
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12574  | https://doi.org/10.1038/s41598-022-13421-9

www.nature.com/scientificreports

Cinnamon extract improves 
abnormalities in glucose tolerance 
by decreasing Acyl‑CoA synthetase 
long‑chain family 1 expression 
in adipocytes
Tsubame Nishikai‑Shen1,2,3,4, Tomomi Hosono‑Fukao1,2, Toyohiko Ariga1,2, 
Takashi Hosono1,2 & Taiichiro Seki1,2*

We previously demonstrated that cinnamon extract (CE) alleviates streptozotocin‑induced type 1 
diabetes in rats. The present study aimed to elucidate the detailed molecular target of cinnamon in 
cultured adipocytes and epididymal adipose tissue of type 2 diabetes model mice. Two‑dimensional 
gel electrophoresis was employed to determine the molecular target of cinnamon in adipocytes. The 
function of Acyl‑CoA synthetase long‑chain family‑1 (ACSL1), a molecular target of cinnamon that 
was identified in this study, was further investigated in 3T3‑L1 adipocytes using specific inhibitors. 
Type 2 diabetes model mice (KK‑Ay/TaJcl) were used to investigate the effect of CE on glucose 
tolerance, ACSL1 expression, and related signal molecules in vivo. CE decreased ACSL1 mRNA and 
protein expression in 3T3‑L1 adipocytes but increased glucose uptake and AMPK signaling activation; 
moreover, a similar effect was observed with an ACSL1 inhibitor. CE improved glucose tolerance and 
downregulated ACSL1 in mice adipose tissue in vivo. ACSL1 was demonstrated as a molecular target 
of CE in type 2 diabetes both in a cell culture system and diabetic mouse model.

There are approximately 371 million patients with diabetes mellitus worldwide, of which 4.8 million died due to 
diabetes-related diseases in  20171. It has been predicted that in the next two decades, the numbers will double, 
and their direct medical costs will triple due to the combined effects of an increasingly aging population and 
higher rates of individuals that are overweight and  obese2. Adipose tissue produces and secretes a variety of 
biologically active molecules called adipocytokines. The dysregulated production of adipocytokines, such as 
inflammatory cytokines in visceral fat in obesity, is involved in the development of abnormal glucose tolerance 
and insulin  resistance3–6. Thus, therapeutic agents that target adipocytes to regulate energy metabolism and 
ameliorate insulin resistance have received considerable  attention7.

Cinnamon has a long history as an important component in Chinese medicine. The extracts prepared from the 
bark of trees of the genus Cinnamomum have been prescribed for more than 2000 years in China, and their use 
in Chinese medicine was initially documented in Shen-Nong’s  Herbal8. A number of in vitro and in vivo studies 
have demonstrated that cinnamon improves both insulin resistance and glucose  metabolism9–21. However, the 
detailed mechanism of these antidiabetic properties has not yet been elucidated and is still controversial. Our 
previous study revealed that oral administration of a hot-water extract of cinnamon upregulates mitochondrial 
uncoupling protein-1 and enhances GLUT4 production and translocation in the muscle as well as GLUT4 
translocation in the adipose  tissues15. We further demonstrated the antidiabetic effects of cinnamon on the 
insulin and AMPK signaling pathways mediating glucose uptake in 3T3-L1 adipocytes and C2C12  myotubes21.

This study aimed to elucidate the molecular target of cinnamon in adipocytes. We identified Acyl-CoA 
synthetase long-chain family-1 (ACSL1) as a molecular target in the antidiabetic effect of cinnamon. ACSL1 
has also been reported to regulate the incorporation of fatty acid into  adipocytes22–25, inflammatory monocytes/
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macrophages, and the atherosclerosis in type 1  diabetes26, 27. Here we describe the function of ACSL1 in adipo-
cytes as a molecular target of CE as well as in the amelioration of type 2 diabetes in a mice model in vivo.

Results
ACSL1 is identified as molecular target of cinnamon extract (CE) by two‑dimensional gel elec‑
trophoresis (2DE) and LC–MS/MS analysis. The proteins from 3T3-L1 adipocytes treated with or with-
out CE were subjected to 2DE analysis. A differentially expressed protein spot (Fig. 1a vs. b, arrow) could be 
reproducibly detected near 45 kDa. The changes in the differentially expressed spots, which were subjected to 
mass spectrometry identification, are presented in Supplementary Table S1. ACSL1 is constitutively different 
from the identical location of blank gel. The full-length images of the 2DE analyses for the three experiments are 
provided in Supplementary Fig. S1.

CE decreased ACSL1 mRNA and protein expression in 3T3‑L1 adipocytes. To elucidate the effect 
of CE on ACSL1, we employed differentiated 3T3-L1 adipocytes. CE (30 µg/mL) significantly decreased ACSL1 
mRNA and protein expression in a time-dependent manner (Fig. 2a,b). The full-length images of the western 
blots for the three experiments are provided in Supplementary Fig. S2a.

CE decreased lipogenesis and lipid accumulation mRNA expression and increased AMPK 
phosphorylation. ACSL1 plays a significant role in the regulation of lipid synthesis. As CE decreased both 
ACSL1 mRNA and protein expression, we next examined the effect of CE on the lipogenesis and lipid accumu-
lation mRNA expression. CE significantly decreased C/EBPα, PPARγ, and FAS mRNA expression in a time-
dependent manner (Fig.  3a–c). The time of serum-free conditions did not influence the expression of these 
mRNAs (Fig. 3d–f). In addition, CE stimulated AMPK phosphorylation in 3T3-L1 adipocytes (Fig. 3g). These 
results indicate that CE downregulated lipid synthesis by reducing ACSL1 and upregulated energy metabolism 
by phosphorylating AMPK. The images of full-length western blots of AMPK phosphorylation for the three 
experiments are provided in Supplementary Fig. S2b. We induced the differentiation of 3T3-L1 cells into adipo-
cytes by simultaneously adding CE and differentiation-inducing factors to the culture medium for 5 days. The 
adipocyte area was not affected by the addition of CE to the culture medium (Supplementary Fig. S3). These 
results suggested that CE had no direct effect on adipocyte differentiation.

Acetyl‑CoA carboxylase (ACC) and Akt is activated by an ACSL1 inhibitor and CE. To corrobo-
rate the role of ACSL1 in adipocytes, we examined the effect of an ACSL1 inhibitor. First, 3T3-L1 adipocytes 
were treated with the ACSL1 inhibitor Triacsin C (10 µM, TriC) to test its effects on 2-deoxyglucose uptake. 
TriC significantly decreased ACSL1 protein levels (Fig. 4a). CE and TriC significantly increased 2-deoxyglu-
cose uptake into 3T3-L1 adipocytes (Fig. 4b), indicating the involvement of ACSL1 downregulation in glucose 
uptake. To investigate the molecular mechanism underlying the CE- and TriC-stimulated glucose uptake, we 
next studied the key kinases involved in the AMPK and insulin signaling pathways. The downregulation of 
ACSL1 induced AMPK phosphorylation that was accompanied by ACC  (Ser79) phosphorylation (Fig. 4c,d); the 
ACC enzyme is located downstream of AMPK. TriC + CE significantly increased phosphorylation of ACC, but 

Figure 1.  Two-dimensional gel electrophoresis of the total protein extracted from cinnamon extract treated 
3T3-L1 adipocytes. Total proteins extracted from 3T3-L1 adipocytes were separated using two identical two-
dimensional electrophoresis gels. (a) The full-length Flamingo Fluorescent Protein Gel staining patterns of 
untreated adipocytes and (b) adipocytes treated with 30 μg/mL of cinnamon extract (CE) for 4 h. n = 3/group.
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not that of AMPK (Fig. 4c,d). CE-induced Akt phosphorylation, and TriC did not exert action on the insulin 
pathway, and TriC + CE significantly increased phosphorylation of Akt vs. control or TriC group (Fig. 4e). These 
results indicate the involvement of the ACC and Akt pathway in the upregulation of CE-induced glucose uptake, 
through which ACSL1 is inhibited. The images of the full-length western blots of ACSL1 for the three experi-
ments are provided in Supplementary Fig. S4a, whereas the images of the full-length western blot of AMPK, 
ACC, and Akt phosphorylation for the three experiments are provided in Supplementary Fig. S4b–d.

CE treatment improved glucose tolerance and decreased ACSL1 protein expression in 2DM 
mice. To determine the effect of CE on type 2 diabetes, we conducted oral glucose tolerance test and insulin 
tolerance test in type 2 diabetes model mice in vivo. The administration of CE decreased blood triglycerides and 
insulin but did not demonstrate any effect on body weight (Table 1). In the oral glucose tolerance test, the CE-
treated KK-Ay mice (2DMCE) exhibited lower blood glucose concentrations and area under the blood glucose 
concentration–time curve (ACU) compared with the untreated KK-Ay mice (2DM) at 30 min following glu-
cose administration (Fig. 5a,b), indicating improved glucose tolerance, hyperlipidemia, and hyperinsulinemia in 
2DM mice. Conversely, CE did not exhibit any effect on the blood glucose concentration of nondiabetic control 
mice (NCE) (Fig. 5a,b). The insulin tolerance test revealed that insulin sensitivity was not influenced by CE treat-
ment in either the N or 2DM group (Fig. 5c,d). ACSL1 expression in the white adipose tissue of 2DM mice was 
increased compared with that of normal mice (N) and decreased compared with that of the CE-treated 2DM 
mice (Fig. 5e). The full-length images of the western blots are provided in Supplementary Fig. S5.

Discussion
We have demonstrated that the ACSL1 is a molecular target of CE for diabetes, both in cell subjects and mouse 
models of diabetes; CE specifically decreased ACSL1 levels in adipocytes. Such a decrease in ACSL1 expression 
was associated with stimulated glucose uptake and improved abnormal glucose tolerance in diabetic mice. In 
addition, we demonstrated that ACSL1 inhibition increases the activity of the AMPK signal associated with 
reduced lipogenesis, indicating that CE might represent properties as a hypoglycemic drug that does not initiate 
fat accumulation.

To identify the molecular target of the antidiabetic effect of CE, we used two-dimensional gel electrophoresis 
(2DE) analysis. It has been reported that the resolution of spots on strips with a narrow pH range (pH 4–7) is 
very  high28, and O’Farrell et al. used the pH 5–7 and 3.5–10 in constant pH  gradient29. We demonstrated good 
reproducibility of a strip of pH 5–8 and clearly visualized protein spots using Flamingo Fluorescent Protein Gel 
Stain (Fig. 1). A protein spot was chosen from the gels, and we identified a protein spot near 45 kDa following CE 
treatment. These proteins were either components of the cytoskeleton (β-actin, type 1 cytoskeletal 10), chaperones 
(complex protein), or proteases (Supplementary Table S1), which are the major actors required for cell survival 
in general. An exception is ACSL1, which is an essential factor for the synthesis of triacylglycerol. The expression 
of ACSL1 in CE-treated 3T3-L1 adipocytes might suggest the involvement of CE in energy metabolism. Next, 

Figure 2.  Cinnamon extract (CE) regulates Acyl-CoA synthetase long-chain family 1 (ACSL1) mRNA and 
protein expression in a time-dependent manner in 3T3-L1 adipocytes. 3T3-L1 adipocytes were serum-starved 
for 8 h in DMEM and then treated with 30 μg/mL of CE for 0.5–16 h. (a) Real-time PCR was employed to 
determine ACSL1 mRNA expression. (b) The levels of ACSL1 protein expression were measured via western 
blotting. The image is a cropped blot and the full-length images of the western blot for the three experiments are 
provided in Supplementary Fig. S2a. Each value represents the mean ± SD of three different experiments (n = 3/
group). *p < 0.05, compared with the control values.
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we validated ACSL1 mRNA and protein expression in CE-treated 3T3-L1 adipocytes. Conversely, CE treatment 
reduced the expression of ACSL1 mRNA and protein. ACSL1 is typically found at 75–80 kDa on the Western blot; 
however, it is detected in the spot migrated at 45 kDa on 2DE, indicating that it contains fragmented proteins. 
As shown in Supplementary Table S1, other proteins such as actin were detected in excised spot on the 2DE gel. 
The fragmented protein and β-actin were separated together and detected at around 45 kDa.

ACSL1 has been reported to drive the incorporation of fatty acids in 3T3-L1 adipocytes and hepatic 
 cells25, 30–32. Kanter et al. reported that the expression of ACSL1 mRNA in the monocyte of type 1 diabetes 
mouse models and patients was significantly increased compared to the healthy group. Furthermore, the ACSL1 
deficiency model significantly reduced the release of proinflammatory cytokines and chemokines and prevented 
diabetic  atherosclerosis26. In adipose tissue and liver, which are insulin target tissues, ACSL1 has been reported 
to be present in cell membranes, lipids, endoplasmic reticulum, and  mitochondria22, 33–36. Regarding the expres-
sion of ACSL1 in each tissue, it has been reported that ACSL1 expression is highest in adipose tissue, especially 
during differentiation into adipocytes, where ACSL1 is markedly  increased37. In ACSL1 knockdown experiments 
using 3T3-L1 adipocytes, the decrease in ACSL1 only increased lipolysis and did not affect fatty acid  uptake38. 

Figure 3.  Cinnamon extract (CE) regulates lipogenesis marker expression in a time-dependent manner in 
3T3-L1 adipocytes. (a–d) 3T3-L1 adipocytes were serum-starved for 8 h and then exposed to 30 μg/mL of CE 
for another 0.5–16 h. Real-time PCR was employed to determine mRNA expression of (a) C/EBPα, (b) PPARγ, 
and (c) FAS relative to GAPDH. Each value represents the mean ± SD of three different experiments (n = 3/
group). *p < 0.05, **p < 0.01, compared with the control values. (d–f) 3T3-L1 adipocytes were serum-starved for 
8 h and then maintained in serum-free culture for another 8–16 h. Real-time PCR was employed to determine 
the mRNA expression of (d) C/EBPα, (e) PPARγ, and (f) FAS. Each value represents the mean ± SD of three 
different experiments (n = 3/group). (g) 3T3-L1 adipocytes were serum-starved for 8 h and then exposed to 
30 µg/mL of CE for another 0.5–16 h. The level of AMPK phosphorylation was measured via western blotting 
using total AMPK as loading controls. The image is a cropped blot and the full-length images of the western blot 
for the three experiments are provided in Supplementary Fig. S2b. In some images, different parts of the same 
membrane were cut out and reacted with different antibodies. The cutouts are clearly distinguished using yellow 
separator lines. Each value represents the mean ± SD of three different experiments (n = 3/group). *p < 0.05, 
compared with the control values.
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Figure 4.  Triacsin C (TriC), an inhibitor of ACSL1, and Cinnamon extract (CE), regulate glucose uptake and 
ACC phosphorylation in 3T3-L1 adipocytes. 3T3-L1 adipocytes were serum-starved for 8 h in DMEM and then 
challenged with 10 µM TriC for 45 min or with 30 µg/mL of CE for 30 min. (a) ACSL1 expression levels were 
measured via western blotting. (b) The uptake of 2-deoxyglucose by the cells was assayed, as described in the 
Materials and Methods section. (c–e) The levels of AMPK, ACC, and Akt phosphorylation were measured via 
western blotting using total AMPK, ACC, and Akt as loading controls. Each value represents the mean ± SD of 
three different experiments (n = 3/group). Alphabet letters indicate intergroup comparisons. Different alphabet 
indicate statistically significant differences among groups (P<0.05). The image is a cropped blot and the full-
length images of the western blot for the three experiments are provided in Supplementary Fig. S4 a–d. In 
Fig. S4d images, different parts of the same membrane were cut out and reacted with different antibodies. The 
cutouts are clearly distinguished using yellow separator lines.
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These reports support our findings that CE suppressed lipid synthesis by decreasing the expression of ACSL1 
(Fig. 3a–c). Our findings indicate that ACSL1 is an important factor in mediating the AMPK signal activation 
in adipocytes and in regulating glucose tolerance in diabetes. It has been reported that ACSL1 accounts for 80% 
of ACSL activity in adipose  tissue39, 40. The possibility that other isoforms contribute to acyl-CoA synthesis to 
compensate for the decrease in ACSL1 protein cannot be ruled out. However, other isoforms of ACSL have 
been reported to play important roles in lipid metabolism in the liver and  muscle41, 42. In our next study, we will 
investigate the effects of cinnamon on other isoforms of ACSL in the liver and muscle.

Jessica et al. found that mice with an adipose tissue-specific knockout of ACSL1 (Acsl1A-/-) did not develop 
lipodystrophy, even though the rate of fatty acid (FA) oxidation was significantly reduced compared to adipocytes 
in control mice. Similarly, body weight increased to the normal range, and there was no difference in adipocyte 
size between the Acsl1A−/− and control  group39. These data are consistent with the results of our experiments, in 
which cinnamon administration had no effect on the body weight of mice, although it significantly reduced the 
expression of ACSL1 in adipose tissue. However, these studies did not examine the relationship between ACSL1 
expression and glucose metabolism. As this study focused on the ameliorative effects of cinnamon extract on 
glucose intolerance, we also plan to elucidate its effects on lipid metabolism in future studies.

In this study, we have demonstrated for the first time that glucose uptake and the improvement of abnormal 
glucose tolerance are initiated by reduced ACSL1 expression in adipocytes (Figs. 4b and 5a). To elucidate the 
relationship between upregulated glucose transport and ACSL1 suppression, we used the known ACSL1 inhibi-
tor Triacsin  C43–45. In fact, we confirmed that the inhibition of ACSL1 and stimulation of glucose uptake were 
mediated by increased AMPK-ACC phosphorylation (Fig. 4c,d). Almouhanna and Hardie et al. reported that 
when the intracellular carbohydrate supply cannot keep pace with the demand for ATP, it increases the ADP/
ATP ratio, followed by a larger increase in the AMP/ATP ratio, which activates the AMPK signaling  pathway46, 47. 
CE may promote AMPK phosphorylation by increasing the ADP/ATP ratio in cells, although further studies are 
required to confirm this possibility. Coupled with a fall in cytoplasmic acetyl-CoA due to a restricted carbohy-
drate supply, fatty acids become the main fuel for ATP  production47. Coincidentally, ACSL1 inhibition decreases 
fatty acid uptake into cells due to suppressed triacylglycerol synthesis, whereupon due to the depletion of energy 
sources, GLUT4 will translocate to the plasma membrane (Fig. 6). CE increased glucose uptake, concurrently 
reduced lipogenesis/lipid accumulation mRNA expression in culture 3T3-L1 adipocyte, and reduced plasma 
triglyceride content in type 2 diabetic mice (Figs. 3 and 4b, Table 1). These data were supported by the superim-
posed speculation that CE increases glucose uptake in adipocytes and simultaneously inhibits lipid accumula-
tion. Although there appears to be a synergistic effect between CE and TriC on glucose uptake (Fig. 4b), there 
was no significant difference between the TriC + CE group and the group with CE or TriC alone. Regarding the 
mechanism of cinnamon action, ACSL1 may not explain the whole mechanism, but in this study, the expression 
of ACSL1 protein was decreased by cinnamon addition, and inhibition of this factor promoted glucose uptake, 
suggesting that ACSL1 is a key factor in cinnamon action. However, owing to the limited scope of this study, we 
were unable to examine all glucose uptake-related signals, and the effects of cinnamon on other signals should be 
further investigated in future studies. In this study, both CE and TriC reduced ACSL1 and consistently increased 
glucose uptake. However, only CE increased AMPK and ACC phosphorylation, whereas TriC did not alter these 
proteins. Although the western blot analysis showed a trend toward increased phosphorylation of these proteins, 
the quantified values of the protein bands showed no significant differences. Thus, TriC had no significant effect 
on AMPK and ACC phosphorylation, which was likely a limitation of our experimental system. A higher con-
centration of TriC may be required in the culture system to obtain obvious changes in the phosphorylation that 
would be detectable through western blot analyses. Nevertheless, the concentration of TriC used in this study 
may be useful for future studies as a reference concentration that promotes glucose uptake in cultured adipocytes.

Finally, we observed that CE improved glucose intolerance but not insulin resistance in type 2 diabetic mice 
(Fig. 5). This observation is consistent with the antidiabetic effect of CE on insulin-uncontrolled type 1 diabetic 
rats that we previously  reported15. Compared with that of normal mice, the expression of ACSL1 in white adipose 
tissue was increased in 2DM mice and decreased in CE-treated 2DM mice (Fig. 5c). This data strongly suggests 
that ACSL1 is critically important in mediating abnormal glucose tolerance in the adipose tissue of type 2 dia-
betes. Furthermore, CE treatment of 2DM mice significantly decreased plasma insulin concentrations compared 

Table 1.  Effects of cinnamon extract on body weight (bw) and plasma parameters. Values are expressed as 
mean ± SD, n = 3/group. The alphabetical symbols a, b, and c on the right shoulder of the number indicate 
intergroup comparisons. Different superscript letters indicate statistically significant differences among groups 
(P < 0.05). N: nondiabetic normal control group. Mice were orally administered 1-mL pure water for 8 weeks. 
NCE: CE-treated nondiabetic normal control group. CE (100 mg/kg bw/day) was orally administered for 
8 weeks. 2DM type 2 diabetes model mice group. Mice were orally administered 1-mL pure water for 8 weeks, 
2DMCE CE-treated type 2 diabetes model mice group. CE (100 mg/kg bw/day) was orally administered for 
8 weeks, bw body weight, TC plasma total cholesterol content, TG plasma triglyceride content, NEFA plasma 
nonesterified fatty acid content, Adipo plasma adiponectin content, Insulin plasma insulin content.

Group bw (g) TC (mg/dL) TG (mg/dL) NEFA (mEq/L) Adipo (ng/mL) Insulin (ng/mL)

N 26.843 ± 1.18a 58.789 ± 7.96a 76.633 ± 17.91a 0.646 ± 0.00 1.972 ± 195 0.4167 ± 0.24a

NCE 24.100 ± 0.66a 82.456 ± 8.79a 91.022 ± 8.86a 0.751 ± 0.02 1.574 ± 1.56 0.1695 ± 0.03a

2DM 45.729 ± 1.99b 155.678 ± 36.95b 229.800 ± 31.62b 1.430 ± 0.16 9.637 ± 0.81 8.4123 ± 2.79b

2DMCE 44.300 ± 1.82b 120.677 ± 18.77ab 157.633 ± 21.30c 1.295 ± 0.09 8.237 ± 0.67 2.2831 ± 1.00a
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Figure 5.  Cinnamon extract (CE) improves glucose intolerance and ACSL1 protein expression in type 2 diabetic mice. N: nondiabetic 
normal control group. Mice were orally administered 1-mL pure water for 8 weeks. NCE: CE-treated nondiabetic normal control 
group. CE (100 mg/kg bw/day) was orally administered for 8 weeks. 2DM: type 2 diabetes model mice group. Mice were orally 
administered 1-mL pure water for 8 weeks. 2DMCE: CE-treated type 2 diabetes model mice group. CE (100 mg/kg bw/day) was orally 
administered for 8 weeks. (a) For the oral glucose tolerance test, the mice fasted for 6 h prior to the test. Glucose (1.5 g/kg bw) was 
orally administered, and the blood glucose concentration was measured using the blood obtained via the tail vein at the indicated 
time points after the oral glucose loading. (b) The area under the curve (AUC) of the oral glucose tolerance test for panel (a). (c) For 
the insulin tolerance test, the rats fasted for 2 h. Then, insulin (0.75 U/kg bw) was intraperitoneally injected, and the blood glucose 
concentration was measured as previously described. (d) The AUC of the insulin tolerance test for panel c. Each value represents 
the mean ± SD of three different mice (n = 3/group). Alphabet letters indicate intergroup comparisons. Different alphabets indicate 
statistically significant differences among groups (P<0.01). (e) Western blot was employed to detect ACSL1 protein in the adipose 
tissue. The image is a cropped blot and the full-length images of the western blot are provided in Supplementary Fig. S5a and b. Each 
value represents the mean ± SD of three different mice (n = 3/group). Alphabet letters indicate intergroup comparisons. Different 
alphabets indicate statistically significant differences among groups (P<0.01).
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with untreated 2DM mice (Table 1). Glucose uptake of 3T3-L1 adipocytes incubated with no reagent (control 
group), 100 nM insulin, or 30 µg/mL CE for 30 min was examined. Glucose uptake significantly increased in 
the CE and insulin groups (Supplementary Fig. S6). These data suggest that cinnamon promotes glucose uptake 
as well as insulin. Based on the above, the data strongly supports the idea that CE, rather than insulin, promotes 
glucose uptake in peripheral tissue.

To identify the active compound in CE, we performed analyses with high-performance liquid chromatography 
in our previous studies and identified two compounds from CE; 1 mg CE contained 8.5 μg of cinnamaldehyde 
and 3.6 μg of cinnamyl  alcohol15. Two compounds and a mixture of unknown components were shown to play a 
significant role in stimulating glucose uptake in adipocytes (data not shown). However, long-term research is still 
important to determine candidate active compounds and their detailed pharmacological properties. Thus, we will 
investigate these aspects in future studies. We believe that it is important to understand the mechanism through 
which CE decreases ACSL1 expression. A direct interaction between one of the components of the extract and 
the enzyme may inhibit biosynthesis but may also be involved in the regulation of mRNA degradation. Future 
studies should examine the mechanism by which CE decreases ACSL1.

In conclusion, the current study demonstrated for the first time that CE decreases ACSL1 expression to 
increase glucose uptake in 3T3-L1 adipocytes and 2DM mice. As insulin resistance has been associated with the 
progressive development of type 2 diabetes mellitus, natural compounds that reduce ACSL1 due to a stimulated 
AMPK signal should have a significant clinical impact on type 2 diabetes mellitus.

Methods
Preparation of CE. CE was prepared by the method described  previously15. Cinnamon (Cinnamomum 
zeylanicum) was a gift from House Foods Corporation (Tokyo). The sticks (250 g) were soaked in 2500 mL of 
water for 24 h at room temperature (RT) and then heated for 30 min at 100 °C. The CE was lyophilized, and the 
powder was stored at − 20 °C until further  use15. This study complies with relevant institutional, national, and 
international guidelines and legislation.

Reagents. The primary antibodies against phosphorylated (p)-Akt (Ser473), p-ACC (Ser79), p-AMPK 
(Thr172), Akt, ACC, AMPK, and ACSL1 were purchased from Cell Signaling Technology (Tokyo, Japan). Anti-
β-actin was obtained from Sigma-Aldrich (MO, USA). Horseradish peroxidase-conjugated secondary antibod-
ies were purchased from Jackson ImmunoResearch Laboratories (PA, USA), and Triacsin C was obtained from 
Enzo Life Sciences (NY, USA).

Cell culture. The 3T3-L1 fibroblasts were obtained from Health Science Research Resources Bank (Osaka, 
Japan), which is the same sources as previously  described48. 3T3-L1 fibroblasts were cultured and induced to 
differentiate into adipocytes using the method described  previously48.

Two‑dimensional gel electrophoresis (2DE) and SDS‑PAGE. Cultured 3T3-L1 adipocytes were col-
lected and homogenized in lysis buffer [5 M urea, 2 M thiourea, 20% CHAPS, 65-mM DTT, and 2% Pharma-
lyte (pH 5–8)] with sonication for 5 min at 3 kHz/130 W (UCD-130TM, Cosmo Bio, Tokyo) on ice and then 
centrifuged at 760×g for 5 min. Isoelectric focusing was performed using a Cool Phore Star IPG-IEF (Anatech, 

Figure 6.  Outline of the mechanisms for the stimulation of glucose metabolism by cinnamon. Using 3T3-
L1 adipocytes, we demonstrated that CE downregulates ACSL1 to activate the AMPK signaling pathway that 
stimulates glucose uptake and suppresses lipogenesis.
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Japan) with Immobiline DryStrips (18 cm, pH 5–8; Bio-Rad, USA). The same wet weight sample application 
piece (Anatech, Japan) was placed on the gel 1 cm from the cathodic end. The isoelectric focusing voltage was as 
follows: 500 V (2 h), 700 V (1 h), 1000 V (1 h), 1500 V (1 h), 2000 V (1 h), 2500 V (1 h), 3000 V (1 h), and then 
3500 V (10 h). The electric power supply was maintained at 500 V after 10 h at 3500 V. After electrophoresis, the 
gel strip was treated with sodium dodecyl sulfate (SDS) (6 M urea, 42-mM DTT, 0.5 M Tris–HCl (pH 6.8), 10% 
(w/v) SDS, 0.1% (w/v) BPB, and 50% (v/v) glycerol) for 30 min at RT with agitation. Then, the gel strip was incu-
bated for 15 min at RT in alkylation buffer (6 M urea, 0.3 M iodoacetamide, 0.5 M Tris–HCl (pH 6.8), 10% (w/v) 
SDS, 0.1% (w/v) BPB, and 50% (v/v) glycerol). The alkylated gel strip was subjected to SDS-PAGE, and electro-
phoresis was performed under a constant current (5 mA per gel) until the dye front of BPB approached the gel 
bottom. The protein on the 2D gel slab was stained with Flamingo Fluorescent Protein Gel Stain (Bio-Rad, USA). 
The 2D gel image was obtained from Storage Phosphor Screen with Typhoon 9410 (GE Healthcare, Japan).

Measurement of glucose uptake. Glucose uptake was measured using the method described by Ragolia 
et al.49. Briefly, 3T3-L1 adipocytes cultured in 60-mm dishes (Becton Dickinson, NT, USA) were serum-starved 
in Dulbecco’s Modified Eagle Medium (DMEM) for 16 h. Subsequently, the cells were washed three times with 
phosphate buffered saline (pH 7.4) and then incubated for 30 min in the following medium: DMEM alone, 
DMEM containing either 100 nM insulin or 30 µg/mL of CE, or a combination of both insulin and CE. Then, 
0.5-mM 2-deoxy-d-[2,6-3H]-glucose (1.5 µCi/well, Moravek Biochemicals, CA, USA) was added to the cells 
and incubated for 15 min. Finally, the cells in triplicate were washed four times with phosphate buffered saline 
containing 0.3-mM phloretin and lysed in 1 mL of 1 M NaOH for scintillation counting.

Western blot analysis. Western blot analysis was performed using the method described  previously21. 
Whole-cell lysates and plasma membrane fractions were subjected to SDS-PAGE, and the proteins that had 
migrated were electrically transferred to a microporous polyvinylidene fluoride membrane (Millipore Corpora-
tion, MA, USA) for western  blotting21. The membrane was incubated at 4 °C for 18 h with antibodies against 
the following proteins: p-Akt, Akt, p-AMPK, AMPK, p-ACC, ACC (all at 1:1000), and β-actin (1:2000)21. After 
incubation, anti-mouse (1:2000 for β-actin) or anti-rabbit IgG horseradish peroxidase conjugate (1:2000 for 
p-Akt, Akt, p-AMPK, AMPK, p-ACC, and ACC) was added, and the membrane was incubated for 30 min at 
RT. The antigenic proteins on the membrane were visualized via chemiluminescence using a Lumi-LightPLUS 
Western Blotting Kit (Roche Diagnostics Co., Basel, Switzerland), and the images were evaluated using an Image 
Analyzer LAS-4000 (Fujifilm Co. Tokyo, Japan)21.

RNA isolation and real‑time PCR. Total RNA was extracted from 3T3-L1 adipocytes with the Isogen 
reagent (Wako Pure Chemical Inc., Osaka, Japan). Real-time reverse transcription–PCR was performed via the 
fluorescent dye SYBR Green I method using SYBR Premix Ex Taq and Perfect Real Time (Takara Bio, Shiga, 
Japan) with a StepOne Real-Time PCR system (Applied Biosystems, CA, USA). The primers used in this study 
were designed based on the GenBank™ information and synthesized by Invitrogen (Carlsbad, CA, USA). The 
PCR primers used for ACSL1, PPARγ, C/EBPα, FAS, and GAPDH are presented in Supplementary Table S2.

Animal experiments. Four-week-old male KK-Ay/TaJcl mice, a model of type 2 diabetes mellitus (2DM), 
and C57BL/6J, a nondiabetic normal control (N), were purchased from CLEA Japan Inc. (Tokyo, Japan), and 
housed individually in a stainless steel, wire-bottomed cage in a temperature-controlled room (22 °C–23 °C) 
with a 12-h photoperiod. The mice were provided a pellet diet (CE-2, CLEA Japan Inc., Tokyo, Japan) and water 
ad libitum. After 1 week of acclimation, the mice were divided into two groups with matched body weight: (1) 
the control group without cinnamon (N, 2DM) and (2) the cinnamon-treated group (NCE, 2DM + CE). Regard-
ing the nondiabetic normal control group (N), mice were orally administered 1 mL pure water for 8 weeks and 
the CE-treated nondiabetic normal control group (NCE), CE (100 mg/kg bw/day) was orally administered for 
8 weeks. For type 2 diabetes model mice group (2DM), mice were orally administered 1 mL pure water for 
8 weeks. Regarding the CE-treated type 2 diabetes model mice group (2DM + CE), CE (100 mg/kg bw/day) was 
orally administered for 8 weeks. All experiments were conducted in accordance with the National Institutes of 
Health Guide for the Care and Use of Laboratory Animals and were approved by the Nihon University Animal 
Care and Use Committee (approval number AP11B086). Also, we confirm that all methods are reported in 
accordance with ARRIVE guidelines (https:// arriv eguid elines. org).

Oral glucose tolerance test and insulin tolerance test. Oral glucose tolerance test and insulin toler-
ance test were performed using the method described  previously21. Briefly, mice were orally administered CE 
(100 mg/kg bw/day) for 8 weeks. For the glucose tolerance test, the mice fasted for 6 h and were then orally 
administered glucose (1.2 g/kg bw)21. Blood glucose concentration was measured by DEXTER-Z II (Bayer Medi-
cal Co., Ltd., Leverkusen, Germany) using blood collected via the tail vein. For the insulin tolerance test, the 
mice fasted for 2 h and were then intraperitoneally administered insulin (0.75 U/kg bw)21. Then, blood glucose 
concentration was measured as described  above21. Plasma insulin concentrations were assayed using ELISA Kit 
(Shibayagi, Gunma, Japan)21.

Measurement of blood parameters and adipose tissue. Plasma total cholesterol, triglycerides, non-
esterified fatty acids, and adiponectin concentrations were determined using commercial assay kits (Wako Pure 
Chemical). Epididymal adipocytes were homogenized using a Dounce homogenizer in ice-cold sucrose-Tris-
ethylene glycol buffer (pH 7.4) containing 250-mM sucrose, 5-mM Tris–HCl, 2-mM ethylene glycol tetraacetic 

https://arriveguidelines.org
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acid, and protease inhibitor mixture (Sigma-Aldrich). The homogenate was centrifuged at 800×g for 3 min at 
4 °C to remove the tissue debris, and the supernatant that contained adipose tissue cytosol was collected to assay 
the protein contents.

Statistical analysis. Statistical analysis was conducted using GraphPad Prism 7.0 (GraphPad Software, 
San Diego, CA). The results were expressed as mean ± SD. Each value represents the average of three different 
experiments (n = 3/group). We conducted statistical analysis via one-way ANOVA, followed by Dunnett’s test 
for multiple comparisons among several groups in Fig. 2, Fig. 3 and Supplementary Fig. S6. Pairwise compari-
sons were performed using Student’s t-test in the Supplementary Fig. S3. We conducted statistical analysis via 
two-way ANOVA, followed by Tukey’s test for multiple comparisons among several groups in Fig. 4, Fig. 5 and 
Table 1. Differences were considered significant at p < 0.05.

Data availability
All data generated and analyzed during this study are included in this published article.
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