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Evaluating the tumor immune 
profile based on a three‑gene 
prognostic risk model in HER2 
positive breast cancer
Jianqing Lin1, Aiyue Zhao2 & Deqiang Fu2*

To date, there have not been great breakthroughs in immunotherapy for HER2 positive breast cancer 
(HPBC). This study aimed to build a risk model that might contribute to predicting prognosis and 
discriminating the immune landscape in patients with HPBC. We analyzed the tumor immune profile 
of HPBC patients from the TCGA using the ESTIMATE algorithm. Thirty survival‑related differentially 
expressed genes were selected according to the ImmuneScore and StromalScore. A prognostic risk 
model consisting of PTGDR, PNOC and CCL23 was established by LASSO analysis, and all patients 
were classified into the high‑ and low‑risk score groups according to the risk scores. Subsequently, 
the risk model was proven to be efficient and reliable. Immune related pathways were the dominantly 
enriched category. ssGSEA showed stronger immune infiltration in the low‑risk score group, including 
the infiltration of TILs, CD8 T cells, NK cells, DCs, and so on. Moreover, we found that the expression 
of immune checkpoint genes, including PD‑L1, CTLA‑4, TIGIT, TIM‑3 and LAG‑3, was significantly 
upregulated in the low‑risk score group. All the results were validated with corresponding data 
from the GEO database. In summary, our investigation indicated that the risk model composed 
of PTGDR, PNOC and CCL23 has potential to predict prognosis and evaluate the tumor immune 
microenvironment in HPBC patients. More importantly, HPBC patients with a low‑risk scores are likely 
to benefit from immune treatment.

Breast cancer is one of the most common carcinomas worldwide. Approximately 2.1 million new patients were 
reportedly diagnosed with breast cancer in 2018, and new patients with breast cancer accounted for approxi-
mately 24.2% of all cancer cases among  women1. HPBC, a subtype of breast cancer, is characterized by the over-
expression of HER2  protein2, shows drug resistance and highly aggressive biology, and is associated with poor 
 survival3–5. Published data show that HPBC accounts for one-fourth to one-fifth of breast  cancers6.

According to NCCN guidelines, the combination regimen of chemotherapy plus anti-HER2 drugs is regarded 
as the standard treatment regimen for HPBC patients. Although patient survival has been markedly prolonged 
by treatment with anti-HER2  drugs7, HPBC patients still face lack of optimal subsequent treatment after the 
development of drug resistance or tumor recurrence. In recent years, tumor immunotherapy, represented by 
PD-1/PD-L1 pathway blocking antibodies, has shown great success in various  malignancies8–12, including triple-
negative breast  cancer13. Unfortunately, to date, there has been no great improvement in tumor immunotherapy 
for HPBC, except for a few reports in animal  experiments14.

However, in the past few years, accumulating evidence has demonstrated a positive association between the 
tumor immune microenvironment (TIME) and the prognosis of HPBC patients. An increased number of stromal 
tumor-infiltrating lymphocytes (TILs) denotes a good prognosis in HPBC patients who received  chemotherapy15. 
Coincidentally, high PD-L1 expression and marked CD8 TIL infiltration were regarded as markers of better 
outcome in HPBC patients treated with conventional chemotherapy and HER2-blocking  therapy16. Recently, 
assessment of the TIME based on gene expression has attracted increasing attention in the HPBC  field17,18. How-
ever, a recent phase II clinical trial showed that combination treatment with anti-Her2 and anti-PD-L1 agents 
did not improve progression-free survival (PFS) in HPBC  patients19. Hence, it is crucial to accurately evaluate 
the TIME in HPBC patients.
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In this study, we attempted to construct a risk model for predicting prognosis and evaluating the tumor 
immune profile in HPBC patients. Initially, we explored the immune-infiltrating profile of HPBC patients based 
on the ESTIMATE algorithm using data from the TCGA and GEO databases. Then, 30 survival-related genes 
were selected from 606 differentially expressed genes that were previously identified according to the ESTIMATE 
score. Finally, we created a gene-based risk model that may be helpful for accurately predicting prognosis and 
assessing the tumor-infiltrating immune profile in patients with HPBC. With this model, we hope to provide 
personalized tumor immunotherapy for appropriate patients with HPBC in the future.

