. Band structures are easily calculated classically under the single-electron approximation, but extend-
ing the approach to highly correlated materials has been challenging. This obstacle has motivated many materials 
scientists to consider quantum computation, which enables extensions to the the band structure approach which 
more accurately account for electron–electron interactions. The literature is full of distinct algorithms which 
treat periodic systems, including hybrid quantum-classical  DMFT1–4, cyclic qubit  arrays5, and “holographic” 
 VQE6. Other methods developed for quantum chemistry are also readily applied to periodic systems expanded 
in a basis of plane  waves7 or Bloch atomic  orbitals8–10. We refer the reader to Bauer et al.11 for a thorough review 
of the most popular approaches.

Several recent  papers9,12,13 have demonstrated electronic band structure calculations using the Variational 
Quantum Eigensolver (VQE)  algorithm14–16. VQE is a popular quantum algorithm in the Noisy Intermediate-
Scale Quantum (NISQ) era which consists of a low-depth parameterized quantum circuit preparing a vari-
ational ansatz |�(θ)� , and a Hamiltonian operator Ĥ whose expectation value can be measured in the quantum 
computer. The variational parameters are adjusted until the energy E ≡ ��|Ĥ|�� is minimized. This energy is 
a good approximation of the ground state of the system described by Ĥ , provided that the ansatz is sufficiently 
expressive. Many ansatze have been developed for electronic structure calculations, balancing expressivity with 
efficient implementation on available quantum  hardware10,17–21. In band structure calculations, the ansatz |�(θ)� is 
constrained to a single-electron wavefunction, and the ground state is the energy of the lowest band at a particular 
momentum k . Higher bands are found by repeating the optimization with additional constraints to ensure the 
ansatz is orthogonal to previously located eigenstates.
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In order to estimate the expectation value of the Hamiltonian Ĥ in a quantum computer, Ĥ should be 
expressed as a linear combination of “Pauli words”:

Each Pauli word P̂j = {Î , X̂, Ŷ , Ẑ}⊗n is an n-qubit operator with a Pauli spin matrix associated with each qubit. 
The precise choice of {cj} depends on the choice of orbital basis, and how this basis is mapped onto the available 
logical qubits. Previous results for solving electronic band structures each used somewhat different strategies 
for the qubit mapping, but all three adopted a Bloch atomic orbital  basis9,12,13. Each Bloch atomic orbital |αk� is 
related to the local atomic orbitals {|αr�} at each lattice point r in the crystal by a Fourier transformation:

Bloch atomic orbitals form a valuable basis for band structure calculations because the basis states are intrinsi-
cally periodic, and any wavefunction constructed in this basis automatically satisfies the periodicity of the system. 
Furthermore, the single-electron Hamiltonian is separable in k , meaning that each set of orbitals |αk� for fixed k 
can be solved independently, reducing the effective size of the eigenvalue problem. However, this comes with the 
consequence that a new set of {cj} must be obtained for every k . Similarly, while previous results used different 
strategies for exploring higher-level bands, they each enforced orthogonality with previously located eigenstates 
by including additional terms in the cost function. This effectively generates a new set of {cj} for each band, and 
often increases the number of quantum measurements required to obtain each E.

In this paper, we present an algorithm which simplifies electronic band structure calculations in a quantum 
computer by setting the cost function just once, for all k and for all bands. We accomplish this by adopting the 
basis of local atomic orbitals, and by enforcing the periodicity of our eigenstates directly through the ansatz. In 
this framework, k enters as an additional (fixed) parameter to our variational quantum circuit. Additionally, we 
present a novel procedure for exploring higher bands without the use of additional terms in the cost function. 
Instead, orthogonality with previously located eigenstates is enforced by the quantum circuit itself, incurring 
negligible overhead in circuit complexity and no overhead in the required number of measurements.

