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Computational epigenetic 
landscape analysis reveals 
association of CACNA1G‑AS1, 
F11‑AS1, NNT‑AS1, and MSC‑AS1 
lncRNAs in prostate cancer 
progression through aberrant 
methylation
Mahafujul Islam Quadery Tonmoy1,4, Atqiya Fariha1,4, Ithmam Hami1, Kumkum Kar1,  
Hasan Al Reza2, Newaz Mohammed Bahadur3,4 & Md Shahadat Hossain1,4*

Aberrant expression of long non‑coding RNAs (lncRNAs), caused by alterations in DNA methylation, 
is a driving factor in several cancers. Interplay between lncRNAs’ aberrant methylation and expression 
in prostate cancer (PC) progression still remains largely elusive. Therefore, this study characterized 
the genome‑wide epigenetic landscape and expression profiles of lncRNAs and their clinical impact by 
integrating multi‑omics data implementing bioinformatics approaches. We identified 62 differentially 
methylated CpG‑sites (DMCs) and 199 differentially expressed lncRNAs (DElncRNAs), where 32 
DElncRNAs contain 32 corresponding DMCs within promoter regions. Significant negative correlation 
was observed between 8 DElncRNAs‑DMCs pairs. 3 (cg23614229, cg23957912, and cg11052780) 
DMCs and 4 (CACNA1G‑AS1, F11‑AS1, NNT‑AS1, and MSC‑AS1) DElncRNAs were identified as high‑
risk factors for poor prognosis of PC patients. Overexpression of hypo‑methylated CACNA1G‑AS1, 
F11‑AS1, and NNT‑AS1 and down‑regulation of hyper‑methylated MSC‑AS1 significantly lower 
the survival of PC patients and could be a potential prognostic and therapeutic biomarker. These 
DElncRNAs were found to be associated with several molecular functions whose deregulation 
can lead to cancer. Involvement of these epigenetically deregulated DElncRNAs in cancer‑related 
biological processes was also noticed. These findings provide new insights into the understanding of 
lncRNA regulation by aberrant DNA methylation which will help to clarify the epigenetic mechanisms 
underlying PC.

Prostate cancer (PC) is the second most commonly diagnosed cancer in males globally accounting for 1,276,106 
new cases and 358,989 deaths (3.8% of all cancer-related deaths in men) in  20181. However 2,293,818 additional 
cases are expected till 2040 and there will also be a minor difference in mortality (an increase of 1.05%)2. This 
indicates that despite the majority of PC patients experiencing a slow tumor progression, a certain percentage 
of the cases discovered are more aggressive and lethal cancer  variants3.

The earlier studies on PC were condensed on suggesting a significant heterogeneity in structural alterations of 
the genome-such as the variations in DNA copy numbers, the electron transport system (ETS) of transcription 
factors causing genetic fusions within the tumors and in gene expression profiles which were found in around half 
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of the prostate  tumors4–12. The diversity in genomic expressions and variations in the tumor behavior in cases of 
PC were attributed to some other factors involving genomic  aberrations13. Epigenetic alterations have been more 
immediately charged with being responsible as an early event leading up to further somatic and genetic mutation 
in several  tumors14. The event of DNA methylation is one of the most popularly studied epigenomic  changes15 
that have been found to regulate gene expression, thereby impacting tumorigenesis and cancer  progression16–22 
in both metastatic and locally advanced  tumors23,24. About 60% of human gene promoters have been reported to 
be overlapped with CpG islands (CGIs)25—the small clusters of residues where DNA methylation  occurs26. Such 
affiliation of the CGI with the DNA promoters leads to methylation of the promoter regions of the DNA which 
ultimately ends up in gene  silencing27. The simple mechanism for the process can be summed up as methylation 
of the 5′ carbon of cytosine in CGIs of gene promoters. Any alteration in DNA methylation processes can lead 
to cancer initiation, progression, invasion and  metastasis28,29.

