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Gain and isolation enhancement 
of a wideband MIMO antenna using 
metasurface for 5G sub‑6 GHz 
communication systems
Md. Mhedi Hasan 1,2*, Mohammad Tariqul Islam 1,3*, Md Samsuzzaman 4, 
Mohd Hafiz Baharuddin 1*, Mohamed S. Soliman 5, Ahmed Alzamil 3, 
Iman I. M. Abu Sulayman 5 & Md. Shabiul Islam 6

This work proposes a compact metasurface (MS)-integrated wideband multiple-input multiple-
output (MIMO) antenna for fifth generation (5G) sub-6 GHz wireless communication systems. The 
perceptible novelty of the proposed MIMO system is its wide operating bandwidth, high gain, lower 
interelement gap, and excellent isolation within the MIMO components. The radiating patch of the 
antenna is truncated diagonally with a partially ground plane, and a metasurface has been employed 
for enhancing the antenna performance. The suggested MS integrated single antenna prototype has 
a miniature dimension of 0.58λ × 0.58λ × 0.02λ. The simulated and measured findings demonstrate 
a wideband characteristic starting from 3.11 to 7.67 GHz including a high realized gain of 8 dBi. 
The four-element MIMO system has been designed by rendering each single antenna orthogonally 
to one another while retaining compact size and wideband properties between 3.2 and 7.6 GHz. 
The suggested MIMO prototype has been designed and fabricated on a low loss Rogers RT5880 
substrate with a miniature dimension of 1.05λ × 1.05λ × 0.02λ and its performance is evaluated using 
a suggested 10 × 10 array of a square enclosed circular split ring resonators within the same substrate 
material. The inclusion of the proposed metasurface with a backplane significantly reduces antenna 
backward radiation and manipulates the electromagnetic field, thus improving the bandwidth, 
gain and isolation of MIMO components. The suggested 4-port MIMO antenna offers a high realized 
gain of 8.3 dBi compared to existing MIMO antennas with an excellent average total efficiency of 
82% in the 5G sub-6 GHz spectrum and is in good accordance with measured results. Furthermore, 
the developed MIMO antenna exhibits outstanding diversity characteristics in respect of envelope 
correlation coefficient (ECC) less than 0.004, diversity gain (DG) close to 10 dB (> 9.98 dB) and high 
isolation between MIMO components (> 15.5 dB). Therefore, the proposed MS-inspired MIMO antenna 
substantiates its applicability for 5G sub-6 GHz communication networks.

5G technology is an incredible advancement in wireless connectivity that enables faster and more secure net-
works for billions of connected devices with "zero" latency user experiences (delay less than 1 ms) and introduces 
emerging services including e-Health, smart education, smart cities, smart homes, virtual reality (VR), smart 
factories, and the Internet of Vehicles (IoV), transforming our lives, society, and industries1–3. 5G spectrum is 
divided into four bands by the Federal Communications Commission (FCC)4. The sub-6 GHz frequency band 
piqued the researchers’ interest since it permits long-distance communication at a high data rate5,6. The allotment 
of the 5G sub-6 GHz spectrum for global 5G connectivity is visualized in Fig. 1, indicating that all nations are 
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contemplating the sub-6 GHz for 5G communications7,8. The antenna is a crucial component of the 5G network, 
and more base stations and user terminal antennas will be required.

The microstrip patch antenna offers the advantages of a low profile and planar construction but suffers from 
limited bandwidth and gain9,10; consequently, much research has been conducted to increase the antenna’s gain 
and bandwidth. Metasurface (MS) has been extensively employed in antenna technology in recent years, par-
ticularly for increasing gain and bandwidth11,12; however, these antennas are restricted to a single port. MIMO 
technology is a crucial aspect of wireless communications because it enables the simultaneous use of multiple 
antennas for data traffic, thereby increasing the data transfer rate, spectral efficiency, channel capacity, and 
reliability13–15. MIMO antennas are a potential candidate for 5G applications because they enable data trans-
mission and reception over multiple channels without requiring extra power16,17. The mutual coupling effect 
between MIMO components, which is dependent on the location of the MIMO elements and the gain of the 
MIMO antenna are major issues among researchers. Various MIMO antennas operating in the 5G sub-6 GHz 
spectrum are presented in 18–20, all of which exhibited good isolation and MIMO performance. However, the 
gain and operational bandwidth of these proposed systems are lower.

