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Investigating the association 
of environmental exposures 
and all‑cause mortality in the UK 
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Multicollinearity refers to the presence of collinearity between multiple variables and renders the 
results of statistical inference erroneous (Type II error). This is particularly important in environmental 
health research where multicollinearity can hinder inference. To address this, correlated variables 
are often excluded from the analysis, limiting the discovery of new associations. An alternative 
approach to address this problem is the use of principal component analysis. This method, combines 
and projects a group of correlated variables onto a new orthogonal space. While this resolves the 
multicollinearity problem, it poses another challenge in relation to interpretability of results. Standard 
hypothesis testing methods can be used to evaluate the association of projected predictors, called 
principal components, with the outcomes of interest, however, there is no established way to trace 
the significance of principal components back to individual variables. To address this problem, we 
investigated the use of sparse principal component analysis which enforces a parsimonious projection. 
We hypothesise that this parsimony could facilitate the interpretability of findings. To this end, we 
investigated the association of 20 environmental predictors with all‑cause mortality adjusting for 
demographic, socioeconomic, physiological, and behavioural factors. The study was conducted 
in a cohort of 379,690 individuals in the UK. During an average follow‑up of 8.05 years (3,055,166 
total person‑years), 14,996 deaths were observed. We used Cox regression models to estimate the 
hazard ratio (HR) and 95% confidence intervals (CI). The Cox models were fitted to the standardised 
environmental predictors (a) without any transformation (b) transformed with PCA, and (c) 
transformed with SPCA. The comparison of findings underlined the potential of SPCA for conducting 
inference in scenarios where multicollinearity can increase the risk of Type II error. Our analysis 
unravelled a significant association between average noise pollution and increased risk of all‑cause 
mortality. Specifically, those in the upper deciles of noise exposure have between 5 and 10% increased 
risk of all‑cause mortality compared to the lowest decile.

Abbreviations
CI  Confidence Interval
CNOSSOS-EU  Common Noise Assessment Methods in Europe
CVD  Cardiovascular disease
ESCAPE  European Study for Cohorts of Air Pollution Effects
HR  Hazard ratio
ICD  International classification of diseases
LUR  Land Use Regression
N/EWAS  Neighbourhood-wide or environment-wide associations
NMF  Non-negative matrix factorisation
PC  Principal component
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PM  Particulate matter
PCA  Principal component analysis
SD  Standard deviation
SPCA  Sparse principal component analysis

Numerous studies have reported significant associations between individual environmental variables such as 
traffic noise, air pollution, green space and health  outcomes1–4. Such findings are important but a key limitation 
of them is that they do not consider simultaneous exposure to key environmental stressors in the analysis. Since 
environmental variables are often highly correlated, this limitation can diminish the causal plausibility of the 
findings. For instance, multiple studies have reported significant associations between traffic noise, all-cause 
mortality and cardiovascular  diseases5–7. However, exposure to higher levels of traffic noise, also increases the 
likelihood of exposure to particulate matter pollutants (PM), gaseous pollutants and other traffic-related stressors. 
Additionally, individuals exposed to these stressors are less likely to have access to domestic and urban green 
spaces which have been reported to have protective effects against adverse health outcomes.

The aforementioned gap in simultaneous analysis of multiple environmental stressors is partly due to “multi-
collinearity”. Environmental variables such as green space, gaseous and particulate air pollution, noise pollution 
and traffic-related variables are usually temporally and/or spatially correlated; they are also often correlated with 
demographic and socioeconomic determinants. The inclusion of these correlated variables in regression models 
leads to erroneous estimation of the effect size, broad confidence intervals, and therefore, inaccurate interpreta-
tion. Methods for mitigating the effects of multiple correlated variables include dimensionality reduction (e.g. 
Principal Component Analysis (PCA)), partial least-squares, shrinkage regression models, mixture models, and 
Bayesian approach. However, several factors such as complexity of application, difficulty of interpretation, and 
high computational requirements have impeded their adoption in environmental  research8,9. PCA and PLS are 
not  interpretable10,11. Shrinkage regression models achieve sparsity by penalising nonzero model coefficients as 
well as regression error. While this mitigates multicollinearity, penalising regression coefficients has unfortunate 
implications for statistical inference where the aim is finding reliable estimates of model coefficients regardless 
of their contribution to predictive performance. Mixture models and Bayesian modelling are computationally 
demanding and become intractable as the number of variables and observations  increase12,13. Therefore, a widely 
applicable, interpretable and computation-efficient statistical approach is needed to fill this gap.

