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Contextual spatial modelling 
in the horizontal and vertical 
domains
Tobias Rentschler 1,2,3,4*, Martin Bartelheim 1,5, Thorsten Behrens 6,7, 
Marta Díaz‑Zorita Bonilla 1,5, Sandra Teuber 1,4, Thomas Scholten 1,2,4 & 
Karsten Schmidt 1,2,3,4

Multi‑scale contextual modelling is an important toolset for environmental mapping. It accounts for 
spatial dependence by using covariates on multiple spatial scales and incorporates spatial context 
and structural dependence to environmental properties into machine learning models. For spatial soil 
modelling, three relevant scales or ranges of scale exist: quasi‑local soil formation processes that are 
independent of the spatial context, short‑range catenary processes, and long‑range processes related 
to climate and large‑scale terrain settings. Recent studies investigated the spatial dependence of 
topsoil properties only. We hypothesize that soil properties within a soil profile were formed due to 
specific interactions between different features and scales of the spatial context, and that there are 
depth gradients in spatial and structural dependencies. The results showed that for topsoil, features 
at small to intermediate scales do not increase model accuracy, whereas large scales increase model 
accuracy. In contrast, subsoil models benefit from all scales—small, intermediate, and large. Based on 
the differences in relevance, we conclude that the relevant ranges of scales do not only differ in the 
horizontal domain, but also in the vertical domain across the soil profile. This clearly demonstrates the 
impact of contextual spatial modelling on 3D soil mapping.

Soils are crucial for agriculture, forestry, biodiversity, biofuels production, and global carbon  cycling1,2. The 
growing world population requires changes in food production towards sustainability through policies and 
management  practices1,3. Spatial knowledge of soil properties and processes can support management practices 
to increase the productivity which depends on water content, nutrient availability, soil acidity, and other soil 
quality  indicators1. Relevant data can be obtained from sophisticated soil models and spatial predictions based 
on machine learning. Such predictions of soil properties are based on two fundamental paradigms: the state 
factor equation (Eq. 1)4 and the universal model of spatial variation (Eq. 2)5. The state factor equation formalises 
the concept of soil forming  factors6:

where S is a soil property at a certain location that develops as a non-linear function f of the soil forming fac-
tors climate (cl), organisms (o), relief (r), parent material (p), time (t), and other potentially unknown factors 
(⋯), which may include other soil  properties7, spatial  location7, and spatial  context8. Thus, the universal model 
of spatial variation includes the deterministic state factor equation as well as a stochastic part of (apparently) 
random variation:

where Z(s) is the soil property, Z*(s) the deterministic component, i.e., the soil forming factors from Eq. (1), ε′(s) 
the stochastic component of (apparently) random variation, and ε′ random noise. While Z*(s) can be modelled 

(1)S = f
(

cl, o, r, p, t, . . .
)

(2)Z(s) = Z∗(s)+ ε′(s)+ ε′
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with machine learning methods by correlating the outcome with the independent environmental covariates 
of the state factor equation, the stochastic component ε′(s) is often modelled with geostatistical methods such 
as  kriging9,10 or Bayesian  approaches11,12. However, with multi-scale environmental covariates Behrens et al.13 
showed that ε′(s) can actually be treated as part of Z*(s) and mention short-range catenary and long-range 
teleconnected aeolian systems as example because both depend on relief (r) and climate (cl) but on higher 
hierarchical  levels14.

Recent studies incorporating multi-scale environmental covariates into machine learning models showed 
increasing prediction accuracy, parsimony, and computational  efficiency8,15–18. Further, some of the referenced 
studies enable and foster complex geoscientific and pedological interpretations with respect to soil forming 
 processes13,18–21. The higher accuracy of the multi-scale approaches compared to approaches without account-
ing for the spatial context is related to the spatial variation and the interactions of soil properties and soil 
forming processes that are effective on multiple scales at the same time as well as over the temporal dimension. 
Consequently, machine learning models in combination with feature engineering techniques can account for 
contextual information ε′(s) that reflects interacting, hierarchical, and scale dependent soil forming processes 
in the horizontal domain. Recent studies focused on topsoil only (mostly 0–30 cm)14,20,22, but neglected subsoil 
(> 30 cm). However, the whole soil continuum is relevant for environmental processes and several studies have 
shown that the factors of soil formation are also effective in the vertical domain, for example climate (cl)23,24, 
vegetation (o)23–25, relief (r)19,24,26,27, parent material (p)22,28, and other environmental properties (⋯)28,29. There-
fore, we investigated the influence of spatial context in modelling the horizontal and the vertical domains and 
hypothesised that soil forming processes in subsoil relate differently to the spatial context compared to topsoil.