Noncoding RNA, earlier regarded as ‘transcriptional noise’ of the genome, has successively acquired the rec-
ognition for its important functional involvement in a variety of biological processes, including gene expression 
regulation, alternative splicing regulation, cellular structure formation, and so  on30,31. Long non-coding RNAs 
containing more than 200 nucleotides in length are also members of non-coding RNAs which have recently 
emerged as a class of tumor-suppressor and oncogenic  genes32,33. The effects of lncRNAs on carcinogenesis may 
be performed through the process of transcriptional, post-transcriptional and epigenetic  modification33. Aber-
rant expression of lncRNA contributes to the development and progression of cancers which demonstrate the 
potential role of lncRNAs as novel diagnostic and prognostic biomarkers for cancer and therapeutic targets as 
 well34,35. MiRNAs, another member of non-coding RNAs, have been extensively investigated to identify miRNA/
miRNA-targeted signatures to improve the diagnosis and prognosis of several  cancers36–40. Emerging evidences 
have documented the superiority of lncRNA as diagnostic and prognostic biomarkers for cancers compared 
to  miRNAs29,41,42. However, the detailed function of lncRNAs in development and progression of cancer is still 
 unknown43. Therefore, concurrent studies have also shown how DNA methylation of lncRNA-encoding genes 
can affect the downstream  targets29.

The hyper-methylation of the CGIs in some of the tumor suppressor genes has been frequently noticed in 
cases of PC tumors as  well44,45. Previous studies on DNA methylation in PC fundamentally used the CpG islands 
array on either the thousands of genomic regions around the methylation site or the promoter  regions46,47. How-
ever, interrelation between the DNA methylation and the lncRNA expression in PC still remain largely unknown. 
In this present study, a genome-wide integrated analysis between the DNA methylation and the expression of 
lncRNA was performed to characterize the correlation between the DNA methylation and lncRNA regulation, 
thereby figure out the epigenetically regulated lncRNAs. Moreover, potential clinical relevance of these epigeneti-
cally regulated lncRNAs with the PC patients’ survival was also investigated. Further to that, molecular functions 
of these lncRNAs along with the biological processes in which they are involved were also elucidated.

Results
Characterization of DNA methylation pattern in prostate cancer. We conducted a differential 
methylation analysis and long non-coding RNAs (lncRNA) annotation to identify the differentially methylated 
CpG sites (DMCs) in prostate cancer patients which are located in the promoter regions of lncRNAs. Regard-
ing this, initially, we obtained 23 methylation array data series from the GEO database among a total of 2030 
data series for Prostate cancer. Among the 23 methylation array data series, an independent methylation cohort 
GSE112047 (contains 31 tumor and 16 control samples) satisfied all the inclusion criteria specified in the method 
and selected for differential methylation analysis. We then computed differential methylation patterns between 
31 tumor and 16 control samples and identified a total of 18,066 CpG sites where 2622 were identified with 
FDR < 0.05 (Fig. 1a). From this figure, it can be noticed that the CpG sites are distributed in all the chromosomes. 
566 of the 2622 CpG sites were found to localize in the lncRNA promoter regions and designated for assessing 
the DNA methylation alterations within the lncRNA promoter regions (Table S1). Methylation distribution (beta 
value) of the 566 CpG sites in lncRNA promoter regions manifested a relatively higher methylation density at the 
distal regions of the lncRNA promoter regions than at Transcription Start Site (TSS) (Fig. 1b). Among the 566 
CpG sites, 62 were identified to have an absolute delta-beta value > 0.2 and considered as DMCs. Besides, with 
a 0.2 cut off size, 6 differentially methylated regions (DMRs) were identified among a total of 340 methylated 
regions. TCGA (PRAD)-450k methylation array was used to validate the DNA methylation patterns of the 566 
CpG sites and found consistency with our results.