The computational efficiency and desired statistical properties of PCA make it good candidate for big data 
studies where multicollinearity poses a problem. PCA transforms a group of correlated variables into a smaller 
group of independent variables, called principal components. Therefore, the use of principal components -instead 
of the set of variables- in regression analysis eliminates multicollinearity. Due to these advantages, the method 
has been widely used in epidemiological  studies14–17. Yet, the main shortcoming of PCA is interpretability. Each 
principal component is a mix of all variables, making inference impossible. Since this difficulty is the result of a 
dense transformation, we hypothesise that a sparse transformation could facilitate the interpretation of findings. 
To this end, we investigated the usefulness of Sparse Principal Component Analysis (SPCA)18. As a case study, 
we focused on potentially modifiable but correlated environmental exposures. As such, the main contributions 
of the study are, firstly, we showcase the benefits of SPCA as an interpretable alternative to PCA, offering clear 
advantages for statistical inference in the presence of multicollinearity. Secondly, using SPCA, we showed a 
significant association between noise levels and all-cause mortality after adjusting for a comprehensive list of cor-
related environmental variables that could affect health outcomes independent of noise levels, namely residential 
traffic levels, vicinity to roads and major roads, green space, natural environment, domestic garden, proximity 
to water, and coastal proximity. While several studies in the past decade have largely addressed the questions 
around the confounding effects of air pollution and traffic  noise5–7,19, none of the available studies have adjusted 
for the comprehensive list of environmental confounders considered in our study.

Methods
Study population. This analysis was conducted using the UK Biobank cohort. The UK Biobank is a large 
prospective cohort study involving 502,527 participants aged 40–69 years who were recruited between 2006 and 
2010 from 22 assessment centres across the  UK20. The data is globally accessible to approved researchers. We 
excluded participants from analysis if they had any of the following: (a) withdrawal of consent for future data 
linkage from the UK Biobank after recruitment (158 individuals) (b) left the UK (1102 individuals) (d) deaths 
reported by relatives but not recorded in death registry data (38 individuals) (e) missing data on investigated 
environmental exposures (69,268 individuals) and (f) change of residential address after the baseline (52,271 
individuals). The final sample size consisted of 379,690 individuals. All participants provided written consent, 
ethical approval was obtained from the North West Multi-Centre Research Ethical Committee and Patient Infor-
mation Advisory Group and all methods were performed in accordance with the relevant guidelines and regula-
tions.

Environmental exposures. Measures for exposure to air pollutants included: the annual average concen-
tration of  PM2.5,  PM10, and  PMcoarse (particulate matter (PM) with an aerodynamic diameter of less than 2.5 µm, 
10 µm, and between 2.5 and 10 µm respectively),  NO2 (nitrogen dioxide), and  NOx (nitrogen oxides). These 
measures were calculated for year 2010 for each participant’s residential address at recruitment using Land Use 
Regression model developed and validated by the ESCAPE  project21,22.

Exposures to traffic were also derived by the ESCAPE project for each participant’s home: traffic intensity 
on the nearest road, traffic intensity on the nearest major road (traffic intensity, vehicles/day), and sum of major 
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road length within 100 m buffer. Average daytime, evening time and night-time sound level of road traffic noise 
pollution were derived for year 2010 using the CNOSSOS  model23.

Other environmental indicators included the proportion of green space, natural environment, domestic gar-
den, and water within 300 m and 1000 m of residential addresses, using the 2005 Generalised Land Use Database 
for England and Centre for Ecology and Hydrology 2007 Land Cover Map data for Great  Britain24. The buffer 
sizes were decided based on relevant health evidence and public policy on both density and accessibility. Coastal 
proximity was estimated using Euclidean distance  raster25.