Metamaterial (MM) is a novel material that does not exist in nature and can manipulate electromagnetic 
waves, therefore improving the antenna’s performance21–24. MM is currently widely used in antenna technology 
to improve radiation pattern, bandwidth, gain, and isolation among antenna elements and wireless commu-
nication systems, as stated in25–28. Metasurface-based four-elements MIMO system is devised in29, where the 
antenna patch is sandwiched between a metasurface and the ground without an air gap, improving the MIMO 
performance. However, this design has large dimensions and a lower operating frequency, as well as a complicated 
design structure. Electromagnetic bandgap (EBG) and ground stub were incorporated into the proposed 2-port 
wideband MIMO antenna to increase the isolation of MIMO components30. The designed antenna offers good 
MIMO diversity performance and excellent isolation between two MIMO antennas but only has two MIMO 
components with low gain. Also, in31, an ultra-wideband (UWB) two-port MIMO antenna is presented, whose 
MIMO performance is explored using metamaterial. While this antenna is capable of operating at UWB, it has 
a low gain and poor isolation between two antennas. The work in32 proposed a 2-port MIMO system with an 
electromagnetic bandgap (EBG) reflector to improve the gain. Although the developed antenna arrays offer 
high gain and good MIMO diversity performance, however, it has a large size that hinders their applicability 
in the next generation communication gadgets. Another reflector-based wideband antenna is developed in33, 
where the reflector is integrated beneath the antenna with a large air gap of 22 mm, indicating a low peak gain 
of 4.87 dB. A four-port MIMO antenna has been developed for millimetre-wave applications in paper34, which 
is integrated with an MS layer to improve the isolation and gain of the MIMO system. However, this antenna 
offers good gain and isolation but has limited bandwidth and poor mechanical performance due to the wide air 
gap. Similarly, a three-pair metasurface integrated bow-tie-shaped 4-port MIMO antenna with the highest gain 
of 7.4 dBi is devised in35 for mm-wave communications. In36, the MS has been utilized on the backside of the 
5G antenna for improving the antenna gain, where the metasurface act as a reflector. However, the MS structure 
is asymmetric, and the unit cell structure has received less attention.

According to the findings of the above analysis, none of the stated antennas has high gain with excellent isola-
tion and MIMO characteristics, as well as wideband coverage. As a consequence, a metasurface-based MIMO 
antenna that covers a wide frequency range in the 5G sub-6 GHz spectrum with high gain and isolation is still 
required. Keeping in view the constraints of the above literature, a metasurface-based wideband, high gain four-
element MIMO antenna system with outstanding diversity qualities is suggested for 5G sub-6 GHz wireless com-
munication systems. Moreover, the suggested MIMO antenna exhibits outstanding isolation among the MIMO 
components, low interelement gap, and high radiation efficiency. The antenna patch is truncated diagonally 
and positioned on top of the proposed metasurface with a 12 mm air gap, reflecting the antenna back radiation 
and improving the antenna gain and directivity. Furthermore, the suggested single antenna is used to design a 
four-element MIMO antenna with outstanding MIMO performance by positioning each antenna orthogonal 
to one another. The developed MIMO antenna is then integrated on top of the 10 × 10 array of MS with a cop-
per backplane to enhance the radiation characteristics. This design is distinguished by its wide operating range 

Countries 3GHz-4GHz Band 4GHz-5GHz Band 5GHz-7 GHz Band
China 3.3 GHz-3.6 GHz 4.5 GHz-5 GHz
UK 3.4 GHz-3.8 GHz
USA 3.45-3.7GHz, 3.7-3.98GHz 4.49 GHz-4.99 GHz 5.9 GHz-7.1 GHz
Canada 3.47-3.65GHz, 3.65-4.0GHz 5.9 GHz-7.1 GHz
Australia 3.4 GHz-3.7 GHz
Italy 3.6 GHz-3.8 GHz
India 3.4 GHz-3.6 GHz
Malaysia 3.5 GHz
Korea 3.4-3.7GHz, 3.7-4.0 GHz
Japan 3.6 GHz-4.1 GHz 4.5 GHz-4.9 GHz
EU 3.4 GHz-3.8 GHz 5.9 GHz-6.4 GHz

Figure 1.   The worldwide spectrum allocation for 5G sub-6 GHz applications.
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(3.08–7.75 GHz), high gain of 8.3 dBi and high average total efficiency of 82%, as well as excellent isolation of 
greater than − 15.5 dB between MIMO antenna components. The 3D electromagnetic software CST Studio suite 
2019 was used to simulate the developed MS-based MIMO antenna and confirmed through the experimental 
investigation.

Single antenna design and analysis
This section goes through the proposed single antenna architecture and design approach in depth. Additionally, 
the simulated and observed findings are discussed in detail, including scattering parameters, gain, and total 
efficiency, with and without the usage of a metasurface. The antenna prototype is developed on a 1.575 mm thick 
low loss Rogers 5880 dielectric substrate material with a low dielectric constant value of 2.2. The electromagnetic 
simulator CST studio package 2019 is used to develop and simulate this design.

Single antenna geometry and design procedure.  Figure  2 depicts the suggested architecture and 
design modelling for a single-element antenna. According to the well-established mathematical formula37, the 
antenna comprises a square radiating patch with a line feed and a copper ground plane, as stated in step 1, 
and resonates at 10.8 GHz with a very narrow bandwidth, as seen in Fig. 3b. The initial antenna radiator patch 
dimension has been determined by the following mathematical relations37:

Figure 2.   The design evolution of the single proposed antenna. (CST STUDIO SUITE 2019).

Figure 3.   (a) Top and back view of the designed single antenna (CST STUDIO SUITE 2019) (b) S-parameters 
curves.
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where PL and Pw is the patch length and width, c denotes the velocity of light, γr is the substrate dielectric 
constant, γreff  indicates the effective dielectric value of the radiating patch, and �L denotes the change in patch 
length. The antenna backplane is optimized in the second step, which increases impedance bandwidth, despite 
the very low − 10 dB value. In the third step, the position of the feed line is shifted to the right which improves 
the impedance bandwidth and impedance matching38 of the suggested antenna. The antenna exhibited excellent 
working bandwidth of 4 GHz during this phase while also covering the sub-6 GHz frequency spectrum in 5G. 
The fourth and final stage incorporates etching the square slots in the diagonal corners of the radiating patch. 
This slot expands the bandwidth of 4.56 GHz substantially, encompassing the 5G sub-6 GHz spectrum between 
3.11 GHz and 7.67 GHz, as depicted in Fig. 3b. The front and bottom perspectives of the suggested design are 
indicated in Fig. 3a and the final optimized desired design parameters are as follows: SL = 40 mm, Pw = 18 mm, 
PL = 18 mm, gL = 12 mm, fL = 11 mm, fW = 4.7 mm, c1 = 2 mm, c2 = 9.65 mm, and c3 = 1.65 mm.

