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A spatiotemporal multi‑scale 
computational model for FDG 
PET imaging at different stages 
of tumor growth and angiogenesis
Farshad Moradi Kashkooli1,9, Mohammad Amin Abazari1,9, M. Soltani1,2,3,4*, 
Mehran Akbarpour Ghazani1,5 & Arman Rahmim6,7,8

A deeper understanding of the tumor microenvironment (TME) and its role in metabolic activity 
at different stages of vascularized tumors can provide useful insights into cancer progression 
and better support clinical assessments. In this study, a robust and comprehensive multi‑scale 
computational model for spatiotemporal transport of F‑18 fluorodeoxyglucose (FDG) is developed 
to incorporate important aspects of the TME, spanning subcellular‑, cellular‑, and tissue‑level 
scales. Our mathematical model includes biophysiological details, such as radiopharmaceutical 
transport within interstitial space via convection and diffusion mechanisms, radiopharmaceutical 
exchange between intracellular and extracellular matrices by glucose transporters, cellular uptake of 
radiopharmaceutical, as well as its intracellular phosphorylation by the enzyme. Further, to examine 
the effects of tumor size by varying microvascular densities (MVDs) on FDG dynamics, four different 
capillary networks are generated by angiogenesis modeling. Results demonstrate that as tumor 
grows, its MVD increases, and hence, the spatiotemporal distribution of total FDG uptake by tumor 
tissue changes towards a more homogenous distribution. In addition, spatiotemporal distributions in 
tumor with lower MVD have relatively smaller magnitudes, due to the lower diffusion rate of FDG as 
well as lower local intravenous FDG release. Since mean standardized uptake value  (SUVmean) differs 
at various stages of microvascular networks with different tumor sizes, it may be meaningful to 
normalize the measured values by tumor size and the MVD prior to routine clinical reporting. Overall, 
the present framework has the potential for more accurate investigation of biological phenomena 
within TME towards personalized medicine.

Abbreviations
PET  Positron emission tomography
FDG  F-18 fluorodeoxyglucose
ECM  Extracellular matrix
GLUT  Glucose transporter
ROI  Region of interest
SDM  Spatiotemporal distribution model
PDE  Partial differential equation
ODE  Ordinary differential equation
TME  Tumor microenvironment
MVD  Microvascular density
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VEGF  Vascular endothelial growth factor
EC  Endothelial cell
SUV  Standardized uptake value
TAC   Time-activity curve
IFV  Interstitial fluid velocity
IFP  Interstitial fluid pressure
CDR  Convection–diffusion–reaction
FDG-6-P  Phosphorylated intracellular FDG
CFD  Computational fluid dynamics
AI  Artificial intelligence

Nuclear medicine imaging, particularly utilizing positron emission tomography (PET), is routinely used to assist 
oncologists in decision-making processes. Routine clinical applications of PET imaging include diagnosis and 
prognosis capabilities, initial staging, restaging, monitoring response to treatment, and predicting the risk of 
 progression1,2. The PET scanner produces an image of the spatially varying concentrations of positron-emitting 
radioisotope-labeled pharmaceuticals. F-18 fluorodeoxyglucose (FDG) is one such radiopharmaceutical, used 
ubiquitously in the clinic; e.g., enabling more accurate detection of primary tumors as well as nodal and distant 
forms of metastatic  disease3. As shown in Fig. 1, following intravenous injection, FDG molecules can transport 
into the extracellular matrix (ECM), where they may exchange between intracellular and extracellular matrices 
by glucose transporters (GLUTs)1–3. The effectiveness of FDG-PET imaging is related to its trapping in the gly-
colytic pathway after the early step of phosphorylation by the hexokinase enzyme, due to the negative charge 
of the added phosphate group. As such, the rate of FDG accumulation expresses information about the rate of 
glucose metabolism. Since cancer tumors generally depict higher glucose metabolism relevant to surrounding 
normal  tissues1,2, the glucose analog FDG represents a valuable approach for cancer detection objectively and 
quantitatively.