All the exposure indicators were only modelled or available to a single year, which may differ up to 4 years 
from recruitment. This may particularly affect air pollution and road traffic noise estimates, distributions of 
which tend to be spatially and temporally different. As with other  studies26,27 using these air pollution and noise 
data in UK Biobank, we made an assumption that whilst the absolute traffic volumes will have changed between 
earlier baseline periods and 2010, the relative difference in these exposures would likely have been spatially 
stable over this short period in the UK. This assumption is supported by findings for  NO2 air pollution in Great 
Britain, for which road traffic is a major source, where LUR-modelled  NO2 estimates for 2009 could be reliably 
back-extrapolated to earlier  1990s28. Between years 2010 and 2018, total annual emissions for  PM10 and  PM2.5 
have been stable across the UK while emissions for  NO2 have proportionally decrease according to the official 
 statistics29. While we cannot exclude the possibility of exposure misclassification, the decision of using single-
year annual average exposures at baseline to represent the annual average exposures during the entire follow-up 
period was deemed justifiable.

Additional covariates. In the regression analysis, we adjusted for a number of sociodemographic, socio-
economic, physiological, behavioural and lifestyle determinants of health. Specifically, we adjusted for age, sex, 
ethnicity, Townsend Deprivation Index, household income, qualifications, employment status, standing height, 
body mass index, average systolic blood pressure (SBP), average diastolic blood pressure (DBP), average pulse 
rate (PR), alcohol consumption and smoking status. Table 1 provides a descriptive summary of the cohort.

Health outcome. We used all-cause mortality as the outcome of interest. The date of death was extracted 
from the linked national death registries. An event was ascertained if death was recorded between the date of 
recruitment and the end of follow-up (censoring date: 1st May 2017). Fig. 1. shows the top 20 ICD10 codes that 
were registered as the primary causes of death.

Statistical analysis. We used SPCA, which was originally proposed by Zou and  colleagues18. Our hypoth-
esis is that the sparsity of principal components in SPCA can help overcome the limitation of PCA for identifying 
important stressors. The term ‘sparse’ in SPCA means that most of the coefficients in the loading matrix will be 
zeros, thus each derived principal components in SPCA will only be related to a small subset of the variables. 
Additionally, in contrast to PCA, each variable can only contribute to a small numbers of principal compo-
nents in SPCA. These two features are expected to facilitate the interpretability of results. This is schematically 
demonstrated in Fig. 2, where xi ∈ Rn is the vector of variables for the observation i . The arrows represent the 
loading matrix V ∈ Rn×m and map the variables to principal components zi ∈ Rm where often m ≪ n. Following 
this projection, a regression analysis may map the principal components to the outcome of interest, y. Stand-
ard statistical hypothesis testing methods can determine the significance of associations between the principal 
components, z, and the outcome, y, however, the dense mapping between the variables, x, and the principal 
components, z, mean these associations cannot be traced back to the variables. We expect SPCA to resolve this 
by providing a sparse loading matrix.

In order to achieve sparsity, SPCA penalizes the absolute value of the loadings at the cost of loss of informa-
tion. A hyper-parameter, � , is used to balance the trade-off between information loss and the sparsity of the load-
ing matrix. Several implementations of SPCA have been proposed, here, we used the implementation reported 
by Erichson et al.30 which uses the following formulation:

where,

v(B) represents the reconstruction error, ψ(B) is the penalty term which could be L1 norm (LASSO), L2 
norm (RIDGE), or a combination of the two (elastic net). The hyperparameter λ controls the trade-off between 
the reconstruction error and sparsity; a larger value of λ produces a sparser model. Hereafter this parameter is 
denoted by �SPCA to distinguish it from the penalty coefficient in the penalised regression model ( �Cox ). The data 
matrix is denoted by X, B is the sparsely weighted matrix and A is an orthonormal matrix.

Data processing, modelling and visualisations were performed in Python v.3.8.3 and R v.4.1.0. Cox models and 
related plots were obtained using the Python library Lifelines v.0.25.10, the PCA was performed using the pack-
age scikit-learn v.0.25.10 and SPCA using the SPCA R  library30. Sankey plots were obtained using Plotly v.5.3.1.

Results
We used Cox regression to evaluate the association of environmental variables with all-cause mortality after 
adjusting for the aforementioned covariates. We compared the results when,
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(a) the environmental variables were plugged into the model with no transformation (Cox model hereafter).
(b) L1 penalty was included in the model (penalised Cox model hereafter). We varied the coefficient of the L1 

penalty term, �Cox , between 0 and 2e-3 at 5e-5 intervals producing different levels of sparsity (supplemen-
tary materials: Fig. S1).

