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Towards interpretable, medically 
grounded, EMR‑based risk 
prediction models
Isabell Twick1*, Guy Zahavi3, Haggai Benvenisti2, Ronya Rubinstein1, Michael S. Woods1, 
Haim Berkenstadt3, Aviram Nissan2, Enes Hosgor1 & Dan Assaf2

Machine‑learning based risk prediction models have the potential to improve patient outcomes 
by assessing risk more accurately than clinicians. Significant additional value lies in these models 
providing feedback about the factors that amplify an individual patient’s risk. Identification of risk 
factors enables more informed decisions on interventions to mitigate or ameliorate modifiable factors. 
For these reasons, risk prediction models must be explainable and grounded on medical knowledge. 
Current machine learning‑based risk prediction models are frequently ‘black‑box’ models whose 
inner workings cannot be understood easily, making it difficult to define risk drivers. Since machine 
learning models follow patterns in the data rather than looking for medically relevant relationships, 
possible risk factors identified by these models do not necessarily translate into actionable insights 
for clinicians. Here, we use the example of risk assessment for postoperative complications to 
demonstrate how explainable and medically grounded risk prediction models can be developed. Pre‑ 
and postoperative risk prediction models are trained based on clinically relevant inputs extracted from 
electronic medical record data. We show that these models have similar predictive performance as 
models that incorporate a wider range of inputs and explain the models’ decision‑making process by 
visualizing how different model inputs and their values affect the models’ predictions.

Each year, around 310 million patients undergo surgery worldwide, 17% of which develop one or more postopera-
tive  complications1–3. Adverse outcomes are not only a burden to patients and their families—causing reduced 
quality of life, morbidity, and mortality—they also strain hospital resources and amplify healthcare  costs4–6. Costs 
for additional treatments and surgeries, extended hospital stays, and readmissions associated with the occurrence 
of any complication are estimated to be 1.5 to fourfold  higher7,8. Accurate patient risk assessment and mitigation 
are therefore essential to reduce complications and associated patient burden and costs.

Risk assessment for postoperative complications can be beneficial at different stages during the surgical 
encounter. Preoperative risk assessment is essential for an informed discussion with the patient about the risks 
and benefits of surgery and helps identify patients that may benefit from preventive preoperative and intraopera-
tive strategies. A postoperative risk update that incorporates intraoperative data about potential complications 
and irregularities during surgery can support postoperative care decisions , including patients monitoring, 
radiologic studies and prophylactic measures.

Risk for postoperative complications arises from many factors, including a patient’s health status prior to 
surgery, the type of surgical procedure performed, the surgeon’s skill, and the patient’s physical capacity to with-
stand surgical stress and anesthesia associated with the procedure. Although risk factors have been identified 
for various postoperative  complications9,10 assessing a patient’s individual risk is still a challenge for physicians. 
Precise and timely risk prediction proves difficult as it requires the interpretation and combination of large 
amounts of clinical information.

To support the physicians’ decision process of assessing patients’ risk for postoperative complications, a variety 
of risk scores have been developed that differ with respect to the underlying data, the adverse outcome, and iden-
tified risk  factors11. While rather rudimentary risk scores such as P-POSSUM, APGAR, and ASA are still widely 
used thanks to their  simplicity12–14 the favored risk score of many physicians is the universal National Surgical 
Quality Improvement Program (NSQIP) risk calculator developed by the American College of  Surgeons9,15. It 
is based on a logistic regression model with 21 input variables covering patient characteristics and type of the 
procedure. Trained on the largest outcome dataset of more than 5 million records collected from 855 hospitals 
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and more than 1,800 surgical procedures, the NSQIP score performs preoperative risk assessment for 16 general 
and two procedure-specific 30-day adverse outcomes (https:// riskc alcul ator. facs. org).

While the performance of the NSQIP risk calculator as a ‘universal’ risk assessment tool has been confirmed 
by several  studies15,16 it has some major drawbacks which limit its usage: Firstly, poor usability. The risk calculator 
is outside the day-to-day workflow of surgeons and their staff, requiring manual data input into a web interface. 
It does not leverage available electronic medical record (EMR) data, adding an unnecessary burden for physi-
cians. Secondly, it acts as a black-box model, only displaying a patients’ risk without any transparency on which 
factors influence the prediction and to what effect. Thirdly, it only performs preoperative risk assessment, not 
accounting for intraoperative data that may improve the risk estimate and could therefore support postopera-
tive care decisions. And finally, it only considers linear relationships between input variables while, in reality, 
interactions between risk factors and adverse outcomes can be and often are  nonlinear17.

The recently developed MySurgeryRisk platform illustrates how EMR data can be leveraged for risk predic-
tion. MySurgeryRisk is an automated predictive analytics framework that utilizes clinical EMR data to forecast 
patient-level risk scores for eight major postoperative complications and  death18. Generalized additive models 
(adjusted for nonlinearity) were trained on a sample of 51 k surgical patients from a single medical center. 
The machine learning models achieved good predictive performance and discrimination of high and low-risk 
patients. Through the integration with the EMR, MySurgeryRisk automatically assesses the risk of a patient 
undergoing surgery and can thus be seamlessly incorporated into a physician’s  workflow17. Since its implemen-
tation, MySurgeryRisk has further been extended to include postoperative risk  assessment19. By incorporating 
intraoperative data, postoperative risk prediction substantially outperformed preoperative models. Although 
MySurgeryRisk displays the most important features impacting a patient’s risk score, the model’s inner workings 
cannot be interpreted easily, nor can clinical relevance be guaranteed.