Metasurface design and characterization
The metasurface is a term that refers to the periodic array of unit cells at a certain distance apart. The metasurface 
is a highly effective approach for improving the antenna’s radiation performance, including bandwidth, gain and 
isolation between MIMO components. Due to the impact of surface wave propagation, the metasurface generates 
extra resonance, which contributes to the antenna’s performance improvement39. An epsilon negative metamate-
rial (MM) unit cell has been proposed in this work operating at a 5G sub-6 GHz band. The MM with a surface 
area of 8mm × 8 mm has been developed on a low loss Rogers 5880 substrate with a dielectric constant of 2.2 
and a thickness of 1.575mm. The optimized MM resonator patch is made up of an inner circular split ring that is 
coupled to the two modified outer split rings, as illustrated in Fig. 4a. Figure 4a summarizes the final optimized 
parameters for the proposed MM unit cell. Subsequently, 40 mm × 40 mm and 80 mm × 80 mm dimensions of 
metasurface layer without and with copper backplane have been developed by utilizing the 5 × 5 and 10 × 10 arrays 
of unit cells, respectively. The proposed MM structure is simulated utilizing the 3D electromagnetic simulation 
software “CST studio suite 2019”. The fabricated prototype of the suggested MM array structure and measurement 
setup (two-port PNA network analyzer and waveguide ports) are displayed in Fig. 4b in order to confirm the 
CST simulation findings by analyzing the real-world response. In the measurement setup, an Agilent PNA series 
network analyzer is utilized, coupled with two waveguide-to-coaxial adapters (A-INFOMW, P/N:187WCAS) 
for transmitting and receiving signals. The 5 × 5 array prototype is placed between the two waveguide-to-coaxial 
adapters which are connected via coaxial cable to the two-port network analyzer (Agilent PNA N5227A). The 
Agilent N4694-60001 calibration kit was used to calibrate the network analyzer in the experimental setup. The 
CST simulated and observed scattering parameters of the recommended MM array prototype are portrayed in 
Fig. 5a. It can be observed that the suggested MM structure is resonating in the 5G sub-6 GHz band. Despite a 
slight difference in the − 10 dB bandwidth, the simulated and experimental results are quite similar. The resonance 
frequency, bandwidth, and amplitude of the observed resonances differed slightly from that of the simulated 
ones, as seen in Fig. 5a. These disparities between observed and simulated findings are due to fabrication faults, 

(1)Pw = c

2fr

√

2

γr + 1

(2)PL = c

2fr
√
γreff

− 2�L

Figure 4.   (a) Unit cell geometry (S1 = 8 mm, S2 = 7 mm, S3 = 5 mm, f1, f2, f4 = 0.5 mm, f3 = 0.75 mm, h1 = 0.5 mm, 
h2 = 1.75 mm) (CST STUDIO SUITE 2019) (b) Photographs of the MM measurement arrangement.
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a slight edge gap between prototype and waveguide ports, mutual coupling effects between waveguide ports and 
array components, and measurement tolerance. Moreover, the proper placement of the developed prototype 
between waveguide ports in the experimental setup leads to the shifting of resonances. In addition, unwanted 
noises were observed during the calibration phase, which contributed to the disparity between numerical and 
measured findings. However, beyond these difficulties, the suggested MM array prototype performs well, with 
a strong correlation between simulation and experiment, making it perfect for 5G sub-6 GHz wireless com-
munication applications.

The effective relative parameters such as effective permittivity, permeability, and refractive index are studied 
using the CST electromagnetic simulator’s built-in post-processing approach in order to further analyze the 
behavior of the MM unit cell. The MM effective parameters are deduced from the scattering parameters using a 
robust retrieval approach. The following transmission and reflection coefficient Eqs. (3) and (4) can be used to 
determine the refractive index and impedance (see reference40).

where R01 = z−1
z+1.

Calculate the impedance and refractive index by inverting Eqs. (3) and (4):

The real and imaginary parts of the operator are represented respectively by (.)′ and (.)″, whereas the integer 
value m corresponds to the real refractive index. Permittivity and permeability are determined using the formulae 
ε = n/z, and µ = nz , which are based on impedance and refractive index, respectively. The effective permittivity 
curves of the MM structure are depicted in Fig. 5b. At the resonance frequency, it is observed that the effective 
permittivity is negative. Figure 6a,b displays the extracted effective permeability (µ) values and effective refrac-
tive index (n) of the suggested unit cell. It is worth noticing that the extracted permeability exhibit near-zero 
positive real value, confirming that the recommended MM structure possesses epsilon negative (ENG) quali-
ties. Furthermore, the resonances of near-zero permeability are strongly coupled in the resonance frequency, as 
demonstrated in Fig. 6a. The developed unit cell exhibits a negative refractive index (Fig. 6b), implying that this 
proposed MM could be used to enhance antenna performance21,41.