(c) The environmental variables were transformed with PCA. The number of principal components was 
selected to explain 90% of the variance in the data, leading to seven principal components. The Cox 
regression model was fitted to the resulting principal components and other covariates (PCA Cox model 
hereafter);

(d) We repeated step (c) using SPCA. The coefficient of the L1 penalty, �SPCA , was selected to increase model 
parsimony. Increasing the value of �SPCA results in principal components that consist of a smaller set of 
variables. To facilitate interpretability, we selected �SPCA such that no two principal components share the 
same variable, in other words each variable at most contributes to one principal component. More details 
about the selection of �SPCA is included in supplementary materials (Fig. S2). The number of principal com-
ponents were similarly selected to explain 90% of the data variance, leading to seven principal components 
(SPCA Cox model hereafter).

Table 1.  Descriptive summary of the study sample, environmental exposures, and outcome. a Average sound 
level pressure LAeq between the hours of 07:00 to 19:00 for day-time; 19:00–23:00 for evening; 23:00–07:00 
for night-time; b Derived from the land use types classed as ’domestic garden’ from the Generalised Land Use 
Database (GLUD) 2005 for England at the Census Output Area level; c Derived from the land use types classed 
as ’greenspace’ from the Generalised Land Use Database (GLUD) 2005 for England at the Census Output Area 
level; d Derived from the land cover classified as ’natural environment’ from the Land Cover Map (LCM) 2007; 
e Derived from the land use types classed as ’water’ from the Generalised Land Use Database (GLUD) 2005 for 
England at the Census Output Area level; f PM coarse (particulate matter between 2.5 and 10 µm); Land Use 
Regression (LUR) estimate for annual average 2010; g The definition of a major road for the local road network 
is a road with traffic intensity greater than 5000 motor vehicles per 24 h; h Traffic intensity is the average total 
number of motor vehicles per 24 h on the nearest major road based upon a local road network.

Variables
Women
(n = 206,925)

Men
(n = 172,765)

All
(n = 379,690)

Age, mean (SD) 56.66 (7.94) 57.15 (8.10) 56.88 (8.02)

Age at the time of event (SD) 66.39 (7.32) 67.28 (6.87) 66.93 (7.06)

Townsend deprivation index, mean (SD) − 1.44 (2.96) − 1.39 (3.06) − 1.42 (3.01)

Ethnicity: British (%) 87.98 88.84 88.37

Ethnicity: Any other white background (%) 3.56 2.60 3.12

Ethnicity: Irish (%) 2.46 2.67 2.55

Ethnicity: Indian (%) 1.20 1.37 1.28

Ethnicity: other (%) 3.53 4.43 4.58

Annual average day-time noise level (dB(A))a, mean (SD) 55.35 (4.22) 55.39 (4.27) 55.37 (4.24)

Annual average evening noise level (dB(A))a, mean (SD) 51.61 (4.22) 51.64 (4.27) 51.62 (4.24)

Annul average night-time noise level (dB(A))a, mean (SD) 46.53 (4.22) 46.57 (4.27) 46.55 (4.24)

Domestic garden coverage (%) within  1000mb, mean (SD) 24.46 (11.26) 24.24 (11.23) 24.36 (11.25)

Domestic garden coverage (%) within  300mb, mean (SD) 31.49 (14.67) 31.27 (14.70) 31.39 (14.68)

Greenspace coverage (%) within  1000mc, mean (SD) 45.28 (21.56) 45.37 (21.44) 45.32 (21.51)

Greenspace coverage (%) within  300mc, mean (SD) 35.40 (23.20) 35.51 (23.07) 35.45 (23.14)

Natural environment coverage (%) within  1000md, mean (SD) 41.32 (25.67) 41.35 (25.59) 41.33 (25.63)

Natural environment coverage (%) within  300md, mean (SD) 26.68 (25.31) 26.78 (25.25) 26.72 (25.28)

Water body coverage (%) within  1000me, mean (SD) 1.24 (2.46) 1.25 (2.45) 1.25 (2.46)

Water body coverage (%) within  300me, mean (SD) 0.87 (2.88) 0.89 (2.90) 0.88 (2.89)

Costal distance (meter), mean (SD) 45.39 (26.82) 45.85 (26.77) 45.60 (26.80)

NO2; (μg/m3), mean (SD) 26.67 (7.50) 26.72 (7.58) 26.69 (7.54)

NOx; (μg/m3), mean (SD) 43.89 (15.21) 44.05 (15.55) 43.96 (15.36)