The POTTER risk calculator demonstrates an example of a nonlinear risk prediction model that does not 
sacrifice model interpretability. It is based on Optimal Classification Trees, a type of nonlinear decision tree that 
enable the model’s decisions to be tracked by following down the decision nodes in the tree  structure20. POTTER’s 
preoperative risk prediction models were trained on data of 400 k emergency surgery patients collected as part 
of the American College of Surgeons  NSQIP20. It predicts postoperative mortality, morbidity, and 18 specific 
complications. While not integrated with the EMR, a smartphone application was developed that physicians 
can use to derive a patient’s risk prediction. Although POTTER is a great advancement towards more explain-
able risk prediction models, the complexity of the tree structure with hundreds of input variables, tree depths 
in the range of dozens and hundreds of decision nodes make it difficult to grasp how the model comes up with 
a patient’s risk score. Besides, while Optimal Classification Trees perform better than other decision trees, they 
are still outperformed by more complex models such as random forest  algorithms20.

Here, we aim to follow up on the advances made by MySurgeryRisk and POTTER by developing interpretable 
risk prediction models that are based on EMR data without compromising on predictive performance.

Methods
Ethical approval. The institutional review board—the Tel Hashomer Helsinki Committee—approved data 
access and study design and waived the need to obtain informed consent (SMC-6411-19). All methods were 
performed in accordance with the relevant guidelines and regulations.

Data. Dataset. The data sample contained all patients undergoing surgery between September 2017 and 
September 2019 in the  General and Oncology Surgery department at Sheba Medical Center, Israel. In total, 3440 
patients undergoing 4004 surgeries were included in the dataset.

Outcomes. Postoperative surgical complications were prospectively captured through a manual review per-
formed by the medical staff. The labeling methodology was based on the Clavien Dindo complication scale.

Features. Descriptive features were calculated from EMR data collected at hospital admission, during the pre-
operative hospital stay, and intraoperatively. In total, 969 features were calculated, of which 741 were used for 
preoperative and all 969 for postoperative risk prediction. Preoperative features included patient characteristics 
such as demographics, comorbidities, alcohol and smoking habits, prescribed drugs, past procedures, and pre-
operative data collected in the hospital including vitals, lab and microbiology, medication in the department and 
anesthesiologist checks. For postoperative models, intraoperative data such as surgery specifics, administered 
medications, vital and anesthesia measurements, and information about blood loss and transfusion were also 
included. Supplementary “List of features” provides an overview of all features; supplementary “Feature Creation” 
explains data preprocessing and feature calculation steps.

Selection of risk factors. Risk factors for surgical site infection (SSI) and anastomosis leak complications were 
identified based on a selective literature review. Criteria for risk factor selection were consistent identification 
of the factor as increasing the risk for the respective complication and the factor being available in our EMR 
dataset. SSI risk factors relied largely on systematic  reviews21,22 and a large multicenter study based on data from 
the National Surgical Quality  Program23,24. For leak risk factors we utilized a systematic  review25 and a large 
multicenter prospective  study26.

https://riskcalculator.facs.org
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Machine learning modeling. Sample size. The dataset sample of 4004 surgeries was split into a 70% 
training and 30% testing set. Random splitting was performed based on patient id to ensure that all surgeries of 
a given person were contained in the same set.

Modeling. Non-linear tree-based gradient boosting classifiers were trained using the CatBoost  implementation27. 
Missing values were imputed as the minimum values (less than all other values) for the feature to guarantee 
that a split is able to separate missing values from all other values. Area under the curve (AUC) was chosen as 
the evaluation metric, and overfitting was controlled by early stopping after 50 iterations following the optimal 
metric value was reached. Recursive backward feature elimination was performed to determine the lowest num-
ber of features without sacrificing model performance.

Best performing models were chosen based on the highest average AUC of fivefold cross-validation within 
the training set. Models were refitted on the whole training set, and performance was checked on the hold-out 
test set (Supplementary Table S7). Final models were calibrated to return probabilities using logistic regression 
trained on the model outputs from the train set.

Model performance. Overall model performance was assessed based on the area under the curve (AUC) of the 
receiver operating characteristic curve (the sensitivity vs. (1-specificity) plot). The AUC represents the probabil-
ity that a randomly chosen positive example has a higher predicted probability score than a randomly chosen 
negative example. It, therefore, measures the discrimination of positive and negative  events28. An AUC of 1 
denotes perfect discrimination; 0.5 is no better than chance.