Results
Characteristics of the cohorts. A total of 280 HER2-positive patients from the TCGA, GSE20711, 
GSE45255, GSE162228 and GSE1456 databases were selected for our study. The training cohort contained 132 
patients from the TCGA. The validation cohort comprised 26 patients from GSE20711, 61 from GSE45255, 46 
from GSE162228 and 15 from GSE1456. The accuracy of the constructed model was verified by a validation 
cohort. The clinical characteristics of the HPBC patients are shown in Table S1.

Immune infiltration is a survival‑associated factor in HPBC patients. To evaluate immune cell 
infiltration in HPBC patients, the ESTIMATE algorithm was utilized to calculate the ESTIMATE scores for the 
TCGA cohort, reflecting the TIME  landscape20. The median scores, including the StromalScore, ImmuneScore 
and ESTIMATEScore, were assigned as the cutoff values. All patients were classified into the corresponding low- 
and high-risk groups. The results of the Kaplan–Meier survival analysis showed that the overall survival (OS) in 
the high ImmuneScore group was better than that in the low ImmuneScore group (p = 0.03), but no survival dif-
ference was found between the groups based on the StromalScore (p = 0.224) or the ESTIMATEScore (p = 0.106) 
(Fig. 1A–C). We further analyzed the correlations of OS with ImmuneScore, age and stage by univariate and 
multivariate Cox analyses. Unexpectedly, the results showed that the ImmuneScore could not be regarded as an 
independent prognosis-related factor in the TCGA cohort (Fig. S1).

Subsequently, we explored differential gene expression between groups based on the StromalScore and Immu-
neScore. In the StromalScore groups, 1140 differentially expressed genes (DEGs) were identified (|log FC|≥ 1, 
p < 0.05). Among them, 1110 genes were significantly upregulated and 30 genes were significantly downregulated 
(Fig. 1D). Similarly, among 1268 DEGs identified in the ImmuneScore groups, 1244 were significantly upregu-
lated and 24 were significantly downregulated (|log FC|≥ 1, p < 0.05) (Fig. 1E). Furthermore, 606 DEGs (604 
upregulated genes and 2 downregulated genes) were identified in both the StromalScore groups and Immune-
Score groups (Fig. 1F,G). Next, we found that 30 of the 606 DEGs were strongly associated with OS (Table S2). 
Among the 30 survival-related DEGs, 8 (CXCR2, PTGDR, GPR171, CD3E, CD3D, P2RX1, PNOC and CCL23) 
were involved in the immune-infiltrating evaluation of  CIBERSORT21.

Construction of a prognosis‑related risk model based on survival‑associated genes. To pre-
cisely evaluate the correlation between immune infiltration and OS, 8 survival-related DEGs were analyzed 
based on a least absolute shrinkage and selection operator (LASSO) algorithm, and 3 survival-related DEGs 
(PTGDR, PNOC and CCL23) were selected. Next, the corresponding LASSO coefficients and the optimum 
value of the penalty parameter λ (λ = 0.04003709) were acquired (Fig. 2A).

Thus, a prognosis-related risk model was established, and the survival of HPBC patients was assessed accord-
ing to the risk score calculated based on the expression of the three genes. Risk score = (− 3.372 × PTGDR) + (− 0
.948 × PNOC) + (− 0.570 × CCL23). The median risk scores in the different cohorts served as the corresponding 
cutoff values. Then, all patients were divided into the low- and high-risk score groups. The survival analysis 
results showed that patients with a low-risk score had a better OS than those with a high-risk scores, with p 
values of 0.009 in the training cohort and 0.0037 in the validation cohort (Fig. 2B). The predictive accuracy of 
this risk model was assessed by time-dependent receiver operating characteristic (ROC) analysis. The area under 
the curve (AUC) values were 0.932, 0.890, and 0.841 at 1 year, 2 years, and 3 years, respectively, in the training 
cohort (Fig. 2C). Similarly, the AUC values were 0.843, 0.517 and 0.574 at the same time points in the validation 
cohort (Fig. 2C).

All patients were classified based on risk score, OS and living status, as shown in Fig. 2D. Principal component 
analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) analysis were applied to assess the 
interrelationship between patients in different risk groups (Fig. 2E,F). The results suggested that the established 
risk model contributed to the accurate classification of HPBC patients.

