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Predicting persistent central serous 
chorioretinopathy using multiple 
optical coherence tomographic 
images by deep learning
Donghyun Jee1, Ji Hyun Yoon2, Ho Ra2, Jin‑woo Kwon1 & Jiwon Baek2,3*

We sought to predict whether central serous chorioretinopathy (CSC) will persist after 6 months 
using multiple optical coherence tomography (OCT) images by deep convolutional neural network 
(CNN). This was a multicenter, retrospective, cohort study. Multiple OCT images, including B-scan 
and en face images of retinal thickness (RT), mid-retina, ellipsoid zone (EZ) layer, and choroidal layer, 
were collected from 832 eyes of 832 CSC patients (593 self-resolving and 239 persistent). Each image 
set and concatenated set were divided into training (70%), validation (15%), and test (15%) sets. 
Training and validation were performed using ResNet50 CNN architecture for predicting CSC requiring 
treatment. Model performance was analyzed using the test set. The accuracy of prediction was 0.8072, 
0.9200, 0.6480, and 0.9200 for B-scan, RT, mid-retina, EZ, and choroid modalities, respectively. 
When image sets with high accuracy were concatenated, the accuracy was 0.9520, 0.8800, and 
0.9280 for B-scan + RT, B-scan + EZ, and EZ + RT, respectively. OCT B-scan, RT, and EZ en face images 
demonstrated good performances for predicting the prognosis of CSC using CNN. The performance 
improved when these sets were concatenated. The results of this study can serve as a reference for 
choosing an optimal treatment for CSC patients.

Central serous chorioretinopathy (CSC) is a common retinal disease characterized by serous detachment of the 
neurosensory retina1. Most cases of CSC are idiopathic and regress spontaneously within 3 to 4 months2. How-
ever, the disease is non-resolving and chronic in some patients, and clinicians’ ability to predict the prognosis 
of the natural course and whether the disease will become chronic and require treatment is limited due to its 
multifactorial etiology and complex pathogenesis.

Optical coherence tomography (OCT) images provide broad anatomical information on the retinal and 
choroidal changes that take place in CSC. Numerous previous studies have reported that these characteristic 
changes differ among CSC types and have suggested the use of these features for prognosis of CSC patients. Some 
examples of these characteristic changes involve the hyperreflective choroidal vessel wall, the photoreceptor outer 
segment and ellipsoid zone, and choroidal and macular thickness3–5.

In recent years, artificial intelligence using deep learning (DL) has been actively applied to many areas of 
retinal imaging, including diabetic retinopathy and age-related macular degeneration (AMD)6–8. DL has been 
demonstrated to distinguish acute and chronic CSC when using single or multiple OCT B-scan images9,10. The 
OCT imaging system provides not only B-scans, but also en face images, which offer layer-by-layer information 
on the total macular area. In the current study, we assessed the feasibility of a DL model trained using multiple 
OCT images for prognosis of CSC and whether the disease will persist after 6 months.

Results
Participant demographic and clinical characteristics.  In total, 832 eyes from 832 patients were 
included in the study (593 self-resolving and 239 persistent cases). The mean ages of the self-resolving CSC 
and persistent CSC groups were 52.00 ± 10.67 years and 54.73 ± 11.93 years, respectively (P = 0.014). The mean 
baseline BCVA and BCVA at 6 months were better in the self-resolving group (both P < 0.001). The mean CMT 
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was higher in the persistent group (P < 0.001). The sex distribution, laterality, and baseline SFCT did not reveal 
significant differences between groups (P = 0.920, 0.836, and 0.585, respectively). These clinical features are sum-
marized in Table 1.

Performance of deep learning models for predicting persistent CSC.  The accuracy values were 
90.36%, 93.60%, 73.60%. 96.00%, and 76.80% for the OCT image validation sets of B-scan, retinal thickness, 
mid-retinal, EZ, and choroid, respectively.