Single antenna result analysis
The designed wideband single antenna prototype is fabricated for experimental validation of the proposed design. 
Figure 7a,b shows images of the proposed single antenna prototype, its parts of construction, and the near-field 
(SATIMO) measurement setup. To improve antenna performance, the developed metasurface is layered below 
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Figure 5.   (a) Simulated and examined scattering parameter curves for the metamaterial prototype. (b) 
Permittivity curves for MM unit cell.
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Figure 6.   Extracted effective parameters (a) permeability (b) Refractive index of the suggested unit cell.

Figure 7.   Photo shows (a) manufactured single antenna and its associated components. (b) Near-field 
(SATIMO) measurement arrangement.

Figure 8.   (a) Antenna excitation with metasurface reflector (CST STUDIO SUITE 2019). (b) Simulated and 
experimental reflection coefficient of the single antenna without and with MS.
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the antennas, as indicated in Fig. 8a, at the height of h. The 40 mm × 40 mm size of the single and double-layered 
metasurface has been applied on the backside of the single antenna within the spacing of 12 mm. In addition, 
a metasurface with a backplane has been placed on the backside of the single antenna at a distance of 12 mm. 
After applying the metasurface, the single antenna exhibits a substantial increase in performance, as shown 
in Figs. 8 and 9. Figure 8b shows the plots of the simulated and measured reflection coefficients for a single 
antenna without and with a metasurface. Notably, the coverage band of the antenna with metasurface is quite 
similar to that of the antenna without metasurface. Figure 9a,b reveals a comparison of simulated and observed 
single antenna gain and total efficiency without and with MS over the operating spectrum. As can be seen, the 
gain of the metasurface antenna is considerably boosted compared to the non-metasurface antenna, increasing 
from 5.15 to 8 dBi. Single antenna gain is improved by 6 dBi, 6.9 dBi, and 8 dBi for single-layered metasurface, 
double-layered metasurface, and metasurface with a backplane, respectively. In comparison to other metasurfaces 
(single- and double-layered MS), the gain of the single antenna with a metasurface that has a copper backplane 
is the highest of 8 dBi. The metasurface acts as a reflector in this case, reducing the antenna backward radiation 
and manipulating the EM waves in an in-phase fashion that increases the antenna’s radiation efficiency, resulting 
in gain improvement. The study of the overall efficiency of a single antenna without and with a metasurface is 
shown in Fig. 9b. Notably, the antenna’s efficiency with and without the metasurface is almost identical. In the 
lower frequency range, the antenna efficiency dropped slightly. The experimental and simulated gain and effi-
ciency curves match well. Although, the simulated and examined outcomes exhibit slight discrepancies because 
of manufacturing flaws, measurement tolerance, SMA port connection loss, and wire loss. Furthermore, the 
antenna and MS reflector are sandwiched by a nylon-based spacer, which is another concern that influences the 
observed outcomes compared to the simulated results.

Radiation pattern Analysis with MS The single antenna near-field measurements were conducted in the 
SATIMO near-field experimental environment at the UKM SATIMO near field system laboratory. Figure 10a,b 
portrays the simulated and observed E- and H-plane radiation patterns at 5.5 GHz for the suggested single 
antenna with and without MS. The developed single antenna (without MS) offers a consistent bidirectional radia-
tion pattern with side lobe values. After applying the proposed MS reflector, the antenna offers a unidirectional 
radiation pattern with reducing the back-lobe levels, as shown in Fig. 10a,b. Notably, the proposed single antenna 
radiation pattern is more stable and unidirectional, with very low back-lobe and side-lobe, when a metasurface 
with a copper backplane is used. The suggested MM array reflector decreases the antenna’s back and side lobes 
while improving radiation characteristics that direct current to the unidirectional direction (Fig. 10a,b), resulting 
in enhanced gain and directivity. It is observed that the experimental radiation pattern is almost comparable to 
the CST-simulated radiation pattern, with a slight fluctuation due to the misalignment of the different assembly 
components, measurement tolerance, and cable connection loss. Furthermore, a nylon-based spacer is inter-
posed between the antenna and the MS reflector, which is another concern that influences the observed results 
compared to the numerical outcomes.

MIMO antenna design and isolation improvement
The proposed MIMO antenna geometry is represented in Fig. 11, which comprises four single antennas. The four 
MIMO antenna components are arranged orthogonal to each other on a substrate of 80 mm × 80 mm × 1.575 mm, 
as indicated in Fig. 11. The interelement distance of the designed MIMO antenna is 22 mm, which is lower 
than the recently relevant developed MIMO antenna. In addition, the partial ground plane has been positioned 
in the same manner as the single antenna. The reflection coefficient values for the MIMO antennas (S11, S22, 
S33, and S44) shown in Fig. 12a demonstrate identical behavior to a single element antenna, resonating in the 
3.2–7.6 GHz range. Thus, the impedance bandwidth of the MIMO antenna is quite identical to that of a single 
antenna. The mutual coupling effect between MIMO components is mostly responsible for the MIMO antenna’s 

Figure 9.   Simulation and measurement outcomes for the suggested antenna with the effect of metasurface (a) 
realized gain and (b) total efficiency.
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Figure 10.   Simulated and examined radiation patterns at 5.5 GHz for developed single antenna without and 
with MS.

Figure 11.   Design mechanism of the proposed MIMO antenna (a) top view and (b) ground plane. (CST 
STUDIO SUITE 2019).

