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Effect of Cattaneo‑Christov 
approximation for viscoelastic fluid 
with carbon nanotubes on flow 
and heat transfer
U. S. Mahabaleshwar1, K. N. Sneha1 & M. Hatami2*

The current work studies the motion of viscoelastic liquid saturated with carbon nanotubes over a 
stretching surface in a Darcy porous medium analytically below an influence of Cattaneo-Christov 
heat flux. The carbon nanotubes (CNTs) act as nanoparticles which are then appended into the 
base fluid. Water and kerosene are used as a base fluid with two types of CNTs, namely, Single-wall 
carbon nanotubes and Multiwall carbon nanotubes. Carbon nanotubes possess a wide range of 
industrial and biomedical applications including energy production, nuclear reactor cooling, and 
galaxy cooling applications because they can expand the thermal and mechanical properties of base 
things. As a result, the carbon nanotubes used in the mentioned fields are being investigated for their 
potential in heat transfer applications. Governing equations formulated using the Partial differential 
equations have converted to Ordinary differential equations exhausting the appropriate comparison 
transformation process. An influence of some relevant constraints on velocity and temperature is 
evaluated in details. The Cattaneo-Christov heat transfer model is utilized to investigate the heat 
transfer individualities with varying thermal conductivity consuming the attributes of the Appell 
hypergeometric function. The impacts of the emerging parameters on the profiles are depicted 
through graphical representations and analytically constructed tables. Considering its usefulness 
in modulating temperature distribution in different industrial application, including solar collector 
design, electronic cooling, building ventilation, etc. According to our findings, the temperature profile 
exhibits an enhancement with the thermal radiation parameter and the viscous-elastic fluids. In 
addition, when compared to the classical Fourier’s law of heat conduction, the temperature profile and 
thermal boundary layer thickness for the Cattaneo-Christov heat flux model are lower.

List of symbols
B0	� Magnetic field [Tesla]
c	� Constant rate of stretching [s-1]
k*	� Mean absorption [−]
K	� Permeability [m2]
M	� Hartmann number [–]
NR	� Thermal radiation parameter [–]
Pr	� Prandtl number [–]
qr	� Radiative heat flux [W m-2]
T	� Temperature [K]
T∞	� Temperature far away from the sheet [K]
Tw	� Temperature at the wall [K]
u, v	� Velocities [m s-1]

Greek symbols
α	� Thermal diffusivity [m2 s-1]
γ	� Relaxation time parameter [−]
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σf	� Electrical conductivity [−]
σ*	� Stefan-Boltzmann constant [W m-2 K-4]
μ	� Dynamic viscosity [kg m-1 s-1]
ν	� Kinematic viscosity [m2 s-1]
κ	� Thermal conductivity [W m-1 K-1]
ρ	� Density [kg m-3]
η	� Similarity variable [−]

Abbreviations
CNTs	� Carbon nanotubes [−]
f	� Base fluid [−]
MWCNTs	� Multi-walled carbon nanotubes [−]
nf	� Nanofluid [−]
ODEs	� Ordinary differential equations [−]
PDEs	� Partial differential equations [−]
SWCNTs	� Single-walled carbon nanotubes [−]
w	� Wall [−]

A nanofluid flow and heat transfer has become one of the fastest growing areas of nanotechnology engineering 
and innovation. According to Choi’s survey1, there has been drastic growth in researchers publishing. A nanofluid 
is a combination of base fluid and nanoparticles which is homogeneous. Nanoparticles typically have a diameter 
of 1–100 nm, but this size can be changed slightly due to shape. Carbon nanotubes (CNTs) were discovered2–4 
which at room temperature, CNTs have a thermal conductivity that is roughly six times greater than of other 
materials. CNTs are carbon allotropes having a tube-shaped nanostructure. There are two kinds of CNTs, includ-
ing SWCNTs and MWCNTs. There are many applications of CNTs in manufacturing and medicine due to their 
immediate effects for expanding the thermal conductivity of base liquids. These applications include microelec-
tronics cooling, refrigeration, power generation, transportation, air conditioning, chemical processing and others.