Behrens et al.20 presented two approaches to identify the appropriate scale space for spatial modelling: using 
the empirical variogram to determine the range of geostatistical models (kriging), and using machine learning 
model sequences where coarser scales are added or dropped sequentially from the covariate space. Our objec-
tives with this paper were (i) to test if different spatial scales may be relevant for the vertical domain, and (ii) to 
interpret and discuss how and why different spatial scales may influence soil properties and soil forming processes 
across a soil profile. To do so, we closely followed the approaches of multi-scale contextual spatial modelling to 
derive multi-scale terrain derivatives with the Gaussian  pyramid17,18,20, and the empirical variogram. We created 
a soil dataset of 130 soil profiles with up to 5 depth increments depending on the local soil depth. This dataset 
includes measurements of soil quality indicators, soil properties derived from pedo-transfer functions, and a 
soil quality index.

Material and methods
Study area. The study area of 1000   km2 is located in the Middle Guadalquivir basin, Andalusia, Spain, 
50 km NE of Seville (Fig. 1). The geologic setting separates the landscape in three main parts: (i) the Sierra 
Morena mountain range in the North with Palaeozoic granite, gneiss, and slate, (ii) the Guadalquivir flood plain 
with Pleistocene marl, calcarenite, coarse sand, and Holocene sands, and loams, and (iii) Neogene terraces of 
coarse gravel and cobble with sands and loams in the  South30–32. The slopes are typically 50–1000 m long. The 
study area is a heterogenous agricultural landscape with arable land, citrus, and olive plantations, pastures, and 
Dehesa, an agro-sylvo-pastoral system. According to the USDA soil taxonomy the predominant soil types are 
Alfisols, Entisols, Inceptisols, and  Vertisols33.

Soil data and environmental covariates. Soil samples were taken at 130 stratified random locations in 
October 2018. The strata are combinations of four geomorphic  positions35 (flat, footslope, slope and shoulder) 
and the CORINE Land Cover level 2 classes arable land, permanent crops, pastures, forest, and shrub and/or 
herbaceous vegetation associations, which are the most common land cover classes in the study area. The point 
density of the sampled locations is proportional to the stratum area with a minimum of 3 samples for the small-
est stratum. At each location up to five samples were taken with an auger depending on the soil thickness and 
bulked from 3 replicates. The sampled increments were 0–10, 10–20, 20–30, 40–60, and 70–100 cm. We defined 
the sampled increments from 0 to 30 cm as topsoil and 30–100 cm as subsoil.

For lab analysis, the samples were dried at 40 °C for 24 h, root fragments were removed, sieved (< 2 mm), 
and ground. The spectra of all 506 samples were measured with a Tensor II (Bruker Optics, Ettlingen, Germany) 
for reflectance in the NIR spectrum (833–3500 nm, i.e. 2860–12,000  cm−1 with a resolution of 4  cm−1) and a 
GladiATR (Pike Technologies, Madison, WI, USA) in the MIR spectrum (2270–25,000, i.e. 400–4400  cm−1 
with a resolution of 2  cm−1). Due to the overlapping spectra, we cut the spectra at 2500 nm and kept the spectra 
from 833 to 2500 nm measured with the Tensor II and from 2500 to 25,000 nm measured with the GladiATR. 
A subset of 97 samples representative for the strata was analysed for soil organic carbon (SOC) with a Vario EL 
III (Elementar, Hanau, Germany), for soil acidity (pH in KCl solution;  pHKCl) with a ProfiLine pH 3310 and 
a SenTix 81 electrode (WTW, Weilheim, Germany), and for grain size fractions clay (< 2 µm), silt (2–50 µm) 
and sand (50–2000 µm) with a SediGraph III (Micromeritics, Norcross, GA, USA). The 97 spectra were used as 
dependent variables to train partial least squares regression models and to make predictions for the remaining 
409  samples36. Since pre-processing of the  spectra37 did not improve model performance, the raw spectra were 
used. The root mean squared errors of these models were 0.5% for SOC content, 0.4 for pH, 4% for clay, 5% for 
silt, and 5% for sand content. The predictions of SOC content ranged from 0.01 to 3.61%, the pH from 3.00 to 
12.11, the clay content from 0.01 to 73.94%, the silt content from 0.01 to 53.54%, and the sand content from 0.01 
to 101.55%. The sum of the texture fractions ranged from 90 to 110% with a standard deviation of σ = 3.25%.