The “Qubit mapping, “Quantum circuit”, and “Cost function” sections present the technical details of our 
algorithm. The “Examples” section briefly presents examples using simulated results to validate our method. In 
the “Conclusion”, we discuss the advantages and disadvantages of our approach, and we suggest how this method 
could be adapted to efficiently treat highly-correlated systems.

Qubit mapping
In this paper, we adopt a local atomic orbital basis. We associate with each unit cell a lattice coordinate r and a 
set of M orbitals {|α�} , such as the hydrogen-like orbitals |s� , |px� , etc. centered on each atom. The set {|αr�} of all 
orbitals over all unit cells forms the basis for the crystal. In practice, we restrict ourselves to a supercell consisting 
of N total unit cells. The value of N determines the resolution in k we can obtain in our band structure, where the 
limit N → ∞ corresponds to a continuous k space. We index each unit cell with an integer coordinate ν counting 
from 0 to N, thereby adopting the finite basis {|αν�} with MN elements. We use the bold font to indicate that in 
a d-dimensional crystal, ν takes the form of a d-tuple.

We map our supercell onto a set of qubits using a novel hybrid first/second-quantized approach, factoring 
the basis orbital |αν� into two sub-states:

The |α� state is mapped onto an “orbital register” M consisting of M qubits encoded with second quantization. 
Each local atomic orbital α is associated with a specific qubit qα ∈ M ; the state |α� corresponds to the compu-
tational basis state in which qα is |1� and all other qubits are |0� . The |ν� state is mapped onto a “site register” N 
consisting of logN  qubits encoded with first quantization. Each basis state of N is the binary representation 
of the integer coordinate ν ; a d-dimensional crystal will have d sub-registers in N . The total number of qubits 
required by this mapping is M + logN . Fig. 1 shows a schematic of our qubit mapping.

Quantum circuit
A general ansatz expanded in the local atomic orbital basis {|αr�} may be written as

Bloch’s theorem guarantees that single-electron eigenstates of a periodic system must themselves be periodic, 
with a phase factor determined by the momentum of the electron k:

For ease of notation, let us assume a one-dimensional crystal with lattice constant a, so that each lattice 
coordinate r → aν for an integer coordinate ν . Imposing periodic boundary conditions on a supercell of size N 
requires φα,aN = φα,0 , implying

(1)Ĥ →
∑

j

cjP̂j .

(2)|αk� =
∑

r

e
ik·r|αr�.

(3)|αν� = |α� ⊗ |ν�.

(4)|�� =
∑

α

∑

r

φαr|αr�.

(5)φαr = eik·rφα0.
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for a momentum quantum number p.
Under the qubit mapping described above, we can combine Eqs. (3), (4), (5), and (6):

The first factor describes the amplitudes of each orbital on the principal unit cell and is expressed in the 
orbital register M , while the second factor describes the phases accumulated on each site and is expressed in 
the site register N . We have absorbed a factor of 

√
N  from the site register into the amplitudes φα ≡

√
Nφα,0 

so that both registers are normalized. The action on both registers is factorized and thus can be expressed with 
two independent quantum circuits.

Site register. We wish to prepare the following state in the site register N , from the starting state |0�

This state is determined exactly by the momentum quantum number p, requiring no other variational parame-
ters. Equation (8) has the form of a discrete Fourier transform, and we can make use of the well-known Quantum 
Fourier Transform (QFT), an efficient implementation of the discrete Fourier transform as a quantum  circuit22. 
We first prepare the state |p� with a single layer of Pauli X gates applied to each bit for which the binary repre-
sentation of p is |1� . We then apply QFT, preparing the state in Eq. (8) exactly. Fig. 2 presents an implementation 
of QFT optimized for linear qubit architectures, requiring �((logN)2) entangling gates and �(logN) depth.

(6)ka = 2π

N
p

(7)|�� =
(

∑

α

φα|α�
)

M

⊗
(

1√
N

∑

ν

e
2π i
N pν |ν�

)

N

.

(8)|��N = 1√
N

∑

ν

e
2π i
N pν |ν�.