From physical point of view, an analysis of boundary layer flows is very useful due to huge applications. It 
should be noted that boundary layer flow over surfaces differs significantly from free stream flow over stationary 
plates5,6. An impact of magnetic field on boundary layer flow is firstly explored at7,8. Several researchers consid-
ered the heat and mass transfer using the boundary layer theory under various impacts including non-Newtonian 
nature of the working fluid, thermal radiation, local heaters, suction/injection, velocity slip, porous media9–15. At 
the same time, some researchers16–18 investigated mixed convection boundary layer flow of an incompressible 
and electrically conducting viscoelastic fluid across a linearly stretching sheet contained porous media.

The energy equation using the original Fourier law was the focus of the prior research. The reason for wide-
spread criticism of the Fourier approach is that it leads to the construction of a parabolic-type energy equation19. 
To get around this constraint, Cattaneo first used a relaxation time term20. As an update, Christov21 introduced 
an innovative category derivative of Oldroyd’s upper-convicted variant, and yet this composition changed the 
organizational structure of the Cattaneo-Christov heat transfer paradigm. Thus, Hayat et al.22 have studied an 
influence of Cattaneo-Christov heat flux on viscoelastic fluid flow due to a linear stretching sheet. They found 
that boundary layer viscosity is less for Cattaneo-Christov thermal flux approach compared to the Fourier heat 
conduction law. Cattaneo–Christov double diffusive MHD fluid due to stretching cylinder has been studied 
by Khan et al.23 using the similarity technique. Recent studies on the Cattaneo-Christov heat transfer model 
can be found in24–28. Considering its usefulness in modulating temperature distribution in different industrial 
application, including solar collector design, electronic cooling, building ventilation, etc.29–31. Nadeem et al.32 
have studied a flow occurs due to linear stretching sheet. For the evaluation of heat flux, Fourier’s law of heat 
conduction is employed. Yang et al.33 Heat transfer and friction drag are carried out for these hybridized ferrites 
nanoparticles in ferromagnetic Nano-fluids. Utilization of Maxwell-Cattaneo Law for MHD swirling flow through 
oscillatory disk subject to porous medium studied by the Rauf et al.34–37. Various researchers38,39 in the past years 
are collaborating in the nanotechnology field due to their improvement in heat capacity, chemotherapy for cancer, 
microelectronics, cooling of energy storage devices, cooling of nuclear system, air conditioning, and nanochips, 
etc. The concept of activation energy and double stratification effects is considered to analyze the flow problem. 
Thermal relaxation time relaxation time properties are both determined by implementing Cattaneo-Christov 
heat and mass flux in the energy and mass equation.

The present research is an addition to the prior investigation by Jafarimoghaddam et al.40. The present novelty 
of the work deals with an inclined magnetic field, carbon nanotubes and Darcy porous medium. The Cattaneo-
Christov heat flux concept in nanofluid flow is compared using two types of viscoelastic fluids in this paper. 
Second-grade and elastic-viscous fluid are also discussed. The objective function of ordinary differential equa-
tions is demonstrated to have analytical solutions for velocity and temperature equations. The energy method 
allows obtaining a closed form of analytical expression based on the features of the Appell hypergeometric 
function of binary variables. Analysis of the single- and multi-walled carbon nanotubes viscoelastic fluid flow 
over a porous medium with thermal radiation has been performed expending analytical methods. The impacts 
of various fluid flow parameters, including the Cattaneo-Christov heat flux model on inclined MHD fluid flow, 
are explained using graphs. Furthermore, the velocity and heat transfer are investigated under various graphs in 
order to explore their physical implications and to compare the influence of several physical constraints on the 
velocity and thermal boundaries.



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9485  | https://doi.org/10.1038/s41598-022-13592-5

www.nature.com/scientificreports/

Physical model and solution
An investigation of incompressible flow of second grade liquid/Walters’ B liquid created by a continuously 
stretched sheet under an influence of inclined magnetic field and Darcy porous medium was performed (see 
Fig. 1). In two instances of fluids, the governing two-dimensional boundary layer flows are examined.