To judge the independent prognostic ability of the risk model, several clinical features, including age, tumor 
stage (T stage or N stage), histologic grade and ER/PR status, were regarded as binary variables and evaluated 
by univariate and multivariate analyses. The results suggested a strong association between the risk score and 
the OS of HPBC patients in the training cohort. The p values for the univariate and multivariate analyses were 
0.019 and 0.029, respectively (Fig. 3A,B). Similar results were found in the validation cohort; the p values for the 
univariate and multivariate analyses were 0.046 and 0.03, respectively (Fig. 3C,D). These data provided evidence 
that the risk score can function as an independent prognostic factor to evaluate the OS of patients with HPBC.

Risk scores correlate with the TIME of HPBC patients. To investigate the relationship between the 
risk score and the TIME of HPBC patients, a single-sample gene set enrichment analysis (ssGSEA) algorithm 
was used to discriminate immune infiltration in HPBC patients. The low-risk score group exhibited more sig-
nificant immune cell infiltration, including of CD8 T cells, TILs, T helper cells, DCs, aDCs, iDCs, neutrophils, 
macrophages, NK cells, pDCs and Tregs (Fig. 4A,B). The low-risk score group also demonstrated a more pow-
erful immune response, including checkpoint activity, T-cell coinhibition, T-cell costimulation, APC costimu-
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lation, cytolytic activity, CCR, inflammation promotion, parainflammation and APC coinhibition. Based on 
the ssGSEA score, the CD8 T cell/Treg ratio and CD8 T cell/neutrophil ratio were calculated. As shown in 
Fig. S3, the CD8 T cell/Treg ratio (p < 0.001) and CD8 T cell/neutrophil ratio (p < 0.001) were both higher in 
the low-risk group than in the high-risk group. Furthermore, unsupervised clustering analysis indicated that 
the patients with a low-risk score almost always harbored greater immune infiltration (Fig. 4C). In addition, the 
ESTIMATE analysis showed that the low-risk score group possessed a higher StromalScore (p < 0.001), Immu-
neScore (p < 0.001) and ESTIMATEScore (p < 0.001) than the high-risk score group in both cohorts (Fig. 4D).

Identification and functional enrichment of DEGs grouped by risk scores. Next, we analyzed the 
DEGs between different risk score groups in both cohorts. Our results showed that 3338 DEGs were identified in 
the training cohort (p < 0.05, Fig. 5A), and 1205 DEGs were identified in the validation cohort (p < 0.05, Fig. 5B). 
Among these genes, 322 overlapping DEGs were found with the cutoff p < 0.01 (Fig. S2).

Furthermore, the potential functions of 322 DEGs were evaluated according to Kyoto Encyclopedia of Genes 
and Genomes (KEGG) and gene ontology (GO) enrichment analyses. KEGG analysis showed that immune-
related pathways (including cytokine–cytokine receptor interaction pathway, antigen processing and presenta-
tion, B cell receptor signaling pathway and chemokine signaling pathway) are potentially the most important 
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Figure 1.  Survival analysis and differentially expressed genes based on the ESTIMATE algorithm in the 
training cohort. (A–C) Kaplan–Meier survival curves of patients grouped by the median of StromalScore, 
ImmuneScore and ESTIMATEScore. (D,E) Heatmap of differentially expressed genes between the high score 
group and the low score group from StromalScore data and ImmuneScore data. (F) Venn diagram of the 
upregulated differentially expressed genes from StromalScore data and ImmuneScore data. (G) Venn diagram of 
the downregulated differentially expressed genes from StromalScore data and ImmuneScore data.
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mechanisms. (Fig. 6A). GO analysis suggested that these overlapping DEGs primarily mediated immune-related 
biological functions (Fig. 6B). These data showed that the important biological processes included T cell activa-
tion, lymphocyte proliferation, regulation of T cell activation, lymphocyte differentiation and positive regulation 
of lymphocyte activation. In addition, the enriched cellular component and molecular function categories are 
in Fig. 6B, these included external side of plasma membrane, plasma membrane signaling receptor complex, 
immunological synapse, immune receptor activity, cytokine receptor activity and MHC protein complex bind-
ing. Furthermore, GSEA was performed to map all DEGs. As shown in Fig. S4, in both the training and valida-
tion cohorts, immune-related pathways and biological functions were the crucial factors, and were enriched in 
the low-risk group. To observe interactions among these 322 overlapping DEGs, the STRING protein–protein 
interaction (PPI) database was used with an interaction score greater than 0.95. As shown in Fig. 7A, all the 
DEGs were divided into four groups: immune cell migration (green), immune cell activation and maturation 
(red), immune cell binding (blue) and intracellular signal transduction (yellow). The top 30 genes ranked by 
interaction count are shown in Fig. 7B; these genes included CD4, LCP2, LCK, PTPRC and FYN. Taken together, 
the evidence indicates that these DEGs based on the risk model may play a critical role in the tumor immune 
profile in HPBC patients.