We derived the cation exchange capacity (CEC in cmol  kg−1) based on a pedo-transfer function developed 
specifically for  Spain38 and the water content at field capacity (θFC in  cm3  cm−3) using a pedo-transfer function 
developed for  Europe39. The root mean square errors (RMSE) of these pedo-transfer functions were reported 
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to be 0.06  cm3  cm−3 and 0.73 cmol  kg−1, respectively. Subsequently, we calculated a soil quality rating (SQR) to 
represent the yield potential of soils for agricultural crops based on the CEC, pH, and θFC  values40,41.

Variography. The variogram is a geostatistical  model42. Empirical data is used to describe the degree of spa-
tial autocorrelation between pairs of point measurements of environmental properties and to develop a theoreti-
cal model, which can be used for spatial modelling using kriging. The variogram consists of a set of parameters: 
nugget, sill, lag, and range. The nugget is the y-intercept and describes the variability at the smallest scale of the 
data related to noise and errors. The sill represents the maximum variability between point pairs. The lag is the 
radius in which point pairs are built. The spatial support that the lag corresponds to in this study is twice the 
spatial support of the pixel size of the downscaled Gaussian octave (see next section). The range is the maximum 
distance up to which the data is spatially autocorrelated. Therefore, the range is an indicator of the maximum 
scale of spatial context for environmental  modelling16,20,22.

Gaussian pyramid mixed scaling. Gaussian mixed  scaling17,18 is a method to derive multi-scale terrain 
derivatives to incorporate the spatial contextual information of a landscape in a machine learning model. Gauss-
ian mixed scaling is based on Gaussian filtering and down-sampling43 and decomposes the scales of environ-
mental  covariates17. In the Gaussian pyramid, each down-sampling step removes every second column and row 
of the digital elevation model (DEM) of the previous step. Possible associated artifacts are minimised with a 
Gaussian filter before each downscaling step. The outcome of each step is called an octave. Finally, all octaves are 
up-sampled with an inverse scaling procedure to the original resolution of the DEM to enable subsequent data 
manipulation on the same resolution.

In mixed scaling, the DEM is downscaled. Then the terrain covariates are derived from each octave and are 
subsequently upscaled. Mixed scaling has demonstrated to be more accurate than scaling of the derived terrain 
covariates while providing less artefacts and a better basis for  interpretation18. We used the following terrain 
covariates based on Zevenbergen & Thorne’s  equations44 derived from the DEM of 5 m resolution: elevation, 
slope, sine transformed aspect, cosine transformed aspect, average curvature, profile curvature, planform curva-
ture, flow accumulation, and topographic wetness index (Fig. 2) and calculated 11 octaves and 11 intermediate 
 levels18 with corresponding cell sizes of the Gaussian scale space: 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 
and 10,240 m. These covariates are the deterministic part Z*(s) and also reflect the seemingly random variation 

Figure 1.  Map of the study area in Andalusia, Spain, with soil sampling locations and the corresponding soil 
depth (cm) of each profile according to the sampling design (Hill shade and contour lines derived from the 
digital elevation model used in this study by CNIG with  QGIS34. Administrative map data for the lower right 
panel provided by gadm.org, https:// gadm. org/ licen se. html).