Since the output of the models is a risk probability that ranges from 0 to 1, a probability threshold was chosen 
to separate patients into a high and a low-risk group. Probability thresholds were determined by the highest 
Matthew Correlation Coefficient (MCC, Supplementary Table S8) or an 80% sensitivity of the model (Table 1). 
MCC is a measure of association between the observed and predicted binary classifications. It is regarded as the 
best measure to describe all four confusion matrix categories (true positives, false positives, true negatives, false 
negatives), superior to the commonly utilized F1 measure, which ignores correctly classified negative  samples29. 
The MCC returns values between − 1 and + 1, whereas a coefficient of + 1 represents a perfect prediction, 0 is no 
better than random chance, and − 1 indicates complete disagreement. For easier comparison between preop-
erative and postoperative model performances, we additionally chose the probability threshold based on 80% 
sensitivity. In this case, the models detect 80% of the patients that develop an SSI or leak. Based on both types 
of probability thresholds (MCC or 80% sensitivity), we report other statistics including sensitivity, specificity, 
positive predicted value (PPV), negative predicted value (NPV), and MCC.

Model explanation. Shap values. Shapley Additive Explanations (SHAP), a model-agnostic explanation 
technique derived from cooperative game theory, was used to interpret the predictions of the gradient boosting 
machine learning  models30. SHAP values explain the contribution of a feature and its value to the prediction. 
SHAP values have the property that they sum up to the difference between the average model output and the 
model output of the respective sample. In simple terms, SHAP values are derived by comparing the model’s 
predictions with and without the  feature30. A positive SHAP value indicates that the corresponding feature/value 
pair increases the risk of a complication; a negative SHAP value indicates that the pair lowers the risk. The mag-
nitude of SHAP values represents how much the feature/value pair contribute towards the models’ prediction. 
The importance of a feature was determined by summing the absolute SHAP values of the feature for all samples.

Table 1.  Overview of Model Performances according to 80% sensitivity. Table depicts model performance of 
all pre- and postoperative SSI and leak models developed as part of this study. Naïve Gradient boosting refers 
to gradient boosting models where all pre-calculated features were considered, and the type and number of 
features were selected based on recursive feature elimination. Literature-based Gradient Boosting are gradient 
boosting models developed based on features reported in the literature combined with recursive feature 
elimination to reduce the number of features included in the models. Table contains AUC (area under the 
ROC curve) computed for the test set as well as specificity, PPV (positive predicted value), NPV (negative 
predicted value), and MCC (Matthew Correlation Coefficient) with respect to the probability threshold chosen 
to achieve 80% sensitivity.

Model Pre/Post Features AUC Threshold MCC Sensitivity Specificity PPV NPV

SSI models

Naïve Gradient Boosting
Pre 8 0.759 0.046 0.236 0.805 0.540 0.106 0.976

Post 56 0.857 0.041 0.308 0.805 0.761 0.185 0.983

Literature-based Gradient Boosting
Pre 12 0.762 0.044 0.208 0.805 0.615 0.124 0.979

Post 15 0.853 0.049 0.317 0.805 0.770 0.191 0.983

Leak models

Naïve Gradient Boosting
Pre 60 0.775 0.033 0.134 0.795 0.582 0.059 0.988

Post 82 0.855 0.031 0.222 0.795 0.758 0.098 0.981

Literature-based Gradient Boosting
Pre 8 0.793 0.031 0.160 0.795 0.644 0.069 0.990

Post 10 0.861 0.034 0.233 0.795 0.774 0.104 0.991
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Results
Patient population characteristics and outcomes. The dataset contained 4004 surgeries performed 
on 3440 patients in a two-year period at the Sheba General and Oncology Surgery Department in Tel Aviv, 
Israel (Supplementary Table S5). Patients undergoing surgery had a median age of 55 (25th–75th percentiles 
40–67  years), with 55% being female. The most frequent comorbidities were neoplasms (19%), circulatory 
(8.9%), metabolic (8.4%), and digestive (7.4%) diseases. Accordingly, a large subset of patients took medications 
including cardiovascular (35.1%), metabolism (33.1%), blood (21.6%), and nervous system drugs (21.6%). Sur-
gery types from high to low volume included hernia (14.4%), gastroesophageal (13.2%), colorectal (12.8), biliary 
tract (11.2%), breast (10%), and diagnostic (7.3%). Less than half of the surgeries were laparoscopic (46.9%), and 
around one quarter were urgent procedures (25.3%).

Surgical site infections (SSIs) were the most prevalent postoperative complication, which developed in 5.8% 
of the cases, followed by leaks with an incidence of 3.4% (Supplementary Tables S5 and S6). Among leak eligible 
cases including surgeries classified as gastroesophageal, biliary tract, colorectal or small bowel, leaks occurred 
in 5.6% of the cases. SSIs composed of superficial, deep, and organ-space infections occurred most frequently in 
colorectal (18.4%), small bowel (17.4%), abdomen/ retroperitoneum (10.6%) as well as diagnostic cases (7.2%). 
Leaks which included gastrointestinal, biliary, pancreatic, and anastomosis leaks prevailed in small bowel (12.4%), 
colorectal (9.1%), and abdomen/retroperitoneum (6.7%) surgeries.