Finally, we evaluated the importance of immune checkpoint-related genes, such as PD-L1, LAG-3, CTLA-4, 
TIM-3 and TIGIT. The results demonstrated that the expression of these 5 genes was significantly upregulated 
in the low-risk score group of the training cohort (all p values < 0.001, Fig. 8A). As expected, similar differences 
were found in the validation cohort (p < 0.001, p = 0.026, p < 0.001, p = 0.012, and p < 0.001, respectively; Fig. 8B).
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Figure 2.  LASSO analysis based on survival-related genes and validation of the established risk model. (A) 
LASSO coefficient profiles (top) of survival-related genes and tenfold cross-validation results (bottom), which 
identified optimal values of the penalty parameter λ in the training cohort. (B) Kaplan–Meier survival curves 
of patients grouped by the risk score in the training cohort and validation cohort. (C) ROC curves of the risk 
model in training cohort and validation cohort. (D) HPBC patients were divided into high- and low-risk score 
groups according to the risk score model. (E,F) PCA and tSNE of the risk model in the training cohort and 
validation cohort.
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Discussion
At present, tumor immunotherapy is an important treatment option, that is widely utilized to treat various malig-
nancies. However, this revolutionary therapeutic regimen has not achieved great breakthroughs in patients with 
HPBC. Therefore, it is crucial to distinguish the tumor immune-infiltrating profile in HPBC patients, and in the 
future, we will likely provide immunotherapy for appropriate patients according to TIME analysis. In our study, 
we initially utilized the ESTIMATE algorithm to assess tumor immune infiltration in patients with HPBC. Our 
results indicated a strong association between tumor immune infiltration and the prognosis of HPBC patients 
based on the ImmuneScore. Unfortunately, the ImmuneScore could not serve as an independent marker with 
predictive prognostic ability.