Characterization of differentially expressed lncRNAs in prostate cancer. To identify the differen-
tially expressed lncRNAs, an independent lncRNA cohort GSE140927 (contains 4 tumor and 4 control samples) 
was retrieved from the GEO database amongst a total of 114 non-coding RNA data series. This analysis identi-
fied 26,246 lncRNAs after removing the duplicates and the Circular RNAs (circRNAs) from the list. 199 (78 up-
regulated and 121 down-regulated) of the 26,246 lncRNAs were identified with P-value < 0.05 and |log2FC| > 1.5 
and considered as significant and differentially expressed lncRNA (DElncRNA) (Fig. 2a). Further to that, 32 (18 
up-regulated and 14 down-regulated) (Fig. 2b) out of 199 DElncRNAs were sorted as they contain correspond-
ing 32 (out of 62) DMCs (identified in the previous step) within their promoter regions (Table S2). Moreover, 
these 32 DElncRNAs were categorized based on their position in the genome and found that these DElncRNAs 
were at four categories of different genomic locations, i.e. antisense RNA, Long intergenic non-coding RNA, 
divergent transcript, and intronic transcript. Antisense RNA, long intergenic non-coding RNA, divergent tran-
script, and intronic transcript were accounted for 17, 10, 3, and 2, respectively.
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Correlation analysis between the DElncRNAs and the corresponding DMCs. We combined 
the expression pattern of the DElncRNAs and the methylation pattern of the DMCs to determine whether the 
expression of the 32 DElncRNAs is modulated by the methylation of the corresponding 32 CpG sites. Concern-
ing this, we performed Spearman’s correlation analysis between these 32 pairs (DElncRNAs-DMCs) omics data 
and found 24 negatively and 8 positively correlated pairs (Table S3). Out of 24 pairs, a significant negative cor-
relation [correlation coefficient (R) > − 0.3 and p-value < 0.05] was observed between the 8 DElncRNA (BMS1P4, 
CACNA1G-AS1, MIR9-3HG, SDK1-AS1, PPM1K-DT, F11-AS1, NNT-AS1, and MSC-AS1) and their respec-
tive 8 DMCs (cg19500311, cg23614229, cg00576773, cg23194354, cg05850997, cg23957912, cg12626968, and 
cg11052780) (Figs.  3 and 4). The down-regulation of BMS1P4, SDK1-AS1, PPM1K-DT, and MSC-AS1 was 
significantly associated with the hyper-methylation of their respective CpG sites cg19500311, cg23194354, 
cg05850997, and cg11052780 which were found within the promoter region of these DElncRNAs. Conversely, 
the up-regulation of CACNA1G-AS1, MIR9-3HG, F11-AS1, and NNT-AS1 is significantly associated with the 
hypo-methylation of their respective CpG sites cg23614229, cg00576773, cg23957912, and cg12626968 which 
were found within the promoter region of these DElncRNAs.

A consequence of aberrant DNA methylation and expression of DElncRNA on the survival of 
prostate cancer patients. The methylation pattern of the 8 DMCs and the expression of the 8 DElncR-
NAs in prostate cancer patients were evaluated to determine their impact on the patient’s survival. Univariate 
Cox regression analysis identified 3 (cg23614229, cg23957912, and cg11052780) DMCs and 4 (CACNA1G-AS1, 
F11-AS1, NNT-AS1, and MSC-AS1) DElncRNAs as high-risk factors (95% CI HR ⊉ 1 and p-value < 0.05) for 
the prognosis of patients with Prostate cancer (Fig. 5). Hypo-methylation of two DMCs cg23614229 (within the 
promoter region of CACNA1G-AS1), and cg23957912 (within the promoter region of F11-AS1) were found 
to significantly responsible for the poor prognosis of the patients with Prostate cancer (95% CI HR < 1 and 
p-value < 0.05). Conversely, hyper-methylation of the cg11052780 (within the promoter region of MSC-AS1) 
probe was found to have significant effect on poor prognosis of the patients with Prostate cancer (95% CI HR > 1 
and p-value < 0.05) (Fig. 5). Higher expression (95% CI HR > 1) of CACNA1G-AS1, F11-AS1, and NNT-AS1 
were found to significantly lower the overall survival rates of the patients with Prostate cancer than those of 
patients with lower expression of these DElncRNAs (Figs. 5 and 6). On the contrary, poor overall survival was 
remarked for the patients with low expression (95% CI HR < 1) of MSC-AS1 compared with patients with high 
expression of MSC-AS1 (Figs. 5 and 6). To avoid the dependency only on the expression of DElncRNAs, addi-
tionally, multivariate Cox regression analysis was also done by adjusting other covariates (patients age and pri-
mary Gleason grade) with the DElncRNAs’ expression and the results still showed that the expression of these 

Figure 1.  DNA methylation pattern of the CpG sites in prostate cancer. (a) Distribution of the CpG sites across 
the chromosomes. The horizontal straight line (blue) represents the  10−1.3 (0.05) threshold on the p value. CpG 
sites that cross the threshold value are considered significant. (b) Methylation distribution around the lncRNAs 
ranging from 1.5 kb upstream to 1 kb downstream of the transcription start site (TSS). Y-axis represents the beta 
values of the identified CpG sites in Prostate cancer.
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4 DElncRNAs was significantly correlated with poor survival (95% CI HR ⊉ 1 and p-value < 0.05) of the patients 
with Prostate cancer (Table 1).