Risk prediction models based on electric medical records. Firstly, we developed pre- and postop-
erative risk prediction models for SSI and leak that incorporated all features available at the time of prediction, 
at the start or end of the surgery, respectively. The predictive performance for SSI and leak models were higher 
for postoperative than for preoperative risk models (Table 1). Risk prediction of SSI in the test cohort increased 
from an AUC of 0.76 preoperatively to 0.86 postoperatively. Similarly, the prediction of leaks increased from an 
AUC of 0.78 preoperatively to 0.86 postoperatively. To separate patients into high and low-risk groups, a prob-
ability threshold was chosen using maximal MCC (Supplementary Table S8) and, for easier comparison between 
preoperative and postoperative models, based on 80% sensitivity (Table 1). At 80% sensitivity, both pre- and 
postoperative models achieved high NPVs ranging from 0.98 to 0.99. Preoperative PPVs of 11% for SSI and 6% 
for leaks increased to 19% and 10% postoperatively. Comparisons of model performance between train and test 
sets can be found in Supplementary Table S7; performance metrics of leak models based on leak relevant cases 
are depicted in Supplementary Table S9.

While the preoperative SSI model relied on a limited number of eight features, postoperative SSI and leak 
models included tens of features (56 features for postoperative SSI, 60 and 82 features for pre- and postoperative 
leak models, respectively). The most important features for preoperative SSI prediction were previous colorectal 
surgery, the patient’s age, and the most recent preoperative C-reactive protein (CRP) results (Supplementary 
Fig. S1). Postoperative SSI prediction relied mainly on the surgical approach (open versus laparoscopic), the 
number of procedures performed, and the number of analgesic medications administered during surgery (Sup-
plementary Fig. S1). Preoperative leak prediction was mainly influenced by features such as BMI, number of 
past procedures, and the average prothrombin time in the three preoperative days (Supplementary Fig. S2). 
Postoperatively, the most important features were placement of an arterial line, operation duration, and the 
intraoperative ratio of low end-tidal CO2 (Supplementary Fig. S2).

Risk factors identified through literature review. The developed risk models rely on a large number 
of features, also including data sources that have not been identified as risk factors in the literature before, such 
as prothrombin, end-tidal CO2, or analgesic drugs. We were interested in  whether models based on previ-
ously identified risk factors would perform equally well as those incorporating all the input data. We, therefore, 
performed a selective literature search to identify the most common risk factors for postoperative SSI and leak 
occurrence. Importantly, our research was solely focused on risk factors that are standardly collected within the 
EMR. Thus, some well-known risk factors that cannot be captured through EMR records were not considered.

Due to their high prevalence, patient burden, and cost risk factors for SSI have been studied extensively. Some 
of the identified risk factors increase the risk of SSI in general; others are specific to certain surgical  procedures21. 
General risk factors include patient-related factors such as patient demographics (e.g. gender and age), a patient’s 
health status (e.g. BMI and ASA score) as well as lifestyle habits (e.g. smoking and alcohol consumption)21,22. 
Comorbidities such as diabetes and malignant cancers likewise increase SSI risk , as do preoperative hypoalbu-
minemia, steroid intake and remote  infections21,22. Other general risk factors are related to the patient’s prepa-
ration for surgery and the surgical procedure itself. These include the length of the preoperative hospital stay, 
antibiotic prophylaxis, the type of surgery, and whether the surgery is  urgent21–23. Intraoperative risk factors are 
blood loss and transfusion, the duration of the surgery, and wound type (clean, contaminated, etc.)21.

Although leaks are a feared complication in colorectal surgery and have been the focus of many studies, risk 
factors are less well  understood31. Many of the identified risk factors are equal to those identified for SSI. These 
include gender, age, BMI, ASA score, smoking, alcohol consumption, diabetes, corticosteroid intake, preoperative 
hypoalbuminemia, antibiotic prophylaxis, urgent surgery, blood loss and transfusion, surgery duration, open 
surgery, and complexity of the  procedure25. Additionally, intake of anticoagulants, preoperatively low total serum 
protein, and intraoperative complications are known risk factors for  leaks26.

Many identified risk factors also increased the risk of developing SSI and leak in our dataset. Table 2 lists the 
risk factors for SSI and leaks and their associated odds ratios. For SSI, all risk factors apart from smoking had an 
odds ratio (OR) larger than one and thus increased the risk of SSI. Largest odds ratios were found for antibiot-
ics administered up to 2 h before surgery (OR = 5), blood transfusion (OR = 4.2), surgery duration longer than 
120 min (OR = 5.5), intestinal procedure (OR = 7.6), open surgery (OR = 8.6), and more than one intervention 
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Table 2.  Risk factors, odds ratios and literature references for SSI and leaks. Table shows risk factor for SSI and 
leaks identified based on a selective literature search together with their associated odds ratios calculated on 
the data set. Past procedure type was added as a preoperative indicator for the performed surgery as procedure 
type was only available postoperatively. n.a. (not applicable), the feature has not been identified as a risk factor.

Risk factor

SSI Leaks

Odds ratio References Odds ratio References

Gender

Male 1.1 21,22 1.3 25,50

Age

 > 50 3.6 22,23 2.7 25,50

 > 60 2.3 2.2

BMI

 < 20 kg/m2 1.4 21,22 1.8 25,26,50

 > 35 kg/m2 0.4 0.3

ASA score

 ≥ 3 2.4 21–23 2.3 25

 ≥ 4 3.3 3.2

Lifestyle habits

Smoking 0.6 21–23 1 25,50

Alcohol use 2 1

Medication

Corticosteroids 1.2 21,23 0.7 25,26,50

Anticoagulants n.a 1.5

Comorbidities

Diabetes Type 1 or 2 1.7 21–23 0.6 25

Labs

Albumin < 3.5 g/dL 3.2 23 3.7 25,26,50

Serum total protein < 4 g/dL n.a 6

Serum total protein > 8 g/dL n.a 0.4

Prior infection

Microbiology test performed 2.8 21,22 n.a n.a

Microbiology test positive 3.4

Antibiotics before incision

0 to 24 h before surgery 1.9 21 1.8 25

0 to 2 h before surgery 5 3.3

Length of preoperative stay

 > 1 day 2.1 21,22 n.a n.a

 > 5 days 2.6

 > 7 days 3.4

Urgent procedure

Emergency / trauma 1.8 21,23 1.1 25,26

Past procedure type

Intestinal 4.9 Procedure  type21,23 4.8 Site of  anastomosis25,50

Blood

Loss ≥ 00c 3.3 21,25 2.6 25,50

Transfusion 4.2 6.1

Intraoperative complications

Complications n.a n.a 1.1 26

Operation time

 > 120 min 5.5 21,22 6.3 25

 > 180 min 5.5 6.7

 > 240 min 4.4 7.8

Procedure type

Intestinal 7.6 21,23 6.3 Site of  anastomosis25,50

Surgical approach

Open 8.6 24 5.2 25

Multiple interventions

Number of procedures > 1 5.4 Measure of  complexity21,22 3.7 Measure of  complexity26
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(OR = 5.4). For leaks, total serum protein < 4 g/dL (OR = 6), blood transfusion (OR = 6.1), surgery duration longer 
than 120 min (OR = 6.3), open surgery (OR = 5.2), and intestinal procedure (OR = 6.3) were associated with the 
largest odds ratios. Smoking, alcohol consumption, corticosteroid intake, and diabetes disease did not increase 
the risk of leaks (OR < = 1). Information on the procedure type was not available preoperatively since planned 
procedures were frequently not entered into the EMR. As a proxy for the performed procedure, we included 
the procedure type of a past surgery in the analysis. Since our data sample was collected in an oncology depart-
ment, a large fraction of surgeries was cancer surgery, requiring multiple procedures of the same type if cancer 
spreads, reoccurs or has associated postoperative complications. For example, some procedures, such as colos-
tomies, frequently need reoperations at the same location, so do surgeries that result in complications such as 
deep/organ SSI or leaking bowel connections. A past intestinal procedure had an increased odds ratio for SSI 
(OR = 4.9) and leaks (OR = 4.8). 

Literature‑Informed Risk Prediction Model. Following the literature review, we aimed to test how 
machine learning models that solely rely on known risk factors perform compared to those that include all data 
inputs. For preoperative models, we included all preoperative risk factors of the respective complication, SSI or 
leak, listed in Table 2. For postoperative models, we combined pre- and intraoperative risk factors. As before we 
utilized gradient boosting models combined with recursive feature elimination to gain best performing models 
while limiting the number of input features. To explain how different features affect the model’s predictions, we 
used SHAP values.

Predictive performance of these literature-informed models was comparable to the models developed based 
on all available inputs (Table 1 compares Literature-based Gradient Boosting with Naïve Gradient Boosting models, 
see Supplementary Table S7 for comparison of model performances between train and test sets and Supplemen-
tary Table S9 for performance metrics of leak models based on leak relevant cases). SSI pre- and postoperative 
models had an AUC of 0.76 and 0.85, respectively, compared to leaks with an AUC of 0.79 preoperatively and 
0.86 postoperatively (Table 1). NPV and PPV at ~ 80% sensitivity were likewise similar. NPVs remained high 
ranging from 0.98–0.99. SSI models achieved a PPV of 12% and 19%, leak models 7% and 10%, respectively 
(Table 1). Overall risk prediction was achieved based on a lower number of features. The preoperative SSI model 
relied on 12 features, the most important being age, past procedure type, and BMI (Fig. 1a). Postoperative SSI 
prediction was achieved through 15 input features with the surgical approach (open versus laparoscopic), surgery 
duration, and age having the largest impact (Fig. 1b). Preoperative leak prediction depended on eight inputs 
including past procedure type, ASA score, and age (Fig. 1c). Postoperatively, the leak model required ten inputs 
with open versus laparoscopic surgery, surgery duration, and past procedure type being the most important 
(Fig. 1d). Further evaluation using SHAP values further reveals how individual features and their values affect 
the models’ predictions (Fig. 2 for SSI and Fig. 3 for leaks).

The SSI models’ decision boundaries and the direction in which different feature values affect the predictions 
largely aligned with previously published literature (Fig. 2a,b). As expected, patients aged ~ 55 years or older 
increase the models’ SSI risk prediction, so do ASA scores larger than 2, low preoperative albumin (< ~ 3.5 g/
dL), urgent surgery, more than ~ 7 days preoperative stay, and one or more microbiology tests performed in the 
three days leading up to surgery. The type of procedure is also an important factor for forecasting postoperative 
SSI. ‘Small bowel’ and ‘colorectal’ procedure types increased the models’ prediction of SSI substantially, no mat-
ter whether they were performed as part of a previous surgery (in the case of the preoperative model, Fig. 2a) 
or as a past or current surgery (for the postoperative model, Fig. 2b). BMI larger than ~ 30 kg / m2 and smoking 
decreased the model’s risk prediction of SSI in line with the small odds ratios in Table 2. While gender is one of 
the chosen features for both, pre- and postoperative models, it does not clearly adjust the risk higher or lower sug-
gesting that there are interactions with other variables that affect how it impacts the risk. For preoperative SSI 
prediction, a diabetes diagnosis and preoperative antibiotics up to ~ 2 h before surgery also elevated the model’s 
risk score (Fig. 2a). The postoperative SSI model relied strongly on data collected intraoperatively: Open surgery, 
a surgery duration of more than ~ 2 h, more than one surgical procedure, blood loss larger than 100 mL, and a 
blood transfusion increased the model’s risk score (Fig. 2b).

Like SSI models, leak prediction models also relied strongly on the type of procedure and followed cutoffs 
identified in the literature with only a few exceptions (Fig. 3a,b). ‘Small bowel’ and ‘colorectal’ procedures as a 
past procedure (for pre- and postoperative leak model) or as the current procedure increased the models’ risk 
prediction for leaks. As identified in the previous literature, ASA score ≥ 2, age ≥ 50 or 60 respectively, total serum 
blood ≤ 7.8 g/dL preoperatively or 7.2 g/dL postoperatively as well as male gender increased the model’s risk 
score. BMI ≥ 30 kg / m2 also decreased the models’ risk prediction as in the case of SSI, and low albumin had 
mixed effects. While it increased the risk in the preoperative leak model, albeit with a higher cutoff of 4.4 g/dL, 
in the postoperative model any albumin value (in contrast to not having albumin measured) appears to increase 
the model’s risk prediction. One of the relevant features for preoperative leak prediction is anticoagulant use. 
However, its effect on the risk score is unclear, which again may point to some interaction with another factor. As 
for postoperative SSI models, postoperative leak models also depend on intraoperative data sources. Open sur-
gery, surgery duration longer than 160 min, and blood transfusion increase the model’s risk prediction accuracy.

Discussion
Despite the huge interest in artificial intelligence applications to support clinical-decision making, few examples 
exist where machine learning models are successfully deployed in clinical practice. Reasons for this discrep-
ancy are multifold, ranging from limited access to large diverse datasets that allow training and validation of 
generalizable and unbiased algorithms to difficulties in integrating AI systems into clinical  workflows32. One 
major obstacle for the adaptation of machine learning algorithms into clinical practice arises from distrust in 
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the decisions made by ‘black box’ models whose inner workings cannot be understood  easily33. To improve the 
trust in and the use of machine learning models for improving patient outcomes, it is essential to demystify 
‘black box’ models. Here, we use the example of risk assessment for postoperative complications to demonstrate 
how explainable AI models can be developed that are grounded on medical knowledge, utilize electronic health 
record data, and allow for non-linear relationships to be captured.

As a first step, we trained Gradient Boosting models, tree-based algorithms that can capture nonlinear rela-
tionship, on all data sources available at the prediction time (pre- or postoperative). These models served as 
baseline models to predict postoperative SSI and leak complications. As previously shown, the integration of 
intraoperative data in the postoperative models improved the predictive performance compared to the preopera-
tive  models19,34. The AUC of SSI risk prediction models increased from 0.76 preoperatively to 0.86 postoperative 
(Table 1). A comparable previous study reported an AUC of 0.74 and 0.75 for pre- and postoperative wound risk 
prediction  models19. Other studies that only developed preoperative SSI models achieved a larger AUC of 0.82 
when including procedure type as one of the input  variables9,18. In our case, procedural information was only 
available postoperatively and was therefore not included in preoperative models. Leak risk prediction models 
improved their AUC from 0.78 preoperatively to 0.86 postoperatively (Table 1; AUC of 0.75 and 0.81, respec-
tively, if only eligible procedures were considered, Supplementary Table S9). Published leak prediction scores 
also include intraoperative information and report AUC values of 0.83 and 0.8435,36. These scores also include 
information on the number of hospital  beds35 and distance of the anastomosis to the anal  verge36 which likely 
had a positive effect on predictive performance.