Governing equation can be formulated as follows

where k∗ = −α
/

ρf  is the elastic parameter, k* > 0 is for viscoelastic fluid 41, k* < 0 is for the second grade fluid 42, 
while k* = 0 is for the Newtonian fluid 6.

Using the Cattaneo-Christov model 24 one can find

Here k is the thermal conductivity and λ is the heat flow relaxation time. Equation (4) can be simplified to 
the standard Fourier’s equation of heat transfer when λ = 0.

When q is included in Eqs. (3) and (4), the temperature profile can be attained as follows

The following B. Cs are used Jafarimoghaddam et al. 40.

Blasius similarity transformation is given by
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Figure 1.   Schematic diagram of stretching boundary.
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Now since Eq. (1) is verified, the method applied results from Eqs. (2) and (5)

The used B Cs is

Here Da = Kc
νf

 is the Darcy number,

k1 = − ck∗

νf
 is the viscoelastic parameter,

M = σf B
2
0

ρf c
 is the magnetic parameter,

Pr = νf
αf

 is the Prandtl number,
γ = c� is the relaxation time parameter,
αf =

κf

(ρCp)f
 is the thermal diffusivity,

and

The nanofluids constants are mathematically defined as: (see Muhammad et al.43–47)

Tables 1 and 2 show the thermal properties of different nanoparticles and base fluids.
The necessary solution is expected to be around the form, based on the exact analytical model for Eq. (8) and 

the accompanying boundary condition (10) and the preceding choice of fη is

The following equation, which is produced by utilizing Eq. (11) in Eq. (8), allows to determine the unknown
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Table 1.   Thermal properties of nanofluid.

Nano liquid physical properties
Liquid phase
(water) Copper Alumina Titania

Cp(J/kgK) 4179 385 765 686.2

ρ(kg/m3) 997.1 8933 3970 42.50

k(W/mK) 0.613 400 40 8.9538
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Analytical solution for heat transfer
Analytical solution.  Equation (9) is rewritten in the following way

Using the form of fη(η) = 1− αf (η) one can find

According to the provided boundary conditions, the result for Eq. (13) is expressed as follows:

Equation (15) as η → ∞ gives
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Table 2.   Thermophysical properties of water and CNT.

Thermophysical properties

Base liquids Nanoparticle

Water
(Pr = 6.2) Ethylene glycol Engine oil

Kerosene
(Pr = 21) SWCNTs MWCNTs

Cp(J/kgK) 997 1.115 884 2.600 1.600

ρ(kg/m3) 4.179 2.430 1.910 425 796

k(W/mK) 0.613 0.253 0.144 6.600 3.000
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where

As a result, the outcome is as follows

After applying the integration one can find

For this case here f (η) → 1
α

It is clear that in the case of A > 0, the thermal problem solution deviates from its correct physical meaning; 
as a result A < 0 remains to solve the possible solution. Therefore,

The recently discovered threshold condition for the presence of a thermal solution become

If the circumstances fηη(0)2 > γ is available

Validation study.  Here, we note that,

	 (i)	 The Crane 1970 flow is recovered from Eq. (12) for Q = 0 , k1 = 0, Da−1 = 0, ε1 = ε2 = ε3 = 1.
	 (ii)	 The Pavlov 1970 flow is recovered from Eq. (12) for M = 1 , k1 = 0, Da−1 = 0, ε1 = ε2 = ε3 = 1 and 
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	 (iv)	 T h e  Ma h ab a l e s hw ar  e t   a l .  ( 2 0 0 5 )  f l ow  i s  re c ove re d  f rom  E q .   ( 1 2 )  for 
M = 1 , k1 = 1, Da−1 = 0, ε1 = ε2 = ε3 = 1.

	 (v)	 T h e  Ma h ab a l e s hw ar  e t   a l .  ( 2 0 1 8 )  f l ow  i s  re c ove re d  f rom  E q .   ( 1 2 )  for 
M = 1 , k1 = 1, Da−1 = 0, ε1 = ε2 = ε3 = 0.