In recent years, risk models with the ability to predict prognosis have gained increasing attention. Many risk 
models are established based on gene expression profiles and are widely utilized in studies of various malignan-
cies, such as breast  cancer22 and lung  adenocarcinoma23. Hence, after 8 differentially expressed genes based on 
ESTIMATE scores were verified to be significantly associated with survival and the immune-infiltrating assess-
ment of CIBERSORT, the LASSO algorithm was employed to select optimal genes. Finally, 3 genes including 
PTGDR (prostaglandin D2 receptor), PNOC (prepronociceptin) and CCL23 (C–C motif chemokine ligand 23), 
were selected as core entities of this model. These genes are classified as immune-related genes in the Immunol-
ogy Database and Analysis Portal (Imm-Port) (https:// immpo rt. niaid. nih. gov)24. PTGDR, known as the receptor 
of prostaglandin D2, contains 2 subtypes: prostaglandin D2 receptor 1 (DP1) and prostaglandin D2 receptor 2 
(DP2). PTGDR may serve as an immune inhibition-related gene. A few studies have shown that PTGDR might 
suppress the function of natural killer  cells25 and promote an increase in  Foxp3+  CD4+ regulatory T  cells26. 
Accumulating data suggest that hypermethylation of PTGDR might play a role in the tumorigenesis and develop-
ment of various cancers, including bladder  cancer27, colon  cancer28, lung  adenocarcinoma29, cervical  cancer30, 
endometrial  carcinoma31 and gastric  cancer32. PNOC encodes a preproprotein that is proteolytically processed 
to generate multiple protein products, including nociceptin, nocistatin, and orphanin FQ2 (OFQ2)33. It has 
been reported that nociception/orphanin FQ2 (N/OFQ) might be activated by the proinflammatory cytokines, 
interleukin-1 beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) via the ERK 1/2 and p38 MAP kinases 
 pathways34. Further, N/OFQ interacts with nociceptin receptor (NOP) in cancer, and promotes the proliferation 
and invasion of tumor cells via the PI3K/Akt signaling  pathway35, it also functions as an immune inhibitor by 
binding the N/OFQ peptide receptor on the surface of circulating immune  cells36 or inhibiting the activation 
of  DCs37. Published clinical data showed that NOP overexpression implied a poor prognosis in non-small-cell 
lung  cancer35. However, until now, few studies have verified the direct association between PNOC and cancer. 
Thus, we hypothesize that PNOC may indirectly mediate immune inhibition and promote tumor growth by 
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Figure 4.  Tumor immune landscape in the high-risk score group and low-risk score group. (A) Immune 
infiltration (top) and immune function (bottom) in the training cohort. (B) Immune infiltration (top) and 
immune function (bottom) in the validation cohort. (C) Unsupervised clustering heat map showing the 
association between immune infiltration and survival-related clinical characteristic parameters, including risk 
score, age, hormone receptor status, histology grade, tumor stage, OS and survival status, in the training cohort 
(top) and validation cohort (bottom). (D) Comparison of the Estimate scores between the high-risk score group 
and the low-risk score group in the training cohort and validation cohort.
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N/OFQ. CCL23 is a member of the CC chemokine family and demonstrates chemotactic activity on resting T 
lymphocytes, monocytes,  neutrophils38 and dendritic  cells39 but is not expressed on activated T lymphocytes. 
In addition, human neutrophils orchestrate the recruitment of different cell types to inflamed sites by releasing 
CCL23, which then controls the immune  response40. There is much evidence that CCL23 expression is signifi-
cantly upregulated in various cancers, including lung  cancer41, colorectal  cancer42,43, and ovarian  cancer44. CCL23 
could promote ovarian cancer migration by activating the ERK1/2 and PI3K  pathways44. Furthermore, CCL23 
expression exhibited positive correlation with PD-L1  expression45. Hence, we hypothesize that CCL23 chiefly 
acts as an immune inhibitor and promotes tumor growth. However, a liver cancer study showed that CCL23 
could suppress tumor progression by promoting the immune infiltration of CD8 T  cells46.

According to the median risk score, all patients were classified into the high- and low-risk score groups. The 
predictive capacity of the risk model was verified to be precise and powerful. The patients in different cohorts 
were grouped by the respective median risk score, because there was a great difference in the range of the risk 
scores between the two cohorts. This difference in median risk score might be caused by detection platform, 
detection batch, and geographic area.

Figure 5.  Differentially expressed genes in the training cohort and validation cohort. (A) Heatmap of 
differentially expressed genes between the high-risk score group and the low-risk score group in the training 
cohort. (B) Heatmap of differentially expressed genes between the high-risk score group and the low-risk score 
group in the validation cohort.
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The ssGSEA algorithm was broadly employed to assess the TIME. A higher ssGSEA score indicated a better 
immune-infiltrating profile and potentially a better prognosis. In our study, the low-risk score group demon-
strated strong immune infiltration, including of CD8 T cells, TILs, T helper cells, DCs, aDCs, iDCs, neutrophils, 
macrophages, NK cells, pDCs and Tregs. Numerous studies have confirmed that many subtypes of immune 
cells contribute to promoting the antitumor immune response. DCs play a crucial role during T-cell priming by 
presenting processed MHC antigenic  peptides47. In addition, macrophages and NK cells act as part-time antigen 
presenting cells and contribute to T-cell  priming48. CD8 T cells and TILs professionally execute cytotoxic effects 
on tumor cells, and T helper cells were confirmed to kill tumor cells via antigen cross-presentation49. Hence, 
we confirmed the presence of a better tumor-infiltration profile in the TIME of patients with a low-risk score.