Figure 1.  A schematic illustrating the hybrid qubit mapping used in this paper. Each unit cell in a supercell 
is indexed with the “site register” using first quantization. Meanwhile, each qubit in the “orbital register” is 
associated with a single orbital in each unit cell using second quantization. For example, in this schematic, the 
qubit labelled qpx holds the amplitude for every px orbital in the supercell, while the site register contributes the 
phase for each site.

Figure 2.  The quantum circuit applied on our site register N . The sub-circuit P loads the computational basis 
state |p� . The sub-circuit QFT implements the Quantum Fourier Transform on a linear architecture.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9867  | https://doi.org/10.1038/s41598-022-13627-x

www.nature.com/scientificreports/

Orbital register. We wish to prepare the following state in the orbital register M , from the starting state |0�:

The amplitudes φα are a priori unknown, and we will treat them as variational parameters. Our objective is 
to design a parameterized quantum circuit capable of expressing any arbitrary superposition of the basis states 
|α� , which are those M-qubit computational basis states with a Hamming weight of 1. The circuit V presented in 
our previously-published  work13 and re-presented in Fig. 3a is suitable for locating the lowest band. It consists 
of M − 1 so-called A gates (Fig. 3b), first presented in Gard et al.21 each of which accepts a polar angle θ and an 
azimuthal angle ϕ , for a total of 2(M − 1) independent parameters. If desired, the ansatz may be constrained to 
real values by setting all azimuthal angles to 0.

We now wish to consider how to adapt V for higher bands, in a way which ensures orthogonality with previ-
ously located eigenstates. Let us define V0 as that circuit V with parameters optimized to prepare the eigenstate 
|ψ0� of the lowest band, so that V0|10..0� = |ψ0� . If V0 is applied to any other computational basis state, the result 
must be orthogonal to |ψ0� . Therefore, if we prepare an arbitrary single-electron state |�� over all qubits but the 
first (ie. |�� = |0� ⊗ |�+� for an arbitrary single-electron state |�+� with M − 1 orbitals), the state V0|�� will 
be orthogonal to the ground-state |ψ0� (Fig. 4). Thus, we may use the same variational form V for each band l, 
except that we omit qubit ql after each iteration, and we apply each previously optimized circuit Vl.

The entire circuit for the orbital register can be compactly represented as in Fig.  5. It consists of 
(M − 1)(M − 2)/2 A gates, for a total of �(M2) parameters. However, each optimization varies only those 
M − (l + 1) A(l)

q  gates for which l is the index of the band currently being solved. The parameters of all lower l are 
fixed at the values which optimized band l, and the parameters of all higher l are fixed at 0. This circuit requires 
O(M2) entangling gates and �(M) depth.

(9)|��M =
∑

α

φα |α�.

Figure 3.  (a) Shows the variational quantum circuit applied on our orbital register M to locate the lowest band 
of any periodic system. (b) Decomposes the A gate into elementary circuit elements, each consisting of two 
independent parameters.

Figure 4.  The variational circuit applied on our orbital register M to locate the second-lowest band of any 
periodic system. The V0 sub-circuit is as shown in Fig. 3a. The V1 circuit is analogously constructed, save with 
one fewer qubit.
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Cost function
Our objective in this section is to present a cost-function suitable for electronic band structure calculations 
over all k and all bands. We first write the tight-binding Hamiltonian Ĥ in the basis of local atomic orbitals 
|αν� described above, and map it onto a set of Pauli words so that Ĥ →

∑

j cjP̂j . Ostensibly, the cost-function is 
E = �Ĥ� =

∑

j cj�P̂� , where each �P̂�j can be estimated independently in a quantum  computer15. However, we 
will also present a measurement strategy which ensures that the number of circuit measurements required to 
evaluate E scales minimally with the number of commuting groups in Ĥ.