Functional enrichment analysis. Functional enrichment analysis was accomplished to identify the 
potential molecular functions and the underlying biological processes in which CACNA1G-AS1, F11-AS1, 
NNT-AS1, and MSC-AS1 are involved. In terms of this, lncRNA-mRNA interaction network was determined 
to figure out the protein-coding genes whose expression can be modulated by the CACNA1G-AS1, F11-AS1, 
NNT-AS1, and MSC-AS1 lncRNAs. This analysis identified a total of 30 protein-coding genes, 18 of which can 
be modulated by the NNT-AS1, whereas MSC-AS1, and CACNA1G-AS1 can modulate 9, and 3 protein-coding 
genes, respectively (Fig. 7). We did not find any protein-coding gene associated with the F11-AS1. These 30 
protein-coding genes were assigned for characterizing their molecular functions and only 16 protein-coding 
genes were found to have significant (P-value < 0.05) association with several molecular functions (Fig. 8). NNT-
AS1 targeted RBM27, RAP1A, AMD1, PTPN12, HMGA1, CCDC69, ZCCHC7, COQ8A, PPIA and CSNK1E 
genes were pointed out to involve in RNA binding, GTPase activity, carboxy-lyase activity, protein tyrosine 
phosphatase activity, cis-regulatory region binding, DNA secondary structure binding, cadherin binding, ade-
nine–thymine rich DNA binding, Microtubule binding, kinase activity, and ATP binding (Fig. 8). RNA binding, 
cytochrome-c-oxidase activity, ATP binding, kinase activity, oxidoreductase activity, translation initiation factor 
activity, and cadherine binding molecular functions were found to actualize by the MSC-AS1 targeted NKAP, 
COX7A2L, PGK1, EIF2S3 genes (Fig. 8). CACNA1G-AS1 targeted RPL37A, HDAC11 genes were identified to 
associate with RNA binding, and histone deacetylase activity (Fig. 8). Additionally, gene set enrichment analysis 
(GSEA) was executed to identify the biological processes in which these lncRNAs are involved. A functionally 
unknown lncRNA, F11-AS1, was explored and found that F11-AS1 positively correlated with the ACEVEDO_
METHYLATED_IN_LIVER_CANCER_DN set, means up-regulation of the F11-AS1 positively correlates with 
the hypo-methylation of the genes associated in liver cancer (Fig. 9a). CACNA1G-AS1 negatively correlated 
with the HORIUCHI_WTAP_TARGETS_UP set, means down-regulation of the CACNA1G-AS1 negatively 
correlates with the up-regulation of the Wilms’ tumor 1-associating protein (WTAP) targeted genes (Fig. 9b). 
The “SENESE_HDAC3_TARGETS_DN” set is enriched in the NNT-AS1 low expression group which suggests 

Figure 2.  Differential expression signature of lncRNAs in prostate cancer. (a) Volcano plot shows the 
expression pattern of the lncRNAs in Prostate cancer. The red and blue dots indicate the significantly 
(p-value < 0.05) up-regulated (log2FC > 1.5) and down-regulated (log2FC < − 1.5) lncRNAs, respectively. (b) 
Heatmap shows the differentially expressed lncRNAs whose promoter region gets methylated differentially 
in Prostate cancer. The red and blue bars respectively represent the significantly (p-value < 0.05) up-regulated 
(log2FC > 1.5) and down-regulated (log2FC < − 1.5) lncRNAs.
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that the downregulation of this lncRNA negatively correlates with the downregulation of Histone Deacetylase 
3 (HDAC3) targeted genes (Fig. 9c). MSC-AS1 negatively correlated with the SENESE_HDAC3_TARGETS_
UP set which indicates that the downregulation of this lncRNA negatively correlates with the up-regulation of 
HDAC3 targeted genes (Fig. 9d).

Discussion
A relatively new ncRNA class, lncRNAs, have been characterized as an important kind of gene expression regu-
lator and can play crucial roles in  carcinogenesis48. In recent years, lncRNAs have become a research hotspot 
for study in a variety of cancer fields. It has already been demonstrated that the lncRNAs are shedding new 
insight into understanding the cancer pathways and their potential role as novel diagnostic and predictive 
cancer biomarkers in clinical  practice49,50. Aberrant expression of lncRNAs has also been found to be associated 
with prostate cancer (PC) emergence and progression, and several lncRNAs have been identified as diagnostic 
and predictive biomarker for  PC51,52. Emerging evidence indicates that methylation of DNA is a key epigenetic 
regulator of the expression of lncRNAs, and epigenetic alterations might interfere with the lncRNAs expression 
profile which can promote  cancer53–55. However, interrelation of the aberrant methylation in the promoters 
of lncRNAs with the emergence and progression of PC still remains largely elusive. Therefore, in this present 
study, we conducted an integrated analysis of DNA methylation and the expression of lncRNAs to characterize 
the dysregulated lncRNAs in the development and progression of PC. Furthermore, we explored the interplay 
between the biological and clinical relationships of the lncRNAs with the prognosis of PC patients.