https://gadm.org/license.html
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e′(s) in the universal model of spatial variation as  well13. In respect to the average length of slopes in the study 
area, the 1st to 4th octaves (10–80 m) describe small scale properties of the terrain. The 5th to 8th octaves 
(160–1280 m) represent features of the terrain on the intermediate scale and are related to catenary soil form-
ing processes, such as erosion, sediment transport, and reallocation. The 9th to 11th octaves (2560–10,240 m) 
describe large scale supraregional features of the landscape, i.e. the geomorphic signature of the  landscape17, such 
as the mountain range in the north and the flood plain of the Guadalquivir river in the centre of the study area.

Machine learning and validation. Machine learning methods have proven to be able to extract relation-
ships between soil data and independent environmental covariates. Amongst others, random forests are applied 
often for spatial soil modelling in  3D18,19,28,45. Random forests is an ensemble of classification and regression 
 trees46,47. In a decision tree binary splits are used recursively to homogenize the predictor variables in rela-
tion to the dependent variable, thus minimizing node impurity. Random forests use a bootstrapping approach, 
where a random set of predictor variables is tested at each split of a tree. The final regression model results from 
averaging all outputs of the decision tree ensemble. Random forests are relatively robust against overfitting and 
multi-collinearity, and provide a tool which facilitates interpretations of the  models47. In this study, we used the 
random forest implementation in  R48–50. For model evaluation, we used Pearson’s correlation coefficient  (R2). 

Figure 2.  Selection of environmental covariates showing elevation, slope, northness, mean curvature, flow 
accumulation, and the topographic wetness index (TWI) at the 1st (10 m scale), 5th (160 m), 7th (640 m), and 
10th octave (5120 m).
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The models were trained with grid tuning in search for the optimal model  configuration51 and validated with ten 
times repeated ten-fold cross-validation using the caret  package52.

We applied additive and subtractive multi-scale  models20 to analyse the influence of the increasing informa-
tion  horizon53. We compared and analysed repeated model training and sequential adding of octaves representing 
larger scales to the training set as well as sequential subtraction (dropping) of smaller octaves from the complete 
set of covariates. The additive model sequence starts with the covariates at the original resolution of the DEM 
and subsequently adds the covariates of the next higher octave to the covariate space for model training. For the 
subtractive model sequence, the covariates of the smallest octaves of the covariate space are dropped sequentially. 
In this way a certain scale is represented by two models that contain either all smaller octaves (additive model 
sequence) or all larger octaves (subtractive model sequence) of the complete covariate space. With this approach 
increases or decreases of  R2 values of the model sequences indicate which octaves and scales are more relevant for 
the model  training20. For better visual analysis, the model results are smoothed with locally estimated scatterplot 
smoothing  (loess48). In total, we trained and validated 920 models (11 octaves with intermediate levels for four 
soil properties in five depths with additive and subtractive modelling, respectively).

Results
Variography. The empirical variograms for CEC, pH, θFC, and SQR at the five soil depths (Fig. 3) show 
an overall increase of semivariance with increasing distance. The largest increase in semivariance was below 
a distance of 2500  m corresponding to the ninth octave. The ranges of the (theoretical) spherical isotropic 
 variograms20 varied between 3000 and 9000 m for CEC, 2500–11,000 m for pH, 3500–29,000 m for θFC, and 
2500–13,000 m for SQR (Fig. 3). The largest range of the spherical isotropic variograms of 13,000 m was near 

Figure 3.  Empirical isotropic variograms for cation exchange capacity (CEC), soil acidity (pH), and water 
content at field capacity (θFC), and the soil quality rating (SQR) at the five soil depths (0–10, 10–20, 20–30, 
40–60, and 70–100 cm). The solid vertical lines indicate the range of the theoretical spherical isotropic 
variograms for each depth increment and the dashed vertical line indicates the maximum range of the 
contextual machine learning models (range of θFC at 70–100 cm was 29,000 m and outside the plot boundaries).
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the 11th octave (scale 10,240 m) which was chosen as highest octave. However, in some cases the empirical 
variograms showed increasing semivariance beyond the range of the theoretical variogram as also reported by 
Behrens et al.20.