Hamiltonian mapping. The single-electron tight-binding Hamiltonian Ĥ is expanded in our basis as fol-
lows:

The physics of Ĥ is contained entirely within the real-valued hopping parameters t(δ)αβ ≡ �α0|Ĥ|βδ� , which 
denote the energy cost of an electron transitioning from the orbital |βδ� to the orbital |α0� in the principal unit cell. 
The periodicity of the crystal ensures that all matrix elements can be written in terms of the hopping parameters:

Note that hopping parameters between orbitals centered on atoms far apart (ie. large δ ) will tend to vanish. 
Thus, one typically adopts a “nearest-neighbor approximation”, in which t(δ)αβ  is non-zero only for those unit-cells 
δ which hold the nearest images of |β� to the atomic center of |α0� . Realness and hermiticity of Ĥ guarantee 
t
(δ)
αβ = t

(−δ)
βα  . The number of independent hopping parameters can often be reduced further by exploiting addi-

tional crystal symmetries, but we take all hopping parameters as given for the purposes of this work.
The orbital register projection |α��β| can be written as the annihilation of an electron in orbital |β� followed 

by the creation of an electron in orbital |α� , encouraging us to use the fermionic creation and annihilation opera-
tors a†α , aα:

The fermionic creation and annihilation operators are typically mapped onto Pauli words using well-known 
transformations such as the Jordan–Wigner or Bravyi–Kitaev transformations, which enforce the fermionic 
anticommutation relations necessary for representing indistinguishable  electrons23. However, as pointed out in 
our previous  work13, this full machinery is unnecessary for band structure calculations constrained to single-
electron states, and the following, simpler mappings suffice: 

 where we have used the notation X̂α ( ̂Yα ) to represent the Pauli word with an X̂ ( ̂Y  ) on the qubit qα and the 
identity Î on every other qubit.

The site register projection |ν��ν′| must bring the basis state |ν′� into the state |ν� , and it must annihilate every 
other state. This action is factorizable into each qubit:

(10)Ĥ =
∑

α,β

∑

ν,ν′
�αν |Ĥ|βν′ �

(

|α��β|M ⊗ |ν��ν′|N
)

.

(11)�αν |Ĥ|βν′ � = t
(ν′−ν)
αβ .

(12)|α��β| = a†αaβ .

(13a)aα → 1

2
(X̂α + iŶα);

(13b)a†α → 1

2
(X̂α − iŶα),

(14)|ν��ν′| =
⊗

q

|νq��ν′q|,

Figure 5.  The generalized variational quantum circuit applied on our orbital register M to calculate any band of 
a periodic system. Each diagonal corresponds to a particular energy level. Parameters for bands lower than the 
target energy level are fixed at their optimal values, while parameter for bands higher than the target energy level 
are fixed at zero. Thus, only the parameters for the target band must be optimized.
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where νq represents the q-th bit in the binary representation of the integer coordinate ν . The reader may verify 
the following mappings for |νq��ν′q| hold: 

More concisely,

(Note the use of the ⊕ operator to denote bitwise addition, also known as the “XOR” operator).
Given all hopping parameters t(δ)αβ  , Eqs. (10)–(16) are sufficient to generate the mapping Ĥ →

∑

j cjP̂j . Gener-
ally, Ĥ will consist of O(M2N2) non-zero Pauli words. Adopting a nearest-neighbor approximation reduces this 
to O(M2N) . In the next section, we will show how these Pauli words can be partitioned into O(M logN) com-
muting groups to generate a cost function E = �Ĥ� which can be efficiently evaluated in a quantum computer.

Measurement strategy. We now write out the full single-electron tight-binding Hamiltonian under a 
nearest-neighbor approximation. The methods below generalize to multiple dimensions and are easily imple-
mented in code, but the equations become very unwieldy, so we will restrict ourselves in this section to the one-
dimensional case. Under the nearest-neighbor approximation, t(δ)αβ  will be non-zero only if δ ∈ {0,±1} , and we 
can expand the Hamiltonian Ĥ from above as

where each Ĥ(δ) is defined as follows: 

Note that we impose periodic boundary conditions so that the projection |ν��ν + 1| for ν = N − 1 is identi-
fied with |N − 1��0|.