Static and dynamic imaging are two most utilized techniques in PET-based molecular imaging for quantita-
tive assessments of radioactivity concentrations over time across the regions of interest (ROIs). Static imaging 
(i.e., single time frame) includes acquiring snapshots of each PET bed position successively. In contrast, dynamic 
imaging includes obtaining a PET bed position  continuously2,4 or simplified modeling of radiotracer kinetic, 
ranging from Patlak streamlined graphical  modeling5 to full compartmental  analysis6. Although PET kinetic 
modeling is a gold standard for absolute quantification of radio-labeled molecular  probes2, it cannot incorporate 
spatiotemporal transport of radiopharmaceuticals by convection or diffusion processes between different com-
partments. In addition, these models may not fully account for certain individual underlying biophysiological 
features such as the conductivity of microvessels, permeability of transvascular and interstitial space  variables7,8. 
Spatiotemporal distribution models (SDMs), which utilize systems of partial differential equations (PDEs) in 
contrast to ordinary differential equations (ODEs), are generally used in compartment models (i.e., pharma-
cokinetic modeling)9–11. They can also be used to investigate radiopharmaceutical redistributions over time and 
space simultaneously. As such, SDMs consider the effect of a range of physiological parameters within the tumor 
microenvironment (TME), including interstitial fluid fields, hydraulic conductivity, microvessel permeability, 
and microvascular structures.

The potential of SDMs in drug delivery systems has been widely demonstrated, as they enable measuring 
the solute transport by convection, diffusion, and reaction  mechanisms12–15. Meanwhile, only a few studies have 
investigated the spatiotemporal distribution of PET radiotracer in solid  tumors7,8,16–19,73. Some studies have 
focused on the spatiotemporal distribution of hypoxia-PET radiotracers in which the effects of interstitial fluid 
fields and lymphatic drainage have not been  considered8,16,17. Some have presented microscopic-scale methods 
incorporating only radial molecular  diffusion16,17 or employing simple models of vessel  architectures18. In all 
studies mentioned, convection and diffusion transport mechanisms from vessel to tissue or within the tissue were 
not considered, which may influence the modeling of radiopharmaceutical distributions in the ROIs. Moreover, 
a multi-scale model to study the spatiotemporal distribution of radiopharmaceuticals at different stages of tumor 
progression with various tumor sizes, as well as its individual microvascular structure, is of great importance. 
Such a model can help the clinicians improve their understanding of the relation between the distributions of 
accumulated FGD radiotracer at different stages of angiogenesis with varying microvascular densities (MVDs).

Tumor vasculature and angiogenesis process have critical roles in the response of solid tumors to systemic 
therapies, greatly affecting the FDG transport. Tumor-induced angiogenesis is a multi-scale process that consists 
of the formation of new vessels from pre-existing vasculatures to pave the way to further tumor  growth20. In 
detail, in response to starving central hypoxic tumor cells, due to depletion of surrounding cells, several angio-
genic and chemotactic growth factors_e.g., vascular endothelial growth factor (VEGF)_are  secreted21. Subse-
quently, as shown in Fig. 1a, the initial stage of angiogenesis is created by VEGF binding to its receptor on tip 
endothelial cells (ECs) that extended from the existing vessel wall and migration of vessel sprouts towards areas 
within the TME with higher angiogenic factors (i.e., chemotaxis) and fibronectin (i.e., haptotaxis)  gradients22,23. 
In the following, by distancing capillary sprouts from their parent vessel, they form several loops and branching, 
and finally, create a complex network of new capillaries that supports blood flow into the  tumor24.

In the present work, a robust, comprehensive, and multi-scale computational model is developed to investi-
gate the spatiotemporal distribution of FDG at different stages of tumor angiogenesis. As shown in Fig. 1, this 
model includes subcellular-, cellular-, and tissue-level scales. Present SDM also considers lymphatic systems 
explicitly and calculates the interstitial and intravascular fluid flow at the interstitium and across the micro-
vascular networks, which influences the extracellular and intracellular distribution of radiopharmaceuticals. 
Further, the effects of different microvascular networks (with various MVDs) and tumor sizes on the association 
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and disassociation of FDG to glucose receptors, FDG internalization to cancer cells, as well as intracellular 
phosphorylated FDG by enzyme have also been considered. Unlike many previous studies that considered the 
concentration of FDG as the only factor determining metabolic activity, the present model includes multiple 
standardized uptake value (SUV)-based features to determine cellular activity and characterize tumor FDG 
uptake. Ultimately, different concentrations of FDG, time-activity curves (TACs), as well as SUV metrics in each 
tumor stage are calculated and compared with each other. Results of the present model are validated by several 
previously published in vivo and in silico experiments. Analyzing personalized biological features has the poten-
tial of providing a more comprehensive framework, which can improve disease assessment in individual cancer 
patients and uptake prediction in radiopharmaceutical therapies, treatment prediction, and patient outcomes.