Machine learning. For most of the model sequences with the soil quality indicators (CEC, pH, θFC, and 
SQR; Fig. 4; Supplementary Tab. S1) at five depth increments, successive addition (left panels in Fig. 4) of coarser 
scales of the covariates generally increased the model accuracy  (R2), while successive (right panels in Fig. 4) 
removal of finer scales generally decreased model accuracy at distinct scales. Both, increase and decrease were 
not continuous in most model sequences.

In some model sequences with the additive approach, the model accuracies started to increase at a scale 
of 80–160 m for CEC, pH, and θFC (Fig. 4) in topsoil. While this was also the case for CEC and pH in subsoil 
in 40–60 cm depth, the increase for θFC starts with the first octave similarly to the increment of 70–100 cm. 
At the increment 70–100 cm models for CEC showed a marginal decrease over all scales and models for pH 
show a slight decrease. The subtractive model sequences for topsoil and 40–60 cm mostly showed a decrease 
in  R2 after removal of the scales larger than 160–320 m. The model sequences for CEC and θFC at 70–100 cm 
showed marginal decreases over the whole sequence, whereas the sequence for pH showed a slight increase in 
 R2. The increase of the additive model sequence for SQR in 0–10 cm (Fig. 4) started at a scale of 40 m, in the 
second and third depth increment at 320–640 m, the model sequence for SQR in 40–60 cm showed a continu-
ous increase across all scales, and in 70–100 cm an increase to 80 m with a plateau from 160 to 640 m, and an 
additional increase from 1280 m onwards. In the subtractive model sequence, the decreases in  R2 start with the 
corresponding scales for the depth increments from 0 to 60 cm, whereas there is no decrease for the sequence 
for the 70–100 cm increment.

Compared to models that used the terrain derivatives of the original resolution of the DEM of 5 m only, the 
model sequences mostly improved predictive accuracy of the models for all soil properties, CEC, pH, θFC, and 
SQR. The increase ranged from 10% for CEC (0–60 cm) to 20 in SQR (70–100 cm) in the explained variance. 
Two models, CEC, and pH at 70–100 cm, did not benefit from increasing scales.

Discussion
The a priori approximation of the variogram showed that the strongest increase of semivariance was below 
2500 m. This indicates that the strongest spatial relation for most soil properties and depth increments is found 
below 2500 m and the corresponding 9th octave. The increase of semivariance above this range was covered 
with two additional octaves to account for potential spatial dependencies beyond the range of the theoretical 
 variogram20. The ranges of the variograms were different for the four soil properties as well as the five depth 
increments.

For all four soil properties, the samples from 70 to 100 cm had the largest ranges (9000–29,000 m), whereas 
models for the increments 0–60 cm had smaller ranges. The larger ranges for the lower depth interval may 
reflect the large-scale variation of the regional geology, which varies over distances of several ten kilometres. 
This points to soil formation processes like weathering of Palaeozoic bedrock in the Sierra Morena mountain 
range, and large-scale translocation processes such as sediment transport by water and river meandering in the 
Guadalquivir flood  plain54 formed mainly during the Pleistocene, and terrace formation during the  Neogene55. 
Further, large-scale climate changes during the  Holocene56 might have altered the weathering conditions of the 
whole area and is reflected in stable soil properties like soil texture that controls water holding capacity and CEC 
to a large  extend57, and therefore, soil quality, but also soil acidity due to the presence of carbonates in Neogene 
 sediments32. However, a trend for the maximum range of the variogram in respect to soil depth, i.e., an in-situ 
continuously increasing range with increasing soil depth, was not apparent. This may be due to the complex 
interactions of the vertical and horizontal domains over space and time and especially due to human  impacts58. 
Processes that affect soil quality are ploughing and uniform land management over longer time  periods58,59 as they 
homogenize soil properties in the horizontal domain, at least over the size of agricultural fields as well as in the 
vertical domain, reflected in the ploughing depth. This effect is more pronounced on soil properties in the upper 
depth increments compared to the lower depth intervals. Consequently, the intense agricultural land use and 
other human activities may induce disruption of the steady-state soil processes in the upper depth  increments58,60.