Unexpectedly, the proportions of neutrophils and Tregs, which are regarded as immunosuppressive cells, 
were higher in the patients with a low-risk score. Most studies provide evidence that an increased neutrophil or 
Treg frequency would imply poor outcome or survival. Nonetheless, contrasting evidence has been published. 
Some research found that high infiltration of Tregs could improve overall survival in Hodgkin’s  lymphoma50,51, 
follicular  lymphoma52, head and neck  cancer53 and breast  cancer54. Several authors proposed that Tregs are 
not a homogenous population, and can be divided into several subgroups that differ in function according to 
surface antigen  expression55. Therefore, Tregs appear to play dual roles in cancer and cannot accurately predict 
 prognosis56. Recently, the TIL/Treg ratio and TIL/neutrophil ratio were reported to be powerful prognostic 
indicators of survival or treatment outcome in breast  cancer57,58 and other  cancers59,60. In our study, the low-risk 
group had a higher CD8 T cell/Treg ratio and CD8 T cell/neutrophil ratio. This result suggested that the low-risk 
group might have a better prognosis and was consistent with the survival analysis results.

As expected, the low-risk score group showed signs of a more powerful immune response, including check-
point activity, T-cell coinhibition, T-cell costimulation, APC costimulation, cytolytic activity, CCR, increased 
inflammation, parainflammation and APC coinhibition. Publication of the theory of the T-cell cosignaling 
pathway was an important milestone in the field of  immunology61, and this pathway includes both coinhibitory 
and costimulatory signaling  pathways62. Accumulating evidence has proven that cosignaling molecules (either 
coinhibitory receptors or costimulatory receptors) direct T-cell function and determine T-cell fate after T cells are 
activated by the TCR signaling  pathway62. In essence, cosignaling molecules are immune checkpoints. Previous 
studies have reported that enhanced cytolytic activity is a feature of ADCC mediated by activated T  cells63 or NK 
 cells64. Activated T cells migrate directly into tumor tissue along the chemokine gradient and kill tumor cells. 
Chemokine receptors (CCRs) expressed on the surface of T cells mediate this migration of T cells by binding 
the corresponding  chemokine65. Overall, the immune function profile in HPBC patients with a low-risk score 
might suggest an increased antitumor immune response.

Tumor tissue composition including of stromal cells and immune cells, is strongly correlated with the OS of 
cancer  patients66. Coincidentally, the ESTIMATE algorithm could assess the overall constitution of tumor tissue, 
including stromal cells and immune cells. Furthermore, several studies have validated that the ESTIMATE score 
might accurately map the TIME and precisely predict the OS of patients with  cancer67. Similar to the ssGSEA 
results, our ESTIMATE analysis results support that patients with a low-risk score harbored a better immune-
infiltration profile.

Subsequently, we tried to reveal the potential mechanism that promotes antitumor immune infiltration and 
improves the OS of patients with HPBC. A total of 322 DEGs overlapped between the two cohorts. We thought 
that these genes might play crucial roles during tumorigenesis and progression. Further KEGG analysis indicated 
that these DEGs were involved in immune-related pathways. Meanwhile, the top GO terms suggested that these 
genes might mediate the entire T-cell immune response, including priming, activation, proliferation, migration, 
recognition and killing. In addition, the gene–gene interaction analysis results strongly supported the importance 
of immune-related signaling pathways. Moreover, GSEA revealed an overview of the TIME in HBPC patients. 
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We further verified the difference in the TIME between the low- and high-risk groups and hypothesized that 
this difference contributes to survival in the low-risk score group.

At present, immune checkpoints including PD-L1, CTLA-4, LAG3, TIGIT and TIM-3, are thought to contrib-
ute to tumor immune escape. High expression of these immune checkpoints indicates poor prognosis; however, 
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some different opinions have been published recently. Shang et al.68 reported that HPBC patients with high 
PD-L1 expression of tumor cells had a better prognosis after neoadjuvant chemotherapy. Ni et al.69 found that 
PD-L1 expression of TILs implied a good prognosis in breast cancer patients. Lee et al.70 reported that high 
LAG-3 mRNA levels were associated with high levels of TILs in HPBC. High infiltration of TILs is a marker of 
favorable prognosis. In this study, PD-L1, LAG3, TIGIT, TIM-3 and CTLA-4 were upregulated in the low-risk 
group. We speculated that high expression of these immune checkpoints might be associated with TIL-mediated 
antitumor inflammatory  responses71. However, our study indicated that multiple coinhibited signaling pathways 
might be involved in the tumorigenesis of HPBC patients with a low-risk score, and combination treatment with 
multiple immune checkpoint inhibitors may achieve better outcomes in these patients.

In our study, we established and validated a prognosis-related risk model composed of three survival-related 
genes that were strongly associated with immune infiltration. More importantly, we found that immune escape 
caused by multiple immune cosignaling pathways might underlie oncogenesis and tumor progression in some 
patients with HPBC. Hence, we speculated that combination regimens of multiple immune checkpoint inhibi-
tors might achieve breakthroughs in the treatment of HPBC patients in the future. However, there were some 
limitations of our study. First, this study lacked validation with experimental data. Moreover, some analytical 
biases were inevitable due to the absence of some clinical data. Therefore, an analysis of clinical samples was 
necessary to consolidate the conclusions of this study.

Methods
Data acquisition and preprocessing. We obtained all data (including clinical characteristics and mRNA 
expression) of HPBC patients from the TCGA database (https:// portal. gdc. cancer. gov/) and GEO database 
(https:// www. ncbi. nlm. nih. gov/ geo/). The TCGA dataset was considered the training cohort, and the GSE20711, 
GSE45255, GSE162228 and GSE1456 GEO datasets were regarded as the validation cohorts. Patients with an OS 
of less than 1 month were excluded from the analysis. Thus, 132 HPBC patients in the TCGA and 148 HPBC 
patients in GEO were accepted for subsequent study. The procedures involving with the data collection and 
analyses abided by all provisions of the TCGA and GEO.

Assessment of the TIME in HPBC patients. The ESTIMATE algorithm is appropriate for assessing the 
profile of the TIME, which contains stromal cells and immune  cells20. A higher score indicates more significant 
infiltration of the corresponding component in the tumor tissue. The ssGSEA algorithm was applied to judge 
the level of immune cell infiltration and the immune response mechanism based on published data from Bindea 
et al.72. Thus, these analyses provided an overview of the tumor-infiltrating landscape.

Identification of DEGs and the analysis of potential functions. The DEGs between different groups 
were mapped by the “limma” R package. Genes with a p value < 0.05 were regarded as DEGs.

Functional GO and KEGG  analyses73 of the DEGs were performed utilizing the “clusterProfiler” package. 
Then, the potential mechanisms were elucidated according to FDR < 0.05. All the data were visualized by the 
“ggplot2” and “topGO” packages.

We carried out gene set enrichment analysis (GSEA) using GSEA software (V4.1.0) to determine whether 
DEGs exhibited significant and consistent differences between the high- and low-risk  groups74.

Establishment of a risk model with prognostic ability. The optimal survival-related genes in the 
training cohort were selected by LASSO analysis based on the “glmnet” R  package75. Tenfold cross-validation 
was used for filtering, and the λ value was obtained. Meanwhile, the coefficients of the selected genes were 
acquired. Then, the risk score of each sample was regarded as the summation of the product of each selected gene 
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and the corresponding coefficient. Thus, all patients were classified into the high-risk score or low-risk score 
group based on the respective median risk scores in both cohorts.

Subsequently, the survival difference between the two groups was analyzed and plotted by the “survival” and 
“survminer” R packages. The “survival ROC” R package was applied to determine the AUC value and plot the 
ROC curve. PCA and t-SNE were utilized to analyze the clustering of each sample in the model. Furthermore, 
the risk score was regarded as a prognosis-related variable, and the independent predictive power of this variable 
was assessed by univariate and multivariate analyses using the “survival” package.

Statistical analysis. All statistical analyses were performed using R software (version 4.1.1) (https:// 
www.r- proje ct. org/). The differences between variables in two groups were examined by using Wilcoxon’s test. 
Kaplan–Meier curves were utilized to assess the survival data. Independent prognostic factors were judged via 
univariate and multivariate Cox regression analyses. p < 0.05 was considered to indicate statistical significance 
(*p < 0.05; **p < 0.01; ***p < 0.001).

Ethics approval and consent to participate. Not applicable. All data in this study are publicly available.

Data availability
All data obtained for this study can be found in the TCGA (https:// portal. gdc. cancer. gov/) and Gene Expression 
Omnibus (GEO) repository (https:// www. ncbi. nlm. nih. gov/ geo/).
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