Figure 12.   S-parameters results of the MIMO antenna (a) reflection coefficient (b) transmission coefficient.
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minor bandwidth loss. The mutual coupling effects on the MIMO components are demonstrated in Fig. 12b, 
where optimal isolation between the MIMO components has been determined. The least isolation is observed 
at around − 13.6 dB between antennas 1 and 2, whereas the maximum isolation is found near − 30.4 dB between 
antennas 1 and 4. Due to the small size and wider bandwidth of this MIMO antenna, it offers low gain and low 
isolation; thus, gain and isolation enhancements are required.

MIMO antenna system with MS.  The geometrical arrangement and excitation technique of the sug-
gested metasurface-based MIMO antenna is exhibited in Fig.  13a. 10 × 10 array of MM with dimensions of 
80 mm × 80 mm × 1.575 mm has been designed to be used on the rear side of the MIMO antenna at the height 
of 12 mm, as seen in Fig. 13a. Furthermore, a metasurface with a copper backplane is designed to be applied to 
a MIMO antenna to improve its performance. The spacing between the metasurface and the MIMO antenna is 
crucial for achieving high gain while allowing constructive interference between the antenna-generated wave 
and the metasurface reflected wave. Numerous simulations are run to optimize the height between the antenna 
and the metasurface while maintaining the quarter wavelength standard to obtain the highest gain and isolation 
between MIMO elements. The considerable enhancements in MIMO antenna performance achieved by employ-
ing a metasurface with a backplane over a metasurface without a backplane are given in the subsequent sections.

MIMO antenna performance analysis.  Reflection and transmission coefficient analysis.  The reflection 
coefficients of a MIMO antenna with and without a metasurface are displayed in Fig. 13b, where S11 and S44 are 
presented due to the almost identical behavior of all antennas in the MIMO system. Notably, the − 10 dB imped-
ance bandwidth of the MIMO antenna without and with a single metasurface is nearly identical. In contrast, the 
impedance bandwidth of the suggested MIMO antenna is improved with a double-layered MS and MS with a 
backplane. It is noted that, without MS, the MIMOantenna provides 81.5% fractional bandwidth (3.2–7.6 GHz) 
relative to the central frequency. The integration of MS with a backplane improved the impedance bandwidth 
of the suggested MIMO antenna to 86.3% (3.08–7.75 GHz). Although the double-layered MS improves band-
width, the improvement is less than that of the MS with a copper backplane. Moreover, the double-layered MS 
enlarges the antenna, which increases the cost and limits the application area. The designed MIMO antenna and 
metasurface reflector are fabricated and examined in order to verify the simulation results and assess real-world 
performance. Figure 14a depicts the fabricated MS layer and MIMO antenna with various assembly compo-
nents, whereas Fig. 14b shows photos of the developed MIMO system. Four nylon spacers are utilized to stack 
the MIMO antenna on top of the metasurface, as indicated in Fig. 14b. Figure 15a presents a snapshot of the 
near-field experimental setup for a developed MIMO antenna system. The PNA network analyzer (Agilent Tech-
nologies PNA N5227A) was used to assess the scattering parameters, and the near-field radiation performance 
was evaluated and characterized at the UKM SATIMO near-field system lab.

This section presents a comparative study of the simulated and observed S-parameters for the suggested 5G 
MIMO antenna. The experimental reflection coefficient plots for the MS integrated 4-element MIMO antenna 
are given in Fig. 15b in contrast to the CST simulated findings. The experimental reflection coefficients are 
found to be identical to the CST computed results, with a little difference owing to manufacturing defects and 
experimental tolerances. Furthermore, the observed reflection coefficient of the proposed MS-based MIMO 
prototype encompasses the 5G sub-6 GHz spectrum with a wide impedance bandwidth of 4.8 GHz, implying 
that 5G applications are conceivable. Although, the measured resonance frequencies, bandwidth, and amplitude 
deviated slightly from the CST simulated findings. Fabrication defects, coaxial cable and SMA connection loss, 
and open-air measurement arrangement contribute to the discrepancies between measured and simulated results. 

Figure 13.   (a) CST Simulation setup for suggested MIMO antenna with MS (CST STUDIO SUITE 2019), (b) 
reflection coefficient curves for developed MIMO system without and with MS.
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However, despite these shortcomings, the proposed MIMO performs well, with strong accordance between 
simulation and measurement, making it perfect for 5G sub-6 GHz wireless applications.

The simulated and observed transmission coefficient curve of the MIMO antenna is illustrated in Figs. 16a,b 
and 17a,b, respectively, demonstrating the mutual interaction of the MIMO components. The isolation between 
the MIMO antennas improves noticeably when the metasurface is applied to the MIMO antenna. The isolation 
plots between the nearby antenna elements, S12, S14, S23, and S34 show similar curves, whereas the diagonal MIMO 
antennas, S13 and S42, exhibit identical high isolation due to the larger distance between them. The simulated 
transmission characteristics of the adjacent antennas are described in Fig. 16a. It is noteworthy to mention that 
the minimum isolation for a MIMO antenna without a metasurface is − 13.6 dB and the metasurface with a 
backplane is − 15.5 dB over the 5G sub-6 GHz operating spectrum. The transmission coefficient graphs (Fig. 16a) 
demonstrate that the metasurface with a backplane significantly improved isolation between MIMO antenna 
elements compared to single- and double-layered metasurfaces. On neighboring antenna elements, the single 
and double-layered metasurface gives minimum isolation of approximately − 13.68 dB and − 14.78 dB, whereas 
the metasurface with a copper backplane provides approximately − 15.5 dB.