	 (vi)	 With higher values of each physical properties, the heat transfer improves.
	 (vii)	 When comparative to SWCNTs, the base fluid MWCNTs provides superior heat transmission.
	(viii)	 The thickness of the thermal boundary layer enhance as the radiation number rises.
	 (ix)	 Present work M = 1 , k1 = 1, Da−1 = 1, ε1 = ε2 = ε3 �= 0 and τ = 900 .

The following Table 3 shows related works by other authors and finding existing results.

Results and discussion
The investigation is simplified in addition by the scoping review of the velocity and temperature equations, which 
results in a set of ODEs. Exact analytical solutions for momentum and temperature profiles can be achieved by 
using the appropriate similarity variable. As a result of the multiple graphs presented above that build on the 
subject, we now understand the technology involved in such fascinating dynamics. Furthermore, the numbers of 
similar visuals provide a comparative of the transverse, axial, and temperature profiles of SWCNT and MWCNT 
with the solid volume fraction fixed, with dashed lines reflecting SWCNTs and solid lines indicating MWCNTs.

Figure 2 demonstrates the relaxation time versus viscoelastic parameter for varying magnetic parameter M. 
The difference is essential because it gives acute curves and limitations for the thermal explanations that will 
happen after the overall non-Fourier temperature profile is implanted. The magnetic constraint increases the 
extent of the boundary layer increases in the stretching surface.

Table 3.   Expression for α various physical parameters.

Authors Fluids Value of α

Crane 1970 Newtonian α = 1

Pavlov 1974 Newtonian α =
√
1+M

Mahabaleshwar et al. 2014 Non-Newtonian α =
√

1+Q+K
(1−k1)

Siddheshwar and Mahabaleshwar 2005 Non-Newtonian α =
√

1+Q
(1−k1)

Mahabaleshwar et al. 2018, Non-Newtonian �α3 + (1− Re k1)α
2 − �α − (1+ Re) = 0

Amin et al. 2021 Non-Newtonian
Skin friction
fηη(0) = −

√

1+M+K
(1−k1)

Amin et al. 2021 Non-Newtonian

θη(0) =
Ac

(

c
c−s

)B(
c

c−s

)C−A

2F1

(

−A,−B;−B−C; −2s
(c−s)

)

A = Pr
γ Pr−c2

 , B = c
√
Pr+√

γ (Pr+c2−γ Pr)
2
√
γ (γPr−c2)

,

C = −c
√
Pr+√

γ (Pr+c2−γ Pr)
2
√
γ (γPr−c2)

,s =
√
γ Pr

Amin et al. 2021 Non-Newtonian

θ(η) =

(

1+ s
α

(

1− Exp(−αη)
)

Exp(−αη)

)A

2F1

(

−A,−B;−B− C; −2s αExp(−αη)

(α−s)[s(1−Exp(−αη))+α]

)

2F1

(

−A,−B;−B− C; −2s
(α−s)

)

Present work Non-Newtonian α =
√

ε1+(ε3Msin2(τ )+ε2Da−1)
(ε2−ε1k1)

Temperature Non-Newtonian

θ(η) =

(

1+ s
α

(

1− Exp(−αη)
)

Exp(−αη)

)A

2F1

(

−A,−B;−B− C; −2s αExp(−αη)

(α−s)[s(1−Exp(−αη))+α]

)

2F1

(

−A,−B;−B− C; −2s
(α−s)

)

A = ε4
(ε5+NR)

Pr
γ Prε4

(ε5+NR)
−α2

,

B =
α
√

Pr
ε4

(ε5+NR)
+√

γ

(

Pr
ε4

(ε5+NR)
+α2− γ Prε4

(ε5+NR)

)

2
√
γ

(

ε4 γPr

(ε5+NR)
−α2

) ,

C =
−α

√

Pr
ε4

(ε5+NR)
+√

γ

(

Pr
ε4

(ε5+NR)
+α2− γ Prε4

(ε5+NR)