For the test set, the accuracy percentages were 80.72%, 92.00%, 64.80%, 92.00%, and 63.20% for B-scan, 
retinal thickness, mid-retinal, EZ, and choroid, respectively. The F1 scores by set were 0.6800, 0.8718, 0.3125, 
0.8718, and 0.1154, respectively. The accuracy, precision, recall, specificity, F1 score, and kappa values for each 
model are summarized in Table 2.

Upon concatenation of the two highest performing image sets, the accuracy percentages for the validation 
set were 96.80%, 86.40%, and 96.00%, for B-scan + EZ, B-scan + retinal thickness, and EZ + retinal thickness, 
respectively. For the test set, the accuracy was 95.20%, 88.00%, and 92.80% for each set, respectively. The accu-
racy, precision, recall, specificity, F1 score, and kappa values for each model trained using concatenated images 
are summarized in Table 3.

Heatmap analysis with Grad-CAM highlighted areas of shallow irregular pigment epithelial detachment 
(PED) and areas of increased reflectivity beneath the detached retina as important area (Fig. 1) on OCT B-scan. 
Also, areas of the neurosensory retinal detachment with or without outer retinal defects are highlighted on OCT 
en face images of EZ layer (Fig. 2). Optical coherence tomography angiography was available in some cases of 
persistent CSC. In these cases, areas of PED containing RPE undulation (retinal pigment epithelium) on B-scan 
was revealed to be an important area for the decision but did not conceal choroidal neovascularization (Fig. 3).

Table 1.   Demographic and clinical information of the study participants. CSC: central serous 
chorioretinopathy; SD: standard deviation; SFCT: subfoveal choroidal thickness; CMT: central macular 
thickness; BCVA: best-corrected visual acuity; logMAR: logarithm of the minimal angle of resolution.

Features Self-resolving CSC (n = 593) Persistent CSC (n = 239) P-value

Age (years), mean ± SD 52.00 ± 10.67 54.73 ± 11.93 0.014

Sex (male %) 78 79 0.797

Laterality (right eye %) 46 47 0.830

SFCT (µm), mean ± SD 399.35 ± 79.27 404.16 ± 91.4 0.565

CMT (µm), mean ± SD 352.29 ± 113.92 450.26 ± 182.78  < 0.001

Baseline BCVA (logMAR), mean ± SD 0.14 ± 0.2 0.27 ± 0.27  < 0.001

BCVA at 6 months (logMAR), mean ± SD 0.08 ± 0.16 0.14 ± 0.21  < 0.001

Table 2.   The performance of the deep learning models trained using each OCT image set for CSC prognosis. 
OCT: optical coherence tomography; CSC: central serous chorioretinopathy; SE: standard error. F1 score = 2 × 
{(precision × recall)/(precision + recall)}.

Accuracy Precision Recall Specificity F1 score Kappa mean Kappa SE

B-scan 0.8072 0.7391 0.6296 0.8929 0.6800 0.782 0.060

Retinal thickness 0.9200 0.9189 0.8293 0.9643 0.8718 0.814 0.056

Mid-retinal 0.6480 0.4348 0.2439 0.8452 0.3125 0.100 0.087

Ellipsoid zone 0.9200 0.9189 0.8293 0.9643 0.8718 0.814 0.056

Choroid 0.6320 0.2727 0.0732 0.9048 0.1154 0.027 0.064

Table 3.   The performance of the deep learning models trained using concatenated OCT image sets for CSC 
prognosis. OCT: optical coherence tomography; CSC: central serous chorioretinopathy; SE: standard error; EZ: 
ellipsoid zone. F1 score = 2 × {(precision × recall)/(precision + recall)}.

Accuracy Precision Recall Specificity F1 score Kappa mean Kappa SE

B-scan + retinal thickness 0.9520 0.9487 0.9024 0.9762 0.9250 0.7230 0.0670

B-scan + EZ 0.8800 0.8421 0.7805 0.9286 0.8101 0.8900 0.0440

EZ + retinal thickness 0.9280 0.881 0.9024 0.9405 0.8916 0.8380 0.0520
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Figure 1.   Four representative cases of persistent Grad-CAM analysis on B-scan. (A–D). The heatmaps 
highlight areas of shallow irregular pigment epithelial detachment in all cases. Areas of increased reflectivity 
representing elongated photoreceptor outer segments in the subretinal fluid area are shown in (D).