PM10; (μg/m3), mean (SD) 16.22 (1.87) 16.23 (1.88) 16.23 (1.87)

PMcoarse; (μg/m3)f, mean (SD) 6.42 (0.89) 6.42 (0.89) 6.42 (0.89)

PM2.5; (μg/m3), mean (SD) 9.98 (1.03) 9.99 (1.05) 9.98 (1.04)

Sum of major road length within 100 m (m) g, mean (SD) 27.25 (75.41) 28.23 (77.80) 27.70 (76.51)

Traffic intensity on nearest major road (vehicles/day)h, mean (SD) 23,472.94 (21,322.17) 23,477.37 (21,272.41) 23,474.95 (21,299.52)

Traffic intensity on nearest road (vehicles/day)h, mean (SD) 1480.04 (4906.16) 1516.51 (5020.38) 1496.63 (4958.49)

Years of follow-up, mean (SD) 8.08 (1.03) 8.01 (1.19) 8.05 (1.10)

Number of events 5954 (2.88%) 9042 (5.23%) 14,996 (3.95%)

Incidence rate, per 1000 person-years 4 7 5
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The number of follow-up years was the underlying time variable for all Cox models. Prior to the analysis, all 
numeric variables were examined for normality and outliers. Subsequently, they were standardised and values 
above or below five, were set to five.

Figure 3a depicts the coefficient of the environmental variables in the Cox model. Multicollinearity in the Cox 
model results in high standard errors in the estimation of the coefficients, inhibiting reliable statistical inference. 
None of the environmental variables are found to be statistically significant. The detailed results are included in 
supplementary materials (Table S1). Figure 3b shows pairwise Pearson correlation between the variables. The 
block with high correlation coefficients pertains to the 20 environmental variables, underlining high collinear-
ity within this class of variables. A moderate correlation is also observed between Townsend deprivation index 
and a number of environmental variables. A larger figure with detailed labels is included in supplementary 
materials (Fig. S3).

Adding the L1 penalty (penalised Cox model) attenuates the log(HR) associated with the environmental 
variables. Large values of �Cox result in log(HR) = 0 for all environmental variables. None of the intermediate 
values of �Cox produced any log(HR) values significantly different from zero at α = 5%. Lastly, similar to the Cox 
model without L1 penalty, multicollinearity led to convergence errors for several smaller values of �Cox . Figure 4 
demonstrated the shrinkage of the log(HR) estimates and the 95% CI for different values of �Cox.

Figure 5, schematically compares PCA and SPCA results. The environmental variables are shown in the 
far left. The width of the links between the variables and the principal components are proportional with the 
loading coefficients. The links between the principal components and the outcome (i.e. all-cause mortality) are 
similarly proportional with the absolute value of the Cox coefficients (log(HR)). The associations that were found 
significant at α = 5% are highlighted in red. Detailed results are included in supplementary materials (Table S2).

In the PCA Cox model, the seventh component has a negative association with the outcome, however, given 
the complex interrelationship between the variables and principal components, it is not possible to disentangle 
this association. On the contrary, in the SPCA Cox model, the second component has a positive association with 
mortality and this can be easily traced back to the three constituting variables of this component. Specifically, 
this component is the average of the three variables representing average level of sound pollution in daytime, 

Figure 1.  The top 20 primary causes of deaths within the cohort.

Figure 2.  Schematic representation of PCA and Sparse PCA projection of the variables (x) to the latent space or 
principal components (z). The second layer shows a subsequent regression analysis for the outcome of interest 
(y).
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evening, and night-time. One unit change in this principal component, corresponds to 2.47 dB increase in the 
average daily noise pollution (details in supplementary materials) and this is associated with HR:1.017 (95% CI: 
1.004–1.030). Although the list of covariates that we adjusted for is much more comprehensive than previous 
studies and included some traffic-related stressors that were correlated with noise pollution, our result (HR: 1.07, 
95%CI: 1.02–1.13, per 10 dB increase in the average daily noise) is in agreement with the previous  studies5,7.