The increase of  R2 of the additive machine learning model sequences and the decrease of  R2 of the subtracting 
model sequences showed that the models improved with the multi-scale approach. This is due to the relation 
of CEC and θFC (with their texture and pH components) as well as pH to the large-scale subregional covariates 
that are functioning as proxies for the parent material (p), climate or other large scale translocation drivers as 
reported by Behrens et al.17,18,20: the higher octaves mainly reflect the geological properties and the geomorphic 
 signature61 of the three-part study area since they allow for a spatial segmentation of the landscape units by 
aggregation due to  scaling18,62,63. Therefore, the shape of the landscape, which is determined by the geological 
settings, is used inversely to separate the geological zones (Fig. 4).

The increase of  R2 of the additive model sequences started at different scales. This means that for the dif-
ferent soil properties and each sampling increment, different scales are relevant in the study area and supports 
our hypothesis. The modelling sequences for topsoil increments tended to increase with intermediate octaves, 
whereas increases for subsoil increments were invariant. These differences in the additive model sequences can 
be explained regarding the state factor equation and the universal model of spatial variation. On the small scales 
the influence of the terrain covariates (r) on soil formation processes in topsoil is small, whereas the influence 
on soil processes in subsoil is larger. This may be related to the influence of catenary soil forming processes as 
erosion, sediment transport, and  allocation19,64, which is active on intermediate scales (160–1280 m) and related 
to slope length. In contrast, subsoil is not influenced by recent erosion processes but by the geological and 



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9496  | https://doi.org/10.1038/s41598-022-13514-5

www.nature.com/scientificreports/

Figure 4.  Results of the contextual machine learning models for cation exchange capacity (CEC; first row), 
soil acidity (pH; second row), water content at field capacity (θFC; third row) and the soil quality rating (SQR; 
fourth row) at the five soil depths (0–10, 10–20, 20–30, 40–60, and 70–100 cm). The left panels (a, c, e, and g)     
show the additive models, and the right panels (b, d, f, and h) show the subtractive models. The correlation of 
the model predictions with the measured values are represented by the dotted lines, and smoothed trends are 
represented by solid lines (see Supplementary Tab. S1 for details).
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geomorphological history of the landscapes, incorporated into the model with the increasing Gaussian scale space 
as proxy data as explained above. The large-scale nature of the highest octaves also reflects the spatial context, 
i.e. the universal model of spatial variation, and the segmented study area that is, however, not limited to the 
geomorphic signature as described above, but also comprises land use types that can be differentiated on the 
supraregional level and that are related to the geomorphic setting (predominantly Dehesa and olive plantations 
in the mountain range, citrus plantations and irrigation-intensive crops at the floodplain and its proximity, and 
olive plantations and non-irrigated cereals at the Neogene terraces). The importance of the large-scale covariates 
in the modelling, thus, also reflects the human activities and their impact on soil formation through intensive 
agriculture as the accessibility for agricultural machines and the construction of irrigation facilities is affected by 
the geomorphology. This impact can either occur through erosion, sediment transport, and reallocation on the 
intermediate scale with catenary processes, but also through the different cultivated crops, irrigation, fertilization, 
and land use change over time that is closely related to socio-economic and political  factors65.

The scaled terrain covariates did not contain additional relevant information for the model sequences for CEC 
and pH at 70–100 cm. Maybe further relevant information lies beyond the range recommended by the variogram. 
In general, Fig. 4 does not show a plateau in the  R2 at larger scales, which was found in previous  studies8,16,17,20. 
This indicates, that either additional larger octaves or predictors such as Euclidean distance transforms should be 
tested to increase modelling accuracies. It is recommended to increase the scales as far as possible with respect 
to interpretability and domain knowledge. Modelling beyond this maximum scale falls beyond the so-called 
information  horizon53 and is only recommended when interpretability is not the objective.