Figure 2.   Four representative cases of persistent Grad-CAM analysis on OCT en face images of the ellipsoid 
zone (EZ) layer. (A–D) A heatmap overlying the OCT en face image of the EZ layer highlights areas of the 
neurosensory retinal detachment with or without outer retinal defects within the main lesion in all cases. 
Areas of the neurosensory retinal detachment with or without outer retinal defects outside the main lesion are 
important in Cases A and B.

Figure 3.   A representative case of persistent CSC with OCT angiography: the left eye of a 45-year-old male. 
(A) The OCT B-scan shows SRF with shallow irregular PED. (B) The heatmap overlying the OCT B-scan 
highlights important areas for use of DL in determining the prognosis of this case as persistent CSC. (C) A 
heatmap overlying the OCT en face image of the ellipsoid zone layer highlights the important areas. (D) OCT 
angiography does not reveal any choroidal neovascularization.
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Discussion
In this study, we developed DL models to predict the prognosis of CSC patients and whether the disease will be 
self-resolving or persistent for the next 6 months. The results of our study showed that DL model training using 
pretrained ResNet50 can predict the prognosis of CSC eyes by analyzing OCT B-scans and en face images of 
retinal thickness, EZ layer, and choroid layer with good performance. In addition, the performance of DL models 
was better when these image sets were concatenated.

Diagnosis, classification, and prognosis prediction of a disease using DL has become an active field of imaging 
research in ophthalmology, especially the retina6,8–13. In CSC, diagnosis and classification of the disease, detection 
of subretinal fluid, and prediction of post-therapeutic visual acuity have been investigated using DL9,10,12–15. Most 
previous studies have used fundus photography or OCT B-scans alone for development of DL models. The value 
of en face images in CSC has been emphasized by numerous studies12,16–18. The pathologic features of the RPE 
and choroid in CSC eyes are well visualized on en face images19. Therefore, this study utilized multi-layer OCT 
en face images along with B-scan images for automated prediction of the prognosis of CSC.

In predicting the prognosis of CSC patients, OCT image sets of B-scans, retinal thickness, and the EZ layer 
showed good performance in this study. Xu et al. applied DL to predict visual acuity in CSC patients using clini-
cal features, collected features from OCT B-scan images, and showed that the DL model could predict the visual 
outcome of CSC after treatment with low mean absolute error13. This study confirmed that OCT B-scan images 
can be used to predict the outcome of CSC using a DL model. Nonetheless, the recall and F1 scores produced 
by the DL model using B-scans alone were unsatisfactory.

En face image sets of the EZ and retinal thickness showed better accuracy, sensitivity, and specificity in DL 
prediction models of CSC prognosis. The en face EZ layer reflects changes in the outer or inner photoreceptor 
segment as well as the EZ (IS/OS junction). Significant loss in photoreceptors and an elongated photoreceptor 
outer segment length are characteristic findings and are also associated with visual prognosis in patients with 
chronic CSC4,20,21. The good performance of the DL model using the EZ layer en face images suggests that changes 
to the adjacent EZ layers play an important role in the prognosis of CSC.

The integrity of EZ observed on OCT B-scan and CMT was shown to be important in predicting visual 
acuity at 1, 3, and 6 months13. OCT volume scans were used to estimate post-treatment retinal function in CSC 
patients in a study by Pfau et al.15. Their study showed that localized retinal sensitivity after treatment can be 
inferred from the thicknesses of the retinal layers in CSC eyes using machine learning (random forest after feature 
extraction). Similarly, in this study, the thickness map of the entire retinal layer, which contains information on 
the thicknesses of retinal layers and CMT, could predict the prognosis of CSC using DL. It is not clear whether 
higher CMT or shallow diffuse CMT was prognostic factor for persistent CSC in this study. Arora et al. showed 
that shallow subretinal fluid was associated with recurrent or complicated CSC22. This might be the point for 
predictionin this model, but this interpretation requires caution since the association between CMT and visual 
outcome depends on types of CSC. An en face image of the mid-retinal layer did not show good results for 
training the DL model.