To further verify this association, we investigated whether it persists across different exposure levels. To this 
end, as suggested by the previous analysis, the three aforementioned noise pollution variables were averaged; 
forming a new variable that represents average daily noise pollution. This was then categorised into deciles and 
the hazard ratios were calculated for the nine top deciles relative to lowest decile. The lowest decile represents 
noise pollution levels between 46.72 and 47.23 dB. To address the multicollinearity of the environmental covari-
ates, the remaining 17 environmental variables were transformed to principal components explaining 0.92 per-
cent of the variance. The model was adjusted for all other covariates. The results are depicted in Fig. 6, showing 
an upward trend which underlines the plausibility of a causal link. Descriptive summary of the subpopulations 
in each category and more details about the model is included in the supplementary materials (Table S3 and 4).

Figure 3.  (a) The plot shows log(HR) per 1 standard deviation increase of the variables (b) Pairwise Pearson 
correlation between socioeconomic, demographic, physiological and environmental factors in a large cohort of 
379,690 in the UK.

Figure 4.  Log(HR) for different values of the L1 penalty coefficient ( �Cox ) in the penalised Cox model.
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Discussion
Main findings. The key finding of this study is the integration of SPCA in regression analysis provides a 
promising approach for conducting inference in the presence of multicollinearity. Multicollinearity leads to 
erroneous estimation of the coefficients and broad confidence intervals in regression models. This increases the 
likelihood of Type II errors. As a result, some important associations may remain concealed. As a case study, we 
investigated the association of various correlated environmental factors and all-cause mortality, adjusting for 
other established risk factors. SPCA resulted in a sparse and interpretable grouping of the environmental vari-
ables. For instance, all three noise related predictors were combined into one principal component. Additionally, 
the sparsity of the transformation enabled us to trace the statistical significance of the principal components 
back to the variables of interest.

Interpretation of findings in the context of previous studies. PCA, as a descriptive analysis tool is 
one of the oldest and most commonly used techniques for reducing the dimensionality of  data31. But the lack of 

Figure 5.  Schematic representation of the association of environmental variables with all-cause mortality 
using a two-stage regression analysis (a) with PCA and (b) with SPCA. In the first stage (i.e. dimensionality 
reduction), the variables are transformed to principal components. In the second stage, a Cox model was used to 
investigate the association of the transformed variables and all-cause mortality.

Figure 6.  Log(Hazard Ratio) of all-cause mortality for different noise pollution exposure deciles compared 
to the lowest decile, i.e. (46.72, 47.23], after adjusting for socioeconomic, demographic, environmental, and 
physiological, and behavioural covariates.
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interpretability of the derived representations, i.e. principal components, has been recognised as one of its major 
drawbacks. As shown in our results, in PCA, the entangled relationship between the principal components and 
the variables hinders the interpretation of findings. While some seek to mitigate this issue by deselecting non-
important  variables32 or selecting variables more relevant to outcomes using supervised  methods33,34, such inter-
ventions are not appropriate for statistical hypothesis testing where all relevant covariates should be adjusted for 
regardless of their contribution to predictive performance.

Over the years, other dimensionality reduction methods have been widely applied in different disciplines. 
Random  Projection35, Dictionary  Learning36, Factor Analysis, Independent Component  Analysis37, Non-negative 
Matrix Factorization (NMF)38 are examples of these methods. Recently, Autoencoders including Denoising 
 Autoencoder39 and Variational  Autoencoder40 are increasingly used to learn a low dimensional representation 
of the input variables. But similar to PCA, the common limitation of these dimensionality reduction methods is 
the entangled relationship between the variables and the low dimensional representations. Enforcing sparsity in 
the transformation is recognised as an effective way to address this  problem41. Inspired by this we investigated 
the use of SPCA for statistical hypothesis testing in the context of environmental health research and showed 
promising results. In light of the findings, we conclude that the integration of SPCA in statistical inference is 
a simple, computationally-efficient strategy for big data investigations when multicollinearity could lead to 
erroneous results.

Previously, environmental epidemiology studies have adopted dimensionality reduction methods, as well as 
one-stop methods such as Bayesian profile  regression42 to perform both dimensionality reduction and regression 
analysis for multiple pollutants. Some studies using PCA had previously identified a subset of air pollutants that 
were associated with  mortality34,43. However, no studies have applied these statistical techniques to adjust for the 
wide range of environmental and non-environmental covariates that we considered in our  analysis44. Neighbour-
hood-wide45 and environment-wide24 association studies (N/EWAS) have also been applied to high dimensional 
data in environmental epidemiology. These methods are inspired by genome-wide association  studies46 and their 
resources-intensiveness -in terms of data and computational power- hinders their wider adoption.