A genome-wide methylation alteration was observed in lncRNA promoter regions which revealed a relative 
reduction of the methylation density at the TSS during the development and progression of PC. Mapping of the 
aberrant DNA methylation to the promoter regions of lncRNAs identified a total of 32 epigenetically deregulated 
DElncRNAs in PC, where 18 and 14 were found to be up-regulated and down-regulated, respectively. A signifi-
cant inverse correlation was found between the promoter methylation (cg19500311, cg23614229, cg00576773, 
cg23194354, cg05850997, cg23957912, cg12626968, and cg11052780) of 8 corresponding aberrantly expressed 
DElncRNAs (BMS1P4, CACNA1G-AS1, MIR9-3HG, SDK1-AS1, PPM1K-DT, F11-AS1, NNT-AS1, and MSC-
AS1). DNA methylation in promoters is inversely correlated with the corresponding gene  expression56. The 
hyper-methylation of CpG sites cg19500311, cg23194354, cg05850997, and cg11052780 significantly lower the 

Figure 3.  Correlation between the DMCs (cg19500311, cg23614229, cg05850997, and cg23957912) and the 
expression of lncRNAs (BMS1P4, CACNA1G-AS1, PPM1K-DT, and F11-AS1) in matched samples. The beta 
values of the DMCs are depicted in X-axis and the expression (FPKM) values of lncRNAs are depicted in Y-axis. 
R and p indicate the Spearman’s correlation coefficient and the p-values derived from Spearman’s correlation, 
respectively.
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Figure 4.  Correlation between the DMCs (cg00576773, cg23194354, cg12626968, and cg11052780) and the 
expression of lncRNAs (MIR9-3HG, SDK1-AS1, NNT-AS1, and MSC-AS1) in matched samples. The beta 
values of the DMCs are depicted in X-axis and the expression (FPKM) values of lncRNAs are depicted in Y-axis. 
R and p indicate the Spearman’s correlation coefficient and the p-values derived from Spearman’s correlation, 
respectively.

Figure 5.  Forest plot showing the correlation between the methylation of DMCs and expression of DElncRNAs 
with the overall survival of the Prostate cancer patients. Median beta value for the DMCs and the median FPKM 
value for the lncRNAs were considered as cut-off value.
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expression of the corresponding BMS1P4, SDK1-AS1, PPM1K-DT, and MSC-AS1 lncRNAs. Conversely, sig-
nificant up-regulation of the CACNA1G-AS1, MIR9-3HG, F11-AS1, and NNT-AS1 lncRNAs is caused by the 
hypo-methylation of the respective CpG sites cg23614229, cg00576773, cg23957912, and cg12626968. These 
DElncRNAs were divided into two groups based on their methylation patterns and expression levels to distin-
guish PC patients with different prognoses and thereby demonstrate a potential function of the anomalously 
methylated DElncRNAs in the survival of PC patients. From an integrated analysis of multi-omics and clinical 
data, prognosis prediction is a key factor for understanding the biological complexity of PC. The cg23614229, 
cg23957912, and cg11052780 DMCs and the CACNA1G-AS1, F11-AS1, NNT-AS1, and MSC-AS1 DElncRNAs 
were identified as significant high-risk factors for the poor prognosis of PC patients. Higher expression of the 
hypo-methylated CACNA1G-AS1, F11-AS1, and NNT-AS1 significantly lower the overall survival rates of the 
PC patients. CACNA1G-AS1 was demonstrated to have significantly higher expression in several cancer, such as 
ovarian cancer and non-small cell lung  cancer57,58. Pre-ranked GSEA analysis showed that the high expression of 
CACNA1G-AS1 might be associated with the up-regulation of the Wilms’ tumor 1-associating protein (WTAP) 
targeted genes. Overexpression of WTAP contributes to aggressive features of numerous cancers such as renal cell 
carcinoma, acute myeloid leukemia, diffuse large B-cell lymphoma, cholangiocarcinoma, hepatocellular carci-
noma and play a role as  oncogene59–63. Previous studies also showed the higher expression of NNT-AS1 in numer-
ous cancers such as cholangiocarcinoma, osteosarcoma, non-small cell lung cancer, colorectal cancer, including 

Figure 6.  Overall survival analysis of the patients with prostate cancer based on the expression of 
CACNA1G-AS1, F11-AS1, NNT-AS1, and MSC-AS1. Median FPKM value was considered as cut-off value.