For en face OCT images of the choroidal vasculature, CSC shows characteristic changes of diffuse distribu-
tion of dilated Haller vessels17,23,24. Aoyama et al. demonstrated that CSC can be diagnosed by DL with OCT en 
face slab showing the choroidal vasculature12. Nonetheless, en face images of the choroid were not useful for a 
DL model to predict the outcome of CSC. Although a previous report implied different characteristics of the 
choroidal vasculature between acute and chronic CSC, we suggest that these features are not significant enough 
for use in a DL prediction model16.

A Grad-CAM heatmap analysis of OCT B-scan images showed that the hyperreflective area beneath the 
detached retina was important for determining the prognosis of the eye as persistent. The hyperreflective area 
indicates an elongated photoreceptor outer segment, which is well recognized as an important feature of chronic 
CSC25. In addition, shallow irregular PED areas were highlighted on the heatmaps. A small, flat, irregular PED 
could be a marker of chronic or recurrent CSC and implies genetic overlap of patients with AMD, which can 
explain the refractoriness of the condition26,27.

Important limitations of this study include the limited performance according to the OCT device as this study 
only included images obtained with one HD-OCT system. Currently, high performance of a DL model requires 
input data from the same OCT system. Additionally, although we used a recent consensus for CSC classification 
that was developed using multimodal imaging28, there might be some controversy in defining CSC as acute or 
persistent in the CSC eyes that did not resolve during months three to five. However, we believe that there will be 
no controversy in that the disease is considered refractory if it persists for more than 6 months; predicting this 
entity at baseline can be useful for both doctors and patients. Further research involving multimodal images from 
many OCT machines and more retinal specialists are warranted to validate the results of the current investigation.

This study was unique in that it assessed the feasibility of a DL model using multiple OCT imaging sets for 
predicting the prognosis of CSC, which few previous studies have done. OCT volume scan contains a full set of 
B-scan images and en face image can be obtained from the volume scan. Using the full set of B-scam images may 
provide more information on the status of retina and choroid. However, the volume scan contains up to hundreds 
of B-scan images, which requires tremendous resources and time for training and validating using CNN. The 
DL models developed in this study utilized OCT slabs that were automatically provided by the commercial OCT 
viewer program and can easily be applied in practice. And en face images used in the study contains information 
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which had been proved to be valuable in CSC. Further progression in computational limit may enable using 
whole set of images and improve the performance of DL models.

In conclusion, this study assessed the performance of DL models for CSC prognosis using multiple OCT 
image sets. The results revealed good performance of DL models created using OCT B-scans, retinal thickness, 
and EZ en face images. Concatenation of these image sets increased the performance of a DL model. Heatmaps 
revealed that a shallow irregular PED and an elongated photoreceptor outer segment on B-scans and a defective 
en face EZ area were important areas for prognosis. This automated prediction system will aid in individualized 
medical care for patients with CSC.

Methods
This study was approved by the Institutional Review Board of Bucheon St. Mary’s Hospital, which waived the need 
for written informed consent because of the study’s retrospective design. The study was conducted in accordance 
with the tenets of the Declaration of Helsinki.

Participants.  The inclusion criteria were consecutive patients 18  years or older who visited Bucheon St. 
Mary’s or St. Vincent Hospital between April 2016 and January 2022 and were diagnosed with CSC. Diagnosis 
was determined using high-definition OCT (Cirrus 4000 or Cirrus 6000; Carl Zeiss Meditec, Jena, Germany) 
and fluorescein angiography. OCT angiography image was assessed for presence of neovascularization in avail-
able patients. In patients with bilateral disease, the eye with the most severe symptoms was chosen for the study. 
Clinical information of age, sex, laterality of the diseased eye, baseline best-corrected visual acuity (BCVA), and 
BCVA at 6 months was collected from a chart review.