Our analysis led to a clear pattern of association between noise pollution and all-cause mortality. Noteworthy, 
the three indicators of noise pollution, day-time, evening, and night time noise levels, were combined into one 
principal component, all with the same weights. The resulting principal component (or a 2.47 dB increase in the 
average daily noise pollution) was associated with a HR:1.017 (95%CI:1.004–1.030) for all-cause mortality. This 
is translated to a HR: 1.07, 95%CI: 1.02–1.13 as per 10 dB increase in average noise level, in line with the only 
other study that showed a positive significant association between daily road traffic noise exposure and all-cause 
mortality (HR: 1.08, 95%CI: 1.04–1.12)5. A previous study in London reported the association between daytime 
noise and all-cause mortality in areas with noise pollution level greater than 60 dB compared to areas with noise 
pollution level less than 55 dB RR: 1.04 (95%CI: 1.00–1.07)7. While the hazard ratio calculated in our study is 
not directly comparable to the aforementioned studies, due to differences in the populations, study designs, data 
processing and covariates, the consistency of the findings are reassuring. Although the inclusion of correlated 
covariates can attenuate the significance of association, our results are largely in agreement with these studies, 
suggesting independent of gaseous pollutant, traffic-related stressors and other determinants, noise level is an 
important risk factor. Nonetheless, number of studies investigating the epidemiological link between road traf-
fic noise exposure and all-cause mortality outcomes remains few, with a recent meta-analysis showing a weak 
association by pooling only five studies (HR: 1.01, 95%CI: 0.98–1.05)47.

A subsequent exposure–response analysis showed that the four highest exposure deciles are associated with 
significant risk of all-cause mortality compared to the lowest exposure decile. Specifically, the top four average 
daily noise exposure deciles (50.66, 51.51], (51.51, 52.88], (52.88, 56.28], (56.28,88.53] dB were consistently asso-
ciated with significant increase in all-cause mortality of HR:1.10 (95%CI: 1.03–1.19), 1.09 (95%CI: 1.01–1.17), 
1.08 (95%CI: 1.01–1.17), 1.11 (95%CI: 1.01–1.22) compared to the lowest decile of (46.23, 47.23] dB. It should 
be noted that, 8 of the top 20 causes of death included in this study were cardiometabolic diseases. The finding of 
our trend analysis is similar to what was previously reported for the cardiovascular disease mortality, suggesting 
a possible effect threshold may start at around 50–53  dB47–49.

Limitations and future works. The key strengths of our analysis are, a large cohort, adjustment for a 
comprehensive list of environmental exposures, including correlated traffic-related exposures, which was facili-
tated by our methodological approach. This study has limitations. Firstly, we did not account for any potential 
non-linear exposure–response relationship. The inclusion of non-linear and interaction terms could reduce the 
risk of residual confounding. However, our primary objective was to study the usability of SPCA as a simple, 
computationally efficient and interpretable method to address collinearity. Second, as we already noted, expo-
sure misclassification is inevitable for this type of study. Typically, if there was a true association with the health 
outcome, the effect estimates would be biased toward null for a classic random error. Third, SPCA approach is 
essentially a data-driven method without a priori variables hypotheses, without considering causal structures 
among the variables and/or variable-outcome links. In our study, 20 environmental exposures from UK Biobank 
were reduced in dimensionality using SPCA and were all used in the Cox regression under the assumptions of a 
causal structure linking each exposure and the outcome and the assumption that the exposures are independent 
of one another. However, in reality, some exposures may be on a specific causal pathway (e.g. traffic intensity–air 
pollution–mortality). It is beyond the scope of current study to investigate this complex causal structure which 
indeed requires a careful consideration of the causal inference analysis framework. Taking together all these 
limitations, the findings generated from our SPCA analysis are mainly exploratory and neither infers any poten-
tial causal relationship nor biological plausibility.
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Conclusion
This study demonstrated that SPCA is a viable analytical approach to address, and enable interpretability of 
multiple environmental stressors-health associations. Using this method, our study further verified existing 
evidence on the association between noise as an important risk factor for adverse health outcomes in the UK 
Biobank. The strength of our analysis was observing this association even after adjusting for comprehensive list 
correlated stressors.

Data availability
The data that support the findings of this study are available from the UK Biobank but restrictions apply to the 
availability of these data, which were used under license for the current study. The raw data are only available to 
approved researchers via the UK Biobank.
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