Consider first the orbital register factors 
∑

α,β t
(δ)
αβ a

†
αaβ . Substituting Eq. (13), 

(15a)|0��0| → 1

2
(Î + Ẑ);

(15b)|0��1| → 1

2
(X̂ + iŶ);

(15c)|1��0| → 1

2
(X̂ − iŶ);

(15d)|1��1| → 1

2
(Î − Ẑ).

(16)|νq��ν′q| →
1

2

(

X̂ν′q

)(

X̂νq⊕ν′q

)

(Î + Ẑ)

(

X̂ν′q

)

.

(17)Ĥ = Ĥ(0) + Ĥ(+1) + Ĥ(−1),

(18a)Ĥ(0) ≡
(

∑

α,β

t
(0)
αβ a

†
αaβ

)

M

⊗
(

∑

ν

|ν��ν|
)

N

;

(18b)Ĥ(+1) ≡
(

∑

α,β

t
(+1)
αβ a†αaβ

)

M

⊗
(

∑

ν

|ν��ν + 1|
)

N

;

(18c)Ĥ(−1) ≡
(

∑

α,β

t
(−1)
αβ a†αaβ

)

M

⊗
(

∑

ν

|ν + 1��ν|
)

N

.

(19a)
∑

α,β

t
(δ)
αβ a

†
αaβ ≡ Â

(δ)
M

+ iB̂
(δ)
M
;

(19b)

Â
(δ)
M

=1

2

∑

α

t(δ)αα (Î − Ẑα)

+ 1

4

∑

α

∑

β>α

(

t
(δ)
βα + t

(δ)
αβ

)

(X̂αX̂β + ŶαŶβ);

(19c)B̂
(δ)
M

=1

4

∑

α

∑

β>α

(

t
(δ)
βα − t

(δ)
αβ

)

(ŶαX̂β − X̂αŶβ).
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In the real part Â(δ)
M

 , all terms of the forms Ẑα , X̂αX̂β , and ŶαŶβ are each commutative, so that Â(δ)
M

 contains 
three commuting Pauli groups. In the imaginary part B̂(δ)

M
 , all terms of the form ŶαX̂β>α and X̂αŶβ>α are each 

commutative for fixed α , so that B̂(δ)
M

 contains �(M) Pauli groups.
Consider now the site register factors in Eq. (18). The sum 

∑

ν |ν��ν| is immediately recognized as the identity 
operator ÎN acting on the site register. The sum 

∑

ν |ν��ν + 1| is less trivial, but it too can be decomposed into 
real and imaginary parts ÂN , B̂N:

In the Supplementary Information, we show that ÂN and B̂N each consist of �(logN) commuting groups.
We now rewrite the Hamiltonian Ĥ of Eq. (17) in terms of the Â, B̂ operators:

We have used the symmetry relation t(δ)αβ = t
(−δ)
βα  to find B̂(0)

M
= 0 . The same relation also ensures Ĥ(+1) and 

Ĥ(−1) are Hermitian conjugates, and we have replaced the sum Ĥ(+1) + Ĥ(−1) by 2ℜ
[

Ĥ
(+1)

]

 . The number of 

commuting groups in Ĥ is bounded by the B(1)
M

⊗ BN term, for a total of �(M logN) commuting groups.
The main result of this section is the cost function E = �H� , suitable for all k and for all bands:

Each expectation value in E is measured by the quantum computer. Let Qn be the set of all n-qubit Pauli words 
consisting of only Î and Ẑ operators. The procedure for simultaneously obtaining the expectation values �Q̂j� of 
all Pauli words Q̂j ∈ Qn is well understood (see eg. our previous  work13 for a brief tutorial). The same procedure 
can be applied to any commuting group Pn if a basis rotation circuit is applied prior to measurement which 
transforms each Pauli word P̂j ∈ Pn to an element of Qn

24. For example, all Pauli words of the form X̂αX̂β in Â(δ)
M

 

(20)
∑

ν

|ν��ν + 1| ≡ ÂN + iB̂N.