The exclusion criteria were (1) concurrent macular disease or scarring other than CSC (e.g., AMD, punctate 
inner choroidopathy, vitelliform dystrophy); (2) history of previous treatment (e.g., photodynamic therapy, 
laser photocoagulation, intraocular injections, periocular injections, and systemic treatment); (3) high myopia 
(> − 6.00 diopters or axial length > 26 mm); and (4) poor image quality (image quality < 7 or significant artifacts).

Image preparation, model training, and performance metrics.  All patients underwent HD-OCT 
line scanning and volume scanning at baseline. These images were labeled as self-resolving or persistent based on 
the recent consensus on CSC classification by a CSC international group (i.e., patients presented with subretinal 
fluid more than 6 months after baseline)28. The presence of subretinal fluid was evaluated using the full set of 
OCT B-scan at the macular area at 6 months from the baseline. The horizontal HD line OCT B-scan, which 
crossed the fovea, and each en face image of retinal thickness, mid-retinal, ellipsoid zone (EZ), and choroidal 
layers were saved as a JPEG (.jpg) file for each patient. Central macular thickness (CMT) was obtained from 
the retinal thickness map of Cirrus HD-OCT review software (version 10, Carl Zeiss Meditec), and subfoveal 
choroidal thickness was manually measured as the vertical distance between Bruch’s membrane and the chorio-
scleral border under the fovea on an OCT line scan.

Images underwent resizing and preprocessing. The B-scan image was cropped to exclude irrelevant areas, 
resized to 261 × 351 × 3 pixels, and underwent contrast adjustment. All en face images were cropped to remove 
the border, resized to 396 × 396 × 3 pixels, and underwent contrast adjustment. Each image set was randomly 
divided into 70% training, 15% validation, and 15% test sets.

The models were trained using pretrained ResNet50 architecture on MATLAB 2021b (MathWorks, Inc., 
Natick, MA, USA) for each image set (B-scan, retinal thickness, mid-retinal, EZ, and choroid). Selection of 
deep and shallow convolutional neural network (CNN) architectures was based on our previous studies on DL 
of OCT images for macular diseases29,30. To evaluate the performance of binodal imaging, two OCT images 
from each set underwent concatenation, and the resulting image was used for model training, validation, and 
testing. All experiments were conducted on a desktop computer equipped with NVIDIA RTX 3090 and Intel i9 
CPUs. Each model was trained for 25 epochs with a minibatch size of 32 and an initial learning rate of 0.01. The 
performance of each model was assessed using validation accuracy and accuracy, precision, recall (sensitivity), 
specificity, F1 score, and kappa score on the test set. To determine the focus of the DL model in the image, we 
analyzed the heatmap generated by gradient-weighted class activation mapping (Grad-CAM)31. Grad-CAM 
heatmaps were generated using ‘gradCAM’ function implemented in MATLAB. Image preprocessing, model 
training, and performance evaluation processes are schematized in Fig. 4.

Statistics.  Statistical analysis was performed using MATLAB 2021b. T-tests were used to compare clinical 
features between groups, and the chi-square test was used to compare categorical variables. Accuracy, precision, 
recall, specificity, and F1 scores were calculated for each model. The kappa score mean and standard deviation 
(SD) were used to determine the agreement between truth and each model. Continuous variables are presented 
as mean ± SD.

Ethics approval and consent to participate/publication.  This study was conducted in accordance 
with the tenets of the Declaration of Helsinki. The study was approved by the Institutional Review Board of 
Bucheon St. Mary’s Hospital, which waived the need for written informed consent because of the study’s retro-
spective design (HC20TISI0091).
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Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
upon reasonable request.
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