The transmission coefficient plots of MIMO diagonal antennas before and later adding the MS layer are 
illustrated in Fig. 16b. Notably, the minimum isolation between diagonal antennas (antennas 1 and 3) without 
a metasurface is − 15.6 dB at the working spectrum, whereas the metasurface with a backplane is − 18 dB. The 
metasurface approach greatly diminishes the mutual coupling impact between the MIMO diagonal antennas. The 
maximum isolation for a single-layered metasurface is − 37 dB, whereas this value drops to − 47 dB for a double-
layered metasurface. The maximum isolation for a metasurface with a copper backplane is − 36.2 dB, which 
decreases as the frequency range increases. In comparison to single and double-layered metasurfaces without a 
backplane, a metasurface with a backplane provides excellent isolation throughout the desired operating band, 
especially at the 5G sub-6 GHz frequency band as seen in Fig. 16a,b. At the most popular and widely used 5G 
sub-6 GHz band (3.5 GHz), isolation between MIMO components is lower (almost near to without MS) for sin-
gle- and double-layered metasurfaces than metasurface with a copper backplane (see Fig. 16a,b). The measured 

Figure 14.   (a) Fabricated MIMO antenna prototype with various parts of assembly (b) developed MIMO 
system.

Figure 15.   (a) SATIMO near-field measurement photograph (b) simulation and experimental S11 curves for 
MIMO antenna with and without MS.
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transmission coefficient findings are presented in Fig. 17a,b, displaying isolation for nearby antennas (S12, S14, S34, 
and S32) and diagonal antennas (S24 and S13) respectively. From these figures (Fig. 17a,b), it can be observed that 
the experimental isolation between MIMO components is in excellent agreement with the simulated isolation. 
Although, due to manufacturing flaws, SMA port connection, and wire loss, the CST simulated, and measured 
values exhibit minor discrepancies. Furthermore, the antenna and MS reflector are sandwiched by a nylon-based 
spacer, which is another concern that influences the observed outcomes compared to the simulated results.

The surface current distribution is studied at 5.5 GHz to rationalize the involvement of the metasurface in 
mutual coupling reduction via surface wave suppression42. The surface current distribution of the suggested 
MIMO antenna is shown in Fig. 18, where antenna 1 is excited, and the rest of the antenna is terminated by 
a 50-Ω load. When antenna 1 is stimulated, a significant mutual coupling current appears at the neighboring 
antenna at 5.5 GHz without the presence of a metasurface, as presented in Fig. 18a. Conversely, by applying the 
metasurface as indicated in Fig. 18b–d, the isolation between adjacent antennas improves. It is noticed that the 
influence of adjacent field mutual coupling is minimized by dispersing the couple current to the MS layer travers-
ing antiparallel direction in neighboring rings of the unit cell and adjacent unit cells of the MS. The distributed 
antenna coupling current to the unit cells of the MS is the key approach for enhancing isolation between MIMO 
components. Thus, the coupling current between the MIMO components is reduced greatly, while isolation is 
significantly improved. Since the coupled field is widely distributed in the unit cells, the metasurface with a cop-
per backplane isolates the MIMO antenna components noticeably than the single and double layer metasurfaces 
(Fig. 18d). Moreover, the developed MIMO antenna offers very low back and side propagation, introducing the 
unidirectional radiation pattern, hence enhancing the gain of the suggested MIMO antenna.

Figure 16.   Simulated isolation curves for MIMO elements without and with the MS layer: (a) S12, S14, S34 and 
S32 and (b) S13 and S24.

Figure 17.   Experimental transmission coefficient curves of the proposed without and with MS-based MIMO 
antenna: (a) S12, S14, S34 and S32 and (b) S13 and S24.
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MIMO gain and total efficiency analysis.  Within the operational frequency, Fig. 19a exhibits the simulated and 
observed realized gain of the developed MIMO antenna without and with a metasurface. The simulated realized 
gain of a MIMO antenna without the metasurface is 5.4 dBi, which is indicated in Fig. 19a. Because of the mutual 
coupling effect between MIMO components, the realized gain of the suggested MIMO antenna is indeed 0.25 
dBi higher than that of the single antenna. The inclusion of the metasurface results in significant gain and isola-
tion between MIMO components. Thus, the suggested MIMO antenna with a metasurface offers a high realized 
gain of up to 8.3 dBi. As seen in Fig. 19a, the gain is enhanced by 1.4 dBi, when a single metasurface is used on 
the rear of the MIMO antenna. Gain is enhanced by 2.1 dBi upon doubling the metasurface, as seen in Fig. 19a. 
However, the anticipated maximal realized gain of 8.3 dBi is obtained by employing a metasurface with a cop-
per backplane. Notably, the single- and double-layered metasurfaces have maximum realized gains of 6.8 dBi 
and 7.5 dBi, respectively, while the metasurface with a backplane has a maximum realized gain of 8.3 dBi. The 
metasurface layer on the antenna’s backside works as a reflector, reflecting the antenna backside radiation and 
enhancing the developed MIMO antenna’s front-to-back (F/B) ratio. Moreover, the high-impedance MS reflec-
tor manipulates electromagnetic waves in an in-phase fashion, resulting in additional resonances and improving 
the radiation characteristics of the suggested MIMO antenna. The MS reflector, which is fitted behind the MIMO 
antenna, is observed to significantly enhance the realized gain, which is verified by the experimental results. The 
observed and simulated realized gain of the developed MIMO antenna prototype is almost identical; neverthe-
less, the measured gain is greater than the simulated gain at some frequencies, particularly for MIMO without 
MS. This fluctuation in experimental gain is driven by the measurement tolerance, cable loss and coupling of the 
nylon spacer in the antenna system. The MIMO antenna without the metasurface offers a peak measured gain of 
5.8 dBi, whereas the metasurface with a copper backplane is 8.5 dBi. It is notable to mention that the proposed 
complete 4-port MIMO antenna system with MS reflector exhibits a high realized gain in the experimental and 
numerical conditions.