The developed baseline models depend on many features (Table 1), including data sources that have not been 
identified as risk factors in the literature before. Examples are prothrombin, eternal CO2, or analgesic drugs. 
This is not surprising as machine learning models rely on patterns and variations in the input data and do not 
necessarily integrate data features that are causal from a medical perspective. We were interested in whether 
models based on previously identified risk factors would perform equally well as those incorporating all the 
input data. As a second step, we, therefore, identified evidence-based pre- and intraoperative risk factors for SSI 
and leak complications and trained Gradient boosting models on these inputs. These Literature-based models 
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Figure 1.  Literature-Informed Risk Prediction Models Figure shows SHAP summary plots displaying the 
effect of a feature and its value on the prediction. The y-axis of each plot contains the features included in the 
model sorted from the most (top) to least (bottom) important. The x-axis depicts the SHAP value. Each point 
refers to a SHAP value associated with a value of a certain feature. The color of the point displays whether the 
feature value is high (pink) or low (blue). Grey-colored points are categorical and missing values. Example: Age 
in subplot A: Older ages (red-colored points) increase the risk of SSI (SHAP value 0.5 to 1), lower ages (blue-
colored points) reduce the risk (SHAP values − 0.9 to − 0.5). (A) Preoperative SSI model (B) Postoperative SSI 
model (C) Preoperative Leak model (D) Postoperative Leak model.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9990  | https://doi.org/10.1038/s41598-022-13504-7

www.nature.com/scientificreports/

performed similarly well to their baseline, frequently more complex counterparts (Table 1). Since these models 
solely relied on features available in our EMR dataset, other published risk factors would likely improve the 
predictions. Examples are wound class and surgical skill for  SSI21,23,37 and location, size, and stage of the tumor 
as well as surgical experience for  leaks25,31.

As a third step, we attempted to explain the inner workings of the literature-based Gradient boosting models 
by analyzing the contribution of the different features and their values on the predictions using Shap values. Shap 
analysis revealed that the models attribute higher (or lower) risk to feature-value combinations based on similar 
cutoffs as well-established thresholds (Figs. 2 and 3). Shap analysis has also been used in a previous study to 
describe the inner workings of postoperative risk prediction models. Xue et al. trained machine learning models 
to predict postoperative complications on around 700 features extracted from EMR  data34. They transformed the 
SHAP values from all the extracted, frequently abstract features into a clinical feature space that is interpretable 
by  physicians34. The advantage of this approach is that data is not preselected before modeling, the disadvantage 
is that the models may be accidentally fitted to confounders rather than meaningful clinical  relations32.

Besides explaining the models’ decision-making process, Shap analysis can also be utilized to identify factors 
that drive an individual patient’s risk and could, therefore, support physicians in defining individual risk mitiga-
tion strategies. Patient-specific Shap analysis, automatically performed each time when the risk of the patient 
is assessed, provides an overview of the patients’ risk factors that increase/decrease the risk and to what degree. 
Surgeons can utilize this information to either modify risk factors by advising lifestyle changes, e.g. in the case 
of BMI and albumin (as an indicator of malnutrition), or wherever possible by choosing certain procedural 
modifications, e.g. in the case of open versus laparoscopic approaches. While the current risk models only have 
few modifiable risk factors future research will hopefully expand their number and thus make explainability of 
individual patient risk factors even more valuable. Even in the absence of being able to modify risk factors identi-
fication of high-risk patients is valuable. Preventive treatments, too costly to be applied to every patient, or more 
stringent surveillance to enable early detection and intervention could be specifically applied to high-risk patients.

Notably, all risk prediction models had a high NPV of 0.97–0.99 (Table 1 and Supplementary Table S9). The 
NPV describes the ratio of correctly identified patients without a complication. Therefore, The models’ predic-
tions are particularly useful to confidently identify patients that most likely will not develop a postoperative 
complication. In contrast, PPV, describing the ratio of correctly identified patients with a complication, was 
substantially lower, ranging from 0.12–0.19 (Table 1 for SSI and Supplementary Table S9 for leak eligible cases). 
This means that one in five to ten patients that are predicted to be at high risk will develop the complication. 
Depending on the complication, even this low number can provide clinical value. Although preventive strategies 
or close patient surveillance would have to be applied to five to ten times more patients the benefit for patients 
whose complications are prevented or attenuated may outweigh the additional workload. Similarly, costs may 
be reduced if the total costs of all applied prevention strategies are lower than the costs associated with the treat-
ment of the complication.

Surprisingly, BMI larger than ~ 30 kg / m2 and smoking decreased the risk of SSI, as seen in the odds ratios 
(Table 1) and the explanation of the model’s predictions (Fig. 2). Both, high BMI and smoking have been associ-
ated with increased risk of SSI in published literature 38–41. Conversely, other studies have found BMI and smok-
ing not to be a consistent risk factors for SSI. Some studies have shown BMI not to impact SSI or  outcomes42,43. 
Others report obesity measures other than BMI that are more strongly correlated with outcomes, such as waist 
 circumference41,44. Data on smoking is mixed while typically demonstrating it as a risk factor. Some studies 
have found it not to be a factor in models where it was  examined45. Interpretation is further conflated by recent 
data in 55,240 patients examining the relationship between BMI and smoking that showed a stepwise increase 
in SSI rate as BMI increased, with smoking adding additional risk in each  group46. While we cannot explain the 
results for smoking in this data set, the observations for high BMI can be explained by a large fraction of 85% 
of overweight patients undergoing bariatric surgery. These weight reduction surgeries are associated with high 
BMI while also having a low risk of SSIs, particularly when performed laparoscopically as in our data  set47,48. 
We will continue to evaluate the variables BMI and smoking and their effect on the models’ predictions with 
ongoing testing and retraining in larger, more diverse populations.