(21)Ĥ = Â
(0)
M

⊗ ÎN + 2

(

Â
(1)
M

⊗ ÂN − B̂
(1)
M

⊗ B̂N

)

.

(22)Ê =
〈

Â
(0)
M

〉

+ 2

(〈

Â
(1)
M

⊗ ÂN

〉

−
〈

B̂
(1)
M

⊗ B̂N

〉)

.

Figure 6.  Measurement circuits to efficiently group all terms of the cost-function into commuting groups. (a–e) 
are each applied to the orbital register in subsequent simulations, while (f) is applied to the site register.
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can be measured simultaneously by applying the Hadamard gate to each qubit prior to measurement. Figure 6 
presents the measurement circuits required for each register to measure all of the commuting groups in Ĥ.

So far, the measurement strategy discussed in this section is agnostic of the quantum circuit presented above. 
Our quantum circuit treats the orbital and site registers as independent, introducing no entanglement between 
the two. As a consequence, any expectation value �ÔMÔN� = �ÔM� · �ÔN� , and we can estimate the expectation 
values of each Â and B̂ operator independently, reducing the number of circuit measurements to �(M + logN) . 
Going a step further, we see from Eq. (8) that �ÂN� and �B̂N� depend only on the momentum quantum number 
p, and we can evaluate them a priori as the real and imaginary parts of 

∑

ν��N|ν��ν + 1|�N� : 

Now we may write our cost-function as

In this perspective, k enters in (via p) as a classical parameter of the cost function rather than as an input into 
the quantum circuit, establishing the equivalence of this method and those of previous  results9,12,13. Choosing 
between Eqs. (22) and (24) is a matter of preference and logistical convenience.

Examples
Figure 7 shows electronic band structures calculated for several model systems, using Eq. (22) and the circuits 
presented in Figs. 2, 3, 4, 5, 6. Figure 7a corresponds to a one-dimensional lattice consisting of alternating atoms. 
The unit cell consists of two distinct atoms, each contributing a single orbital with rest energies separated by 1 eV. 
The hopping parameter between each adjacent atom is also 1 eV. The lower band corresponds to the “bonding” 
orbital for individual electrons at each momentum, and the upper band corresponds to the “anti-bonding” orbital. 
The solid curve is calculated analytically with the standard classical algorithm. Our quantum solution requires 
two qubits for the orbital register, and we choose to use three qubits ( N = 8 ) for the site register, for a total of 
five qubits. (Contrast this with a direct simulation of all 16 atoms in the supercell, which requires sixteen qubits). 
Square markers are obtained by simulating our quantum circuits with Google’s cirq software package, using the 
COBYLA optimization protocol (as implemented in the scipy python package) and 8096 circuit evaluations per 
expectation value. When these results differ noticeably from the analytical solution, we use an X to denote the 
result of our algorithm in ideal conditions, with perfect optimization and no sampling noise.

Figure 7b corresponds to a two-dimensional hexagonal lattice, such as in graphene. The unit cell consists 
of two identical atoms, each contributing a single orbital. Each atom has three neighbors, each with a hopping 
parameter of 1 eV. Our results use a supercell size of N = 8 for each dimension, requiring six qubits in the site 
register and two in the orbital register, for a total of eight qubits. One feature of special interest is the “Dirac 
cone” surrounding the degeneracy at the high-symmetry point labelled K. Characterizing the Dirac cone and 
identifying band gaps in materials which lift the degeneracy at K is one common objective of 2D materials science. 
However, a very high resolution in reciprocal space is required to obtain an accurate characterization. This high-
lights one significant limitation of band theory using direct-space orbitals: increasing resolution requires larger 
supercells, which require more orbitals. Our hybrid mapping ensures the number of qubits required scales only 
logarithmically with the size of the supercell. Nevertheless, obtaining useful resolutions on multi-dimensional 
lattices still requires many more qubits than are available on present-day quantum hardware, ensuring that the 
classical approach to band theory will remain dominant for the time being.