Figure 18.   The surface current pattern of the suggested MIMO antenna at 5.5 GHz (a) Without MS, (b) Single-
layered MS, (c) Double-layered MS and (d) Single-layered MS with a copper backplane. (CST STUDIO SUITE 
2019).
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The total efficiency of the suggested MIMO system without and with a metasurface reflector is depicted in 
Fig. 19b. The minimum efficiency after employing MS with a backplane is determined to be more than 73% (up 
to 84%) in Fig. 19b. The total efficiency of the developed MIMO antenna without and with MS is determined 
to be almost the same, with minor differences noted as compared to the simulated values. This could happen 
because of measurement tolerance as well as the spacer that is employed between the antenna and the MS 
reflector, among other reasons. The measured realized gain and total efficiency at the entire frequency are nearly 
similar to the simulated results, showing that the suggested MIMO prototype performs as expected and that the 
recommended MS-based MIMO antenna is suitable for 5G communications. Due to the error involved in the 
experimental investigation, the overall laboratory experimental results differ from the simulated findings. The 
proposed prototype performance is influenced by an impedance mismatch between the antenna and the SMA 
connector, coaxial cable connections loss, the soldering effect, and the proximity of various electronic equipment 
to the experimental setup.

The mentioned antenna design progression and optimization process are depicted in Fig. 20 via a flowchart. 
In this flowchart, the proposed MIMO antenna design principle and the parameters that play a key role in 
optimizing the antenna are described orderly to reach the desired high gain and high isolation within the wide 
operating frequency.

MIMO radiation pattern analysis with MS.  The MIMO antenna near-field findings have been measured in the 
SATIMO near-field experimental environment at the SATIMO near field system lab, UKM. Figure 21a,b depicts 
the simulated and observed E- and H-plane radiation patterns for the reported MIMO antenna with and with-
out MS at a 5.5 GHz operating frequency. At 5.5 GHz in the operational band, the developed MIMO antenna 
without MS provides a consistent bidirectional radiation pattern with side lobe values. After applying the MS 

Figure 19.   Simulation and experimental results of suggested MIMO antenna with the effect of metasurface (a) 
realized gain and (b) total efficiency.

Figure 20.   The flowchart for designing and optimizing the proposed MS-based 4-port MIMO antenna.
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reflector, the antenna offers a unidirectional radiation pattern with reducing the back-lobe levels, as shown in 
Fig. 21a,b. Notably, the suggested MIMO antenna radiation pattern is more stable and unidirectional with very 
low back-lobe and side-lobe when employing a metasurface with a copper backplane than without MS. The 
proposed MM array reflector reduces the antenna’s back and side lobes while also improving radiation proper-
ties that direct current to the unidirectional direction (Fig. 21a,b), resulting in enhanced gain and directivity. 
The measured radiation pattern has been obtained from port 1, while the 50-Ω load terminated the remaining 
ports. It is observed that the experimental radiation pattern is almost identical to the CST simulated radiation 
pattern, although a little variation is owing to the misalignment of the various parts of the assembly, terminated 
port reflection and cable connection loss. Furthermore, a nylon-based spacer is interposed between the antenna 
and the MS reflector, which is another concern that influences the observed findings compared to the predicted 
results.

MIMO diversity performance.  It is vital to note that port isolation and correlation characteristics should be 
required to assess the performance of a MIMO system. The diversity performance of the suggested MIMO sys-
tem, including envelope correlation coefficient (ECC) and diversity gain (DG), has been explored to illustrate 
the durability of the developed MIMO antenna system. The ECC and DG of MIMO antennas can be utilized 
to assess their performance, as they are important aspects of MIMO system performance. The next sections go 
through these features in detail for the suggested MIMO antenna.

Envelope Correlation Coefficient (ECC) When considering any MIMO system, the ECC determines how 
well the constituent elements correlate with one another in terms of their particular properties. Thus, the ECC 
exhibits how well the channel isolation in the wireless communication network is. ECC (Envelope Correlation 
Coefficient) of the developed MIMO system can be determined from the S-Parameters and the far-field radiation. 
From Eqs. (7) and (8), it is possible to determine the ECC of the suggested MIMO antenna31.

The reflection coefficient is denoted by Sii, while Sij denotes the transmission coefficient. The three-dimen-
sional radiation patterns of the jth and ith antennas are represented by �Rj(θ ,ϕ) and �Ri(θ ,ϕ) as well as the solid 
angle represented by � . The ECC curve of the suggested antenna is represented in Fig. 22a, with a value of less 
than 0.004, which is significantly lower than the allowed value of 0.5 for wireless systems. Therefore, the reduced 
ECC value implies that the suggested 4-port MIMO system provides an excellent diversity pattern43.