We note that there are limitations to this study. Our dataset consisted of 4 k surgeries performed in a single 
department of a single institution. The potential problem with small samples is their limited diversity and appli-
cability to other data samples. Since our models have been trained on patients undergoing surgeries in a general 
and oncology department in Israel, they have learned patient and surgery characteristics from this dataset to 
predict the risk of SSI and leak complications. However, the risk of complications may manifest differently when 

Figure 2.  Impact of features on pre- and postoperative SSI risk predictions Subplots show how a given feature 
affects the risk prediction of the model. X-axes depict the values of the feature, y-axes the associated SHAP 
values. Missing values are represented on the far left of the x-axis. A positive SHAP value indicates that the 
value of the feature increases the overall risk, a negative SHAP values lowers risk of postoperative SSI. The larger 
the magnitude of the SHAP value the more it affects the risk prediction. Red vertical lines indicate inflection 
points were the value of the feature switches from having a negative to positive (or vice versa) impact on the 
risk prediction. The arrangement of the subplots follows the order of importance of the features for the model 
predictions. Importance was calculated by summing the absolute SHAP values of the feature of all samples. (a) 
Preoperative SSI risk models. Red vertical lines depict: Age = 53 years, BMI = 28 kg / m2, Albumin blood = 3.8 g/
dL, Days from admission to surgery = 7 days, Microbiology test (on days − 4 to − 1 before surgery) = 1, 
antibiotics administered before surgery = 120 min. (b) Postoperative SSI risk models. Red vertical lines depict: 
Surgery length = 140 min, Age = 53 years, BMI = 28 kg / m2, Albumin blood = 3.8 g/dL, blood loss = 100 mL, 
Days from admission to surgery = 7 days, Microbiology test (on days − 4 to − 1 before surgery) = 1.

▸
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other patient populations are considered. Our dataset underrepresents different races, geographical areas, and 
clinical specialties. A larger, more diverse dataset will be required to improve and validate our models.

The strengths of the presented modeling approach are multifold: (1) The developed risk prediction models 
rely on well-established risk factors. To base machine learning models on medical knowledge grounded on years 
of research has the advantage that the model is likely more robust when applied to different datasets. It is also 
helpful for physicians who are aware of the individual risk factors but may struggle in weighting and combining 
them into an overall risk estimate, a task that machine learning models excel in when trained on the appropriate 
data. (2) Our risk predictions are transparent, both in terms of the models’ overall decision-making and  indi-
vidual predictions. Being aware of the inner working of the model builds trust in its results and helps physicians 

Figure 3.  Impact of features of pre- and postoperative leaks risk predictions Subplots show how a given feature 
affects the risk prediction of the model. X-axes depict the values of the feature, y-axes the associated SHAP 
values. Missing values are represented on the far left of the x-axis. A positive SHAP value indicates that the value 
of the feature increases the overall risk, a negative SHAP values lowers risk of postoperative leaks. The larger 
the magnitude of the SHAP value the more it affects the risk prediction. Red vertical lines indicate inflection 
points were the value of the feature switches from having a negative to positive (or vice versa) impact on the 
risk prediction. The arrangement of the subplots follows the order of importance of the features for the model 
predictions. (a) Preoperative leak risk models. Red vertical lines depict: Age = 50 years, BMI = 30 kg / m2, 
Albumin blood = 4.4 g/dL, Protein blood total: 7.8 g/dL (b) Postoperative SSI risk models. Red vertical lines 
depict: Surgery length = 160 min, Albumin blood = 4.4 g/dL, Protein blood total = 7.2 g/dL, BMI = 25 kg / m2, 
Age = 60 years.
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define mitigation strategies for reducing risk. (3) The models are based on EMR data. Leveraging available EMR 
data ensures that the models can be integrated into clinical workflows as seamlessly as possible without adding 
unnecessary burden to hospital staff by requiring manual data inputs. Going forward, it will be important to 
test the risk models in clinical settings to validate their performance on current real-world data and to integrate 
the prediction into the day-to-day workflow of surgeons and staff. The physicians’ interaction with the model 
output and its acceptance will also have to be  investigated49. Only if physicians assess the risk more accurately 
following AI interaction and appropriate mitigation strategies are adopted can machine learning algorithms 
reduce postoperative complications and improve patients’ health.

Conclusion
Risk prediction models for postoperative complications do not need to be unexplainable black-box models. 
Models trained on evidence-based risk factors perform on par with those trained on a larger number of EMR-
based inputs. Model explanation using Shap analysis cannot only help build trust in machine learning models 
but can also support physicians in identifying risk mitigation strategies.

Data availability
The data that support the findings of this study are available from Sheba Medical Center but restrictions apply 
to the availability of these data, which were used under license for the current study, and so are not publicly 
available. However, data are available from the authors upon reasonable request and with permission of and 
through Sheba Medical Center.
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