Figure 7c corresponds to a three-dimensional simple cubic lattice. The unit cell consists of a single atom 
with an s orbital and three p orbitals. Rest energies and hopping parameters are selected to qualitatively match 
the electronic band structure of polonium, which forms a simple cubic lattice in standard conditions (on-site 
Coulomb interaction and relativistic corrections are required for a more accurate representation)25,26. Our results 
use a supercell size of N = 8 in all three dimensions, requiring nine qubits in the site register and four in the 
orbital register, for a total of thirteen qubits. Note that the path we have shown through reciprocal space includes 
two redundant branches, ŴR and XM. In particular, note that the quantum results for the RŴ branch happen to 
be of much lower quality than those of the ŴR branch, despite considering the exact same momentum vectors. 
This highlights the probabilistic nature of quantum devices, and the urgent need for robust operator estimation 
and optimation protocols. This need is further exacerbated by the thermal noise and low-fidelity gate operations 
which plague present-day quantum hardware, and the prevalence of barren plateaus in most cost functions of 
 interest27. The purpose of this paper is to showcase the algorithm, rather than obtain high-precision results, and 
so we have favored simplicity and ease of implementation over rigor. However, the interested reader should be 
aware that developing efficient and robust quantum protocols is a highly active and relevant area of research, 
especially in operator  estimation24,28–31,  optimization32–36, and error  mitigation37–40.
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Conclusion
We have presented a novel approach to electronic band structure calculations in a quantum computer by adopting 
a basis of local atomic orbitals. This has enabled us to prepare a single cost function which can be used for all k 
and for all bands. This is an improvement over previous  approaches9,12,13, which require recalculating new matrix 
elements for each point in k space and add additional overlap terms in the cost function to explore higher bands. 
In exchange, we require an additional logN qubits, where N is the resolution in k explored by the band structure.

Figure 7.  Band structures of model systems in one, two, and three dimensions, using N = 8 for each 
dimension. The site register requires 3 qubits per dimension. Solid curves are calculated analytically with the 
standard classical algorithm. Squares mark the values estimated by simulating the quantum algorithm presented 
in this paper, using the COBYLA optimization protocol and 8096 circuit evaluations per expectation value. X’s 
mark the values obtained in ideal conditions, with perfect optimization and no sampling noise.
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While band structures are obtainable through classical approaches, the surge of quantum algorithms devel-
oped in recent months heralds a new era of computational materials science. Quantum computing enables 
efficient electronic structure calculations of highly correlated systems for which the single-electron approxima-
tion fails. The most promising  approaches7,8,10 assign a unique set of qubits for each periodic basis function, 
requiring O(N) qubits, although this can be reduced somewhat by tapering  methods10,41. With further research, 
we believe the hybrid first/second quantized qubit mapping for periodic systems presented in this paper may be 
adapted to accommodate multiple electrons, exponentially reducing the number of qubits required to express 
the system. The quantum circuit can be adjusted to express multi-electron states, long-range interactions can be 
accommodated by introducing entanglement between the orbital and site registers, and additional multi-body 
terms can be added to the cost function.

One particular difficulty in adapting our approach to multiple electrons is the need to enforce fermionic 
anticommutation relations, which we have omitted to fully exploit the single-electron approximation. Mapping 
multi-body fermionic integrals onto the hybrid first/second quantized registers is a subject of further research. 
Alternatively, one could develop a novel quantum circuit which enforces the appropriate antisymmetry relations 
on the ansatz directly. Such a strategy is consistent with the theme of this paper: simplifying the cost function 
and measurement complexity of the VQE algorithm by creatively introducing symmetries and constraints in 
the quantum circuit.
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