To identify the effect of smallest relevant scales we used subtractive model sequences. The  R2 of the subtrac-
tive model sequences decreased with the 6th octave and below for the soil quality indicators and for the 3rd–4th 
octave for topsoil and 6–7th octave for subsoil. Smaller scales did not improve the model performance, since 
they comprised irrelevant information or noise. Thus, they were not relevant for the individual models. This 
is related to the effective scales of the physical and chemical processes that are relevant for soil formation. One 
reason might be that the minimum scales of our input data required to achieve the most accurate model results 
are coarser than the original (finest) scale of the selected environmental  covariates18. Regarding the agricultural 
use of the area and the size of the agricultural fields of a few hundred meters, the minimum range of multi-scale 
covariates, i.e., 80 m (4th octave), also may be linked to homogenization of soil with ploughing, fertilisation, and 
irrigation as mentioned above. Thus, the management practices may have disrupted steady-state soil processes on 
the small to intermediate  scales58,60. Subsequently, the relevant scales were not only linked to small and large-scale 
geomorphologic patterns, but also to the physical, chemical, and biotic factors of  farming58, which reshaped the 
landscape and may have blurred the scales reflecting the natural pattern of the landscape.

A direct comparison of the multi-scale model sequences with the empirical variograms is limited, since most 
of the relevant covariates have a spatial support that is smaller than the first lag of the variogram with a spatial 
support of 1500 m which corresponds to the 8th octave. Consequently, the multi-scale approach can account for 
soil forming processes on smaller scales than the variogram with automatically calculated lag distances. More 
research on this topic is necessary. However, even if we cannot quantify this effect, the better prediction results 
underpin the great potential of multi-scale modelling to predict soil processes and properties in landscapes that 
are both diverse in terms of their natural conditions and in terms of land use and land management.

In summary, since the different soil properties as well as the different soil depths showed varying relevant 
scales, we suggest that 3D soil models may require different sets of multi-scale environmental covariates to 
account for different soil forming processes of the state factor equation. Further, there may be landscapes where 
models for a certain soil depth do not benefit from multi-scale contextual information, because human activity 
may interfere with steady-state soil processes. An example are models for topsoil using satellite data that typically 
only reflect the upper centimetres of the Earth  surface24.

Thus, disentangling natural and human signals over scales with multi-scale contextual modelling of soil 
processes and properties can pave the way from soil science to many other fields of research. Disciplines that are 
related to landscape development, e.g. (pedo-)archaeology, archaeobiology, geology, and climatology, benefit from 
the better understanding of spatial scales to reconstruct land use  practices66,67 and paleo-climate  conditions13. 
Since time can also be interpreted via spatial scales and is part of the state factor equation, the space-for-time 
 substitution68 concept in geosciences and  ecology69 that focuses on landscape development should incorporate 
scale in spatial analysis.

Conclusion
There are two fundamental paradigms in digital soil mapping: the state factor equation with structural depend-
encies of soil formation and the universal model of spatial variation with spatial dependencies of soil formation. 
The multi-scale contextual spatial modelling approach is suitable to incorporate both structural and spatial 
dependencies into machine learning models. We hypothesised that different spatial scales may be relevant for 
different soil depths and interpreted how the differences may be related to the spatial context and soil formation.

We found:

• Different spatial scales are relevant in the horizontal (soil properties) and the vertical (soil depth) domain, 
and

• The relevant scales can be linked to the state factor equation and its factors relief (r), parent material (p) and 
organisms (o), i.e., land use and human impact.

These examples show, that pedologic and (physical and human) geographic domain knowledge is important 
to link the factors of the state factor equation and to interpret the relations to potential soil forming processes in 
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different soil depths. Thus, we suggest using multi-scale environmental covariates with different spatial support 
to account for the specific soil forming processes in specific soil depths when modelling soil properties in 3D.

Data availability
The original terrain data is published under the CC-BY 4.0 license by Centro Nacional de Information Geográfica 
(CNIG) of the Spanish government; last accessed March 31st 2020 (https:// doi. org/ 10. 7419/ 162. 09. 2020). The 
soil data and the processed terrain data is published at PANGAEA (https:// doi. panga ea. de/ 10. 1594/ PANGA EA. 
938522 and https:// doi. panga ea. de/ 10. 1594/ PANGA EA. 938774).
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