Table 1.  Cox regression analysis (univariate and multivariate) of the variables associated with the overall 
survival of the prostate cancer patients.

Variables

Univariate Cox regression analysis Multivariate Cox regression analysis

Hazard ratio (HR) 95% confidence interval (CI) P-value Hazard ratio (HR) 95% confidence interval (CI) P-value

Age (> 61/ < 61) 1.15 0.83–1.62 0.01 1.59 1.11–2.26 0.01

Primary Gleason grade (Pattern 3 + Pattern 
4 + Pattern 5) 1.23 0.69–2.25 0.02 1.79 1.14–2.80 0.04

CACNA1G-AS1 (high expression/low expres-
sion) 4.63 1.91–11.22  < 0.001 6.02 1.70–21.86 0.04

F11-AS1 (high expression/low expression) 2.68 1.06–6.74 0.03 5.09 3.08–8.33 0.03

NNT-AS1 (high expression/low expression) 4.10 1.70–9.90 0.001 4.33 2.62–7.98 0.001

MSC-AS1 (high expression/low expression) 0.37 0.15–0.90 0.04 0.32 0.12–0.83 0.01
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prostate  cancer64–68. The increased expression of NNT-AS1 positively correlates with the up-regulation of Histone 
Deacetylase 3 (HDAC3) targeted genes as predicted by the GSEA analysis. Previous findings showed that the 
overexpression of HDAC3 acts as an oncogenic feature and can promote the progression of cholangiocarcinoma 
and gastric  cancer69,70. Unlike CACNA1G-AS1 and NNT-AS1, the up-regulation of F11-AS1 has been found to be 
associated with the suppression of liver hepatocellular  carcinoma71,72. GSEA analysis revealed that up-regulation 
of the F11-AS1 was likely to be associated with the hypo-methylation of the genes associated in liver cancer. 
As up-regulation of F11-AS1 significantly lower the overall survival of PC patients, its overexpression feature 
could be a potential diagnostic and prognostic biomarker for PC. Low expression of hyper-methylated MSC-AS1 
significantly lower the overall survival of the patients with PC. As GSEA results predicted, the down-regulation 

Figure 7.  lncRNA-mRNA interaction network showing protein-coding genes targeted by the CACNA1G-AS1, 
NNT-AS1, and MSC-AS1.

Figure 8.  Gene ontology (GO)-molecular function (MF) analysis of the CACNA1G-AS1, NNT-AS1, and 
MSC-AS1 targeted protein-coding genes.
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of MSC-AS1 might be involved in the up-regulation of Histone Deacetylase 3 (HDAC3) targeted genes. Func-
tion enrichment analysis of mRNAs regulated by these four epigenetically deregulated lncRNAs uncovers a 
new perception of the potential functional relevance of these DElncRNAs. We found that these DElncRNAs 
are involved in many molecular functions such as RNA binding, GTPase activity, protein tyrosine phosphatase 
activity, DNA secondary structure binding, cadherin binding, kinase activity, cytochrome-c-oxidase activity, 
translation initiation factor activity, and histone deacetylase activity. Deregulation of such molecular functions 
can result in several disease conditions including but not limited to  cancer73–77. Hence, aberrant expression of 
these epigenetically deregulated lncRNAs might cause the distortion of these cellular functions which can lead 
to the emergence and progression of PC.

The results provide by the current study is an evidence of the genome-wide alteration of DNA methylation 
of lncRNAs in PC patients. The candidate epigenetically deregulated lncRNAs CACNA1G-AS1, F11-AS1, NNT-
AS1, and MSC-AS1 might function as key regulatory factors in the development and progression of PC and 
could be potential therapeutic and prognostic biomarkers for PC, which were associated with the poor prognosis 
of the patients with PC. The present results will help to unravel a more detailed understanding of the aberrant 
methylation patterns of lncRNAs and thereby clarify the epigenetic mechanisms underlying PC.

Figure 9.  Gene set enrichment analysis (GSEA) exhibiting the biological process associated with the (a) 
F11-AS1, (b) CACNA1G-AS1, (c) NNT-AS1, and (d) MSC-AS1. A positive enrichment score represents 
positive correlation with the phenotype profile where a negative score represents inverse correlation with the 
phenotype profile. Red, pink and blue color indicate the high, moderately high, and low expression.
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Conclusion
The current study investigated the crosstalk between the DNA methylation and expression of lncRNAs and 
their impact on the clinical prognosis of PC patients by integrating multi-omics data using several bioinformat-
ics approaches. The establishment of a detailed understanding of DNA methylation-altered CACNA1G-AS1, 
F11-AS1, NNT-AS1, and MSC-AS1 lncRNAs in PC will facilitate the characterization of oncogenic lncRNAs. 
The mechanistic and functional characterization of these epigenetically deregulated lncRNAs may help to reveal 
the path of future development of lncRNA-based PC specific therapies. The significant prognostic association 
of CACNA1G-AS1, F11-AS1, NNT-AS1, and MSC-AS1 lncRNAs suggests their association in PC progression 
which will shed light on the future development of lncRNA-based prognostic biomarkers specific for PC. Since 
the results provided by this present study are based on in silico analysis, further in-depth experimental investiga-
tions are required to validate the findings.

Methods
Characterization of DNA methylation pattern in prostate cancer. A differential methylation 
analysis and long non-coding RNAs (lncRNA) annotation was performed to identify the prostate cancer (PC) 
related differentially methylated CpG sites (DMCs) and differentially methylated regions (DMRs) located in 
the promoter regions of lncRNAs. The GEO (Gene Expression Omnibus)  database78 was explored to search for 
methylation array datasets for prostate cancer. This database is the most widely used public repository for access-
ing raw, processed, and descriptive gene expression data, as well as other functional genomics data sets includ-
ing genome methylation, genome variation and genome-protein  interaction78. The keyword “prostate cancer” 
was used for this search and then considered the following criteria for choosing the appropriate datasets (i) the 
methylation array dataset were restricted to “Homo sapiens”, (ii) the experiment type was specified to “Methyla-
tion profiling by array”, (iii) dataset having tumor and control samples, (iv) “Illumina HumanMethylation450 
BeadChip” was nominated as methylation profiling platform, and (v) the dataset must contain “IDAT” files. 
Afterwards, the R package “minfi”79 was used to process the Illumina methylation 450K array data to identify 
the DMCs and DMRs between PC samples and adjacent tissues. “dmpFinder” function (type = categorical) of 
this package was utilized to identify the DMCs where significance level was set as absolute delta beta value > 0.2 
(20% difference on beta value) and P-value < 0.05. The Benjamini and Hochberg technique was used to deter-
mine the false discovery rate (FDR) from multiple testing adjustments of raw P-value. “bumphunter” function 
(resamples = 100, cut off = 0.2) of the “minfi” package was then used to identify the DMRs. The “HM450.hg38.
manifest” file (https:// zwdzwd. github. io/ Infin iumAn notat ion) was used to perform the genomic annotation of 
each CpG site. According to the “HM450.hg38.manifest” and GENCODE v36 (https:// www. genco degen es. org/ 
human/ relea se_ 36. html) reference annotation file, the genomic coordinates of each lncRNA was obtained. We 
then combined both the information regarding the genomic coordinates of CpG sites and lncRNAs to look for 
the differentially methylated loci inside the promoter regions [2500 bp upstream and 1000 bp downstream from 
the putative transcription start site (TSS)] of lncRNAs. “qqman”80 R package was used to construct a Manhattan 
plot to represent the chromosomal distribution of CpG sites according to FDR. TCGA (PRAD)-450K methyla-
tion array data was retrieved from the UCSC Xena  browser81 to cross-check the DNA methylation patterns of 
the CpG sites.

Characterization of differentially expressed lncRNAs in prostate cancer. A differential expres-
sion analysis of lncRNAs was conducted to identify the pivotal lncRNAs potentially involved in prostate can-
cer (PC). Concerning this, the lncRNA microarray dataset for PC was retrieved from the GEO database with 
the keyword “prostate cancer” while considering the following criteria for selecting the suitable datasets (i) the 
lncRNA dataset was restricted to “Homo sapiens”, (ii) the experiment type was specified to “non-coding RNA 
profiling by array”, and (iii) dataset having tumor and control samples. The dataset satisfying the aforemen-
tioned criteria was utilized for analyzing through the R package “limma”82 to identify the differentially expressed 
lncRNA (DElncRNA) between PC samples and control samples. FDR was computed through the Benjamini and 
Hochberg approach for adjusting the raw P-value to correct the occurrence of false positive results. lncRNAs 
showing the values of FDR < 0.05 and absolute log2FC (fold change) > 1.5 were defined as DElncRNAs. Based 
on the “HM450.hg38.manifest” and GENCODE v36 reference file, the genomic annotation of each lncRNA was 
done to figure out the DElncRNAs which contain DMCs within their promoter region and selected for further 
analysis. “ggplot2” R package was employed to generate a volcano plot to represent the expression pattern of 
lncRNAs. Moreover, “gplots” R package was used to visualize the expression profile of DElncRNA. Both the 
“ggplot2” and “gplots” R packages were accessed through the Galaxy  server83.