)

2
√
γ

(

ε4 γPr

(ε5+NR)
−α2

)

,

s =
√

γ Pr ε4
(ε5+NR)

Nusselt number Non-Newtonian θη(0) =
Aα

(

α
α−s

)B(
α

α−s

)C−A

2F1

(

−A,−B;−B−C; −2s
(α−s)

)
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Figure 3 signifies the depiction of Darcy model Da-1 on f (η) while the stretching sheet is more than zero. 
The f (η) of MWCNT is more than that of SWCNT. The f (η) enhances as the Darcy number also increases. The 
magnetic field’s inclined parameter is 90 degree. Figure 4 portrays the various values of magnetic parameter M 
on f (η) with deference to the similarity variable η at the point when the stretching boundary layer is more than 
nothing. As seen in the diagram, the Lorentz effect is reduced when the raising the M decrease the thickness of 
the boundary layer, resulting in increased shear stress on the wall. The reason for this is because when the mag-
netic parameter rise, the boundary layer increases, which is accompanied by a increase in the velocity gradient. 
In addition, the volume fraction is enhances, the boundary layer thickness enhances.

Figure 5 portrays the various values of viscoelastic k1 on transverse velocity f (η) regarding the similarity vari-
able η at the point when the stretching boundary layer is bigger than nothing. The viscoelastic constraint raises 
the extent of the boundary layer enhances in the stretching surface. The transverse velocity which occurs where 

Figure 2.   Critical curves illustrating k1 versus γ with Pr = 1, Da-1 = 1, τ = 90° for stretching case.

Figure 3.   Impact of magnetic field M on transverse velocity with k1 = 1, Da-1 = 1, τ = 90° for stretching case.
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there is porous stretching/shrinking sheet. In the presence of stronger viscoelastic fluid higher, will increase 
transverse velocity that would show off in higher altitudes, namely η ≥ 1. The reason is behind complex rheological 
behavior of Walter´s liquid B which shows more strength where there is more velocity. At higher altitude where 
η ≥ 1, the third term in 2fηfηηη − ffηηηη − f 2ηη representing shear stress inside fluid layers gradually vanishes and 
hence cause whole the term to grow. Consequently, it is expected that at higher altitude, effect of viscoelastic 
fluid would be bolder.

Figures 6, 7 and 8 demonstrate the behaviour of the fη(η) on the similarity variable η for altered values of 
Darcy number and magnetic constraint. Figure 6 show that when the magnetic rises, the boundary layer thickness 
also decreases. In both cases of stretching/shrinking the surface, raising the magnetic parameter increases the 
axial velocity in the flow field. The influence of magnetic field on velocity at wall for the stretched sheet is seen 
in this diagram, with velocity and overall axial velocity decreasing as the magnetic field magnitude increases. 

Figure 4.   Influence of inverse Da-1 on f (η) with k1 = 1, M = 1, τ = 90° for stretching case.

Figure 5.   Impact of k1 on transverse velocity with M = 1, Da-1 = 1, τ = 90° for stretching case.
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Magnetic field, as previously stated, is an attractive body force whose projection on the x-axis is in the negative 
x-direction. It indicates that a larger magnetic field value will cause more axial velocity obstruction and, as a 
result, will diminish it. The imposed boundary condition and magnetic field, on the other hand, are both in the 
same direction for shrinking sheet. Consequently, the higher magnetic parameter (as a representative of magnetic 
field) leads to a higher axial velocity. The similar effect is observed at Fig. 7, it means that fη(η) decreases with 
increasing the Darcy model. The similar effect is observed at Fig. 8, it means that fη(η) decreases with increasing 
the viscoelastic parameter. As can be observed, the viscoelastic influence on axial velocity varies depending on 
whether the object is shrinking or stretching. In reality, while stretching a sheet, the force and influence of the 
boundary condition is more important than the fluid’s rheology. An increase in the size of the viscoelastic param-
eter leads in a comparable rise in the axial velocity profiles in both porous stretching and shrinking instances. 

Figure 6.   Impact of M on axial velocity with k1 = 1, Da-1 = 1, τ = 90° for stretching case.

Figure 7.   Influence of Da-1 on axial velocity with k1 = 1, M = 1, τ = 90° for stretching case.
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The boundary layer thins as a result of non-Newtonian viscoelastic shear stress. Furthermore, the boundary layer 
is smaller when suction is utilized instead of injection.

Figures 9, 10 and 11 represent the temperature fields θ(η) on the similarity variableη, at the point when the 
stretching limit is more noteworthy than nothing. In Fig. 9, the magnetic parameter increases, the temperature 
profile also increases. Figure 10 shows different values of radiation. When θ(η) is enhanced, the radiation param-
eter also rises. Consequently, thermal radiation improves the nanofluids thermal diffusivity, i.e., for emergent 
values of radiation parameter NR , heat will be supplemented to the regime and temperatures improved accord-
ingly. As mentioned for heat transfer of flows over a stretching sheet, fluid temperature higher than both the wall 
temperature and the ambient temperature near the wall is physically achievable. Here we discuss of forced flow 
over a stretching sheet, we now look at heat transport in the presence of radiation. The effect of heat conductivity 
is amplified by the radiation. Radiation has the effect of dampening or enhancing heat transmission in a linear 

Figure 8.   Impact of k1 on axial velocity with Da-1 = 1, M = 1, τ = 90° for stretching case.

Figure 9.   Influence of M on temperature with k1 = 1, Da-1 = 1, NR = 1, τ = 90° for stretching case.
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manner. In Fig. 11, the viscoelastic parameter increases, the temperature profile also increases. Because the shear 
rate is higher near the solid wall, the impact of the viscosity parameter, which can be considered as the same of 
fluid viscosity, on temperature profiles is more obvious. It takes longer for fluid molecules to transfer energy to 
neighbouring molecules. Therefore, the temperature curves demonstrate a increasing nature/behaviour.

Figure 12 illustrates the flow patterns for different parameters. In this section, we’ll look at how to simplify 
techniques in the streamline circumstances of stretching cases. Highlights the pattern of streamlines for stretch-
ing boundary for various values of magnetic parameter with fixed parameters k1 = Da−1 = 1, φ = 0.1 . The flow 
field is regularized when the magnetic field occurs at particular subsequent places, as predicted by the physical 
theory. On the other hand, results in the removal of the streamline in the circular configuration.

Figure 10.   Impact of radiation parameter NR on temperature profile with k1 = 1, Da-1 = 1, M = 1, τ = 90° for 
stretching case.

Figure 11.   Impact of k1 on temperature profile with M = 1, Da-1 = 1, NR = 1, τ = 90° for stretching case.
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Conclusions
The Cattaneo- Christov heat flux is studied in carbon nanotubes with porosity in boundary layer flows of two 
viscoelastic fluids across a stretching surface. In many other terms, the parameters as with inclined magnetic 
field, viscoelastic constraint and Prandtl number strictly reduce the relaxation time coefficient. The analytical 
explanation of heat transfer presences in term of the Appell hypergeometric function. The temperature distri-
bution inside the stretching/shrinking sheet is also controlled by the Prandtl number, thermal radiation, mass 
transpiration, heat source/sink, and magnetic parameter variables.

•	 Axial and transverse velocities increase as the parameters such as magnetic parameter, Darcy number increase 
in both SWCNTS and MWCNTs cases.

•	 The effect of the thermal radiation parameter raises the temperature enhances it.
•	 When the value of the viscoelastic parameter is enhanced, the fluid temperature increases in both stretching/

shrinking conditions.
•	 The results of this research are very similar to those of Jafarimoghaddam et al. 40 in the absence of a magnetic 

parameter and when Da−1 = NR = 0.
•	 The Mahabaleshwar et al. (2014) flow is recovered from Eq. (8) for M = 1 , k1 = 1, Da−1 = 0.
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