Diversity Gain (DG) The DG is another MIMO system performance metric that describes how the diversity 
scheme affects the radiated power. The relationship expression (9) determines the DG of a developed MIMO 
antenna system, as mentioned in31.

Figure 22b shows the DG plot of the suggested MIMO system, where the DG value is very near to 10 dB. The 
designed MIMO system has a DG value of greater than 9.98 dB across all antennas.
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Figure 21.   Simulated and examined radiation patterns at 5.5 GHz for developed MIMO antenna without and 
with MS.
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Comparative analysis of similar work
Table 1 compares the proposed metasurface-based MIMO antenna  with recently developed similar MIMO 
systems. The comparison took into account various performance parameters, including bandwidth, gain, maxi-
mum isolation, total efficiency and diversity performance. Researchers in5,44–47 introduced a variety of MIMO 
antenna prototypes with gain and isolation improvement techniques. In contrast to earlier reported works, the 
suggested MIMO system with a metasurface reflector outperforms them in the field of bandwidth, gain and 
isolation. Moreover, the developed MIMO system exhibits excellent diversity performance and total efficiency 
with miniaturized dimension than related reported antennas. Although the antennas reported in5,46 offers higher 
isolation than our suggested antenna, however, these antennas suffer from large dimension, low gain, narrow 
bandwidth, and poor MIMO performance. The 4-port MIMO antenna presented in45 demonstrated high gain 
and efficiency, but this design offers low isolation, large dimension and poor diversity performance. On the other 
side, the small size antenna system is suggested in47 with very low gain and operating bandwidth, whereas our 
proposed 4-port MS-based MIMO system exhibits a small dimension with high gain, high isolation and better 
MIMO performance. Thus, the proposed metasurface-based MIMO antenna might be the dominant contender 
for the sub-6 GHz 5G communication system.

Conclusion
A metasurface reflector-based four-port wideband MIMO antenna with high gain and isolation is presented, 
supporting 5G sub-6 GHz applications. A microstrip line feeds a square radiating patch, which is truncated 
by a square at the diagonal corners. The proposed MS and antenna radiator is realized on the similar substrate 
material of Rogers RT5880 to achieve excellent performance in the 5G high-speed communication systems. 
This proposed MIMO antenna is distinguished by its wide coverage and high gain while also providing sound 
isolation between MIMO components and excellent efficiency. The developed single antenna has a miniaturized 
size of 0.58λ × 0.58λ × 0.02λ with a 5 × 5 metasurface array, offering a 4.56 GHz wide operational bandwidth, 8 
dBi peak gain and excellent efficiency that is confirmed by the measured results. The suggested four-port MIMO 
antenna (2 × 2 array) is developed with a dimension of 1.05λ × 1.05λ × 0.02λ by aligning each proposed single 
antenna orthogonally to the other. The 10 × 10 array of suggested MM is assembled beneath the MIMO antenna 
with a height of 12 mm, which reduces the backward radiation and decreases mutual coupling between MIMO 

Figure 22.   Diversity features of the designed MIMO antenna (a) ECC and (b) DG.

Table 1.   Proposed MIMO system performance comparison with relevant work.

Ref Size (mm2) Antenna type Bandwidth (GHz) Max. gain (dBi) Total efficiency
Min. isolation 
(dB)

Max. isolation 
(dB) ECC (dB) DG (dB)

44 75 × 150 MIMO + Parasitic 
structure 3.4–3.8 6.5 60–70%  ≥ 15 29  < 0.01 Not given

5 150 × 70 MIMO + Neutral 
line

3.1–3.85
4.8–6 Not given 60–75%  ≥ 17 24  < 0.06 Not given

45 129.5 × 129.5 MIMO + cavity-
backed 1.55–6 10 80–84%  ≥ 15 36  < 0.05 Not given

46 150 × 150 Annular-ring patch 3.3–5 6.8 84–92%  ≥ 16.5 26  < 0.05 Not given

47 26 × 26 MIMO (slot 
antenna) 5.6–5.8 1.7 Not given  ≥ 15.4 32  < 0.01 Not given

Prop. work 80 × 80 MIMO + MS 3.08–7.75 8.3 73–84%  ≥ 15.5 36.2  < 0.004  > 9.98
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components, thus enhancing gain and isolation. The experimental and simulated findings reveal that the devel-
oped MIMO prototype operates over a wide frequency spectrum of 3.08–7.75 GHz, covering the 5G sub-6 GHz 
spectrum. Furthermore, the suggested MS-based MIMO antenna improves its gain by 2.9 dBi, reaching a maxi-
mum gain of 8.3 dBi, and provides excellent isolation between MIMO components (> 15.5 dB), confirming MS’s 
contribution. Besides that, the suggested MIMO antenna provides a high average total efficiency of 82% and a 
short interelement distance of 22 mm. The antenna demonstrated outstanding MIMO diversity characteristics, 
including a very high DG (over 9.98 dB), a very little ECC (less than 0.004), and a unidirectional radiation pat-
tern. The measured results resembled the simulated outcomes well. These properties validate that the developed 
four-port MIMO antenna system could be a feasible choice for 5G sub-6 GHz communication systems.
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