Correlation analysis between DNA methylation and lncRNA expression. A correlation analysis 
between the lncRNA expression and the methylation of DMCs was conducted to evaluate the impact of methyla-
tion on the expression of corresponding lncRNAs and to determine the relevant significant lncRNAs involved 
in PC. The expression value (quantified as FPKM values) of the selected DElncRNAs from 496 PC patients were 
extracted from the TCGA (PRAD)-RNAseq data by utilizing the UCSC Xena Browser. UCSC Xena is a scalable 
solution for the visualization and analysis of cancer genomics from large public data repositories like TCGA and 
the GDC as well as private  datasets81. Similarly, the methylation value (quantified as beta values) of the selected 
DMCs from the same 496 PC patients were obtained from the TCGA (PRAD)-450K methylation array data 
through accessing the UCSC Xena Browser. The "cor.test" function of the R programming  language84 was used to 
assess the Spearman’s correlation coefficient (R) between the expression of the selected lncRNAs and the meth-
ylation level of the corresponding DMCs where significant threshold was fixed at an absolute value of R > 0.3 

https://zwdzwd.github.io/InfiniumAnnotation
https://www.gencodegenes.org/human/release_36.html
https://www.gencodegenes.org/human/release_36.html


11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10260  | https://doi.org/10.1038/s41598-022-13381-0

www.nature.com/scientificreports/

and P-value < 0.05. Only negatively correlated DElncRNA-DMC pairs were considered for further analysis as 
methylation in promoters is negatively correlate with corresponding gene  expression56.

Impact of aberrant DNA methylation and expression of DElncRNA on the clinical prognosis of 
prostate cancer patients. We examined the effect of aberrant methylation and expression of the identi-
fied respective CpG sites and DElncRNAs on the clinical prognosis of PC patients. Regarding this, clinical data 
(TCGA-PRAD) of 500 PC patients was downloaded from the GDC Data  Portal85. GDC (Genomic Data Com-
mons) is based on NCI (National Cancer Institute) generated data including genomic, proteomic, epigenomic, 
clinical and other uniformly processed data from The Cancer Genome Atlas (TCGA) and Therapeutically Appli-
cable Research to Generate Effective Therapies (TARGET) programs to explore cancer  research85. Initially, for 
each patient, we calculated the median of the expression and methylation value obtained in the previous step for 
the identified respective DElncRNAs and DMCs. Based on the median value the patients were then divided into 
low and high expression/methylation groups. Kaplan–Meier overall survival curve was generated to compare the 
clinical prognosis between the high and low expression subjects. Moreover, a univariate Cox regression analysis 
was carried out to investigate the association of the selected DElncRNAs and DMCs in the clinical prognosis of 
PC patients. Additionally, multivariate Cox regression analysis was also done to determine the association of the 
expression of these DElncRNAs with other clinical features of the patients (patients’ age and primary Gleason 
grade). The significance level was set at 95% CI (confidence interval) of HR (hazard ratio) ⊉ 1 and P-value < 0.05. 
The “survival”86 and “survminer”87 R packages was implemented for these analyses.

Functional annotation and enrichment analysis. Gene Ontology-Molecular Function (GO-MF) and 
Gene Set Enrichment Analysis (GSEA) were performed to point out the molecular functions and the underlying 
biological processes in which the selected key DElncRNAs are involved. First, the protein-coding genes modu-
lated by these DElncRNAs were identified through characterizing the lncRNA-mRNA interaction network by 
using the ENCORI pan-cancer analysis  platform88. The lncRNA-mRNA interaction network was constructed 
by the Cytoscape  software89. Afterwards, the identified protein-coding genes were evaluated to figure out their 
molecular functions by Enrichr web  server90. The R package “circlize”91 was employed to generate a chord dia-
gram for visualizing the gene-function link. The gene set enrichment analysis was carried out by the GSEA 
 software92 to identify the biological processes associated with these DElncRNAs. For this, the log2FC value 
computed by the “limma” R package was used as the ranking metric for GSEA. In this analysis the gene sets were 
obtained from the canonical pathways sub-collection of the C2 collection in the Molecular Signatures Database 
(MSigDB)93.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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