Materials and methods
Transport of FDG in the interstitium and intracellular spaces includes the following mechanisms, as demon-
strated in Fig. 1:

1. Fluid flow and mass transport within a microvascular network.
2. Mass and momentum conservation for interstitial fluid flow.

Figure 1.  A schematic illustration of the present multi-scale computational model. The subcellular scale is 
the primary scale of the model, containing biochemical agents, including ECM (fibronectin gradient-induced 
haptotaxis for sprouting), matrix metalloproteinases, and VEGF gradient-induced chemotaxis. At the cellular 
scale, it consists of EC phenotypes, including tip cell migration. At the tissue level, this model also incorporates 
microvessel growth and remodeling, which is affected by mechanobiological and biochemical signals from wall 
shear stress with accurate hemodynamics and hemorheology. (a) Hypoxic tumor cells that have been deprived 
of oxygen, release some chemical agents (i.e., VEGF) which result in the formation of new microvessels from 
pre-existing vessels. Capillary networks induced by tumor angiogenesis play as a source for release of nutrients, 
therapeutic agents, as well as FDG molecules, which are injected into the patient’s bloodstream, (b) Extracellular 
FDG molecules can transport from tumor tissue to intracellular space and vice versa by GLUTs through L3 and 
L4 constant rate, respectively. Subsequently, each absorbed FDG molecule may phosphorylate by hexokinase 
enzymes to phosphorylated FDG via L5 constant rate. This process releases two high-energy gamma-rays in 
opposite directions, which can pass through the tissue, and (c) PET machine can detect these high-energy rays 
and hence via computer processing of the series of images taken in different angels the clinicians can detect 
the tumor tissue status for their further clinical decision-making process. (d) According to the FDG transport 
processes, a multi-compartment model is used in the spatiotemporal modeling of FDG transport. It should be 
mentioned that Microsoft Office PowerPoint 365 was used to create this figure.
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3. Mass transport for the extracellular, intracellular, and phosphorylated intracellular tracer concentrations.

In the present section, first, detailed mathematical modeling is provided, including equations governing the 
angiogenesis modeling, interstitial fluid flow, and FDG transport. Then, the computational domain, and bound-
ary conditions are presented. Finally, the solution strategy, the grid independence test, and model validation 
are discussed.

Tumor angiogenesis modeling. In the current study, a dynamic adaptive microvascular network mod-
eling is used to simulate capillary networks induced by tumor angiogenesis. Present model is based on a discrete 
probabilistic model, which was developed by Anderson et al.21 and Soltani et al.13. This model considers branch-
ing, anastomosis, blood flow, hematocrit, wall shear stress, and consequently blood flow induced vessel branch-
ing. It is assumed that filopodias situated on the tip ECs route the trajectories and direct tip ECs, while stalk 
ECs proliferate and elongate the vessel. EC movement toward the tumor is affected by three  mechanisms25: (1) 
random movement, (2) direct movement due to VEGF gradients secreted by hypoxic tumor cells (i.e., chemot-
axis), and (3) transverse movement due to gradient of insoluble chemicals (i.e., haptotaxis). A lattice-based grid 
generation has been used to decrease both time and cost of simulations. Therefore, an ensemble of cells moves 
together as the simulation marches in time. Posterior to vasculature generation, laminar blood flows across the 
networks as it is a requisite to blood vessel  perseverance26. By flowing blood through the microvessels, vessels 
may dilate or constrict consecutively as the dependence of blood properties and wall shear stress are recipro-
cal, based on the theory of blood flow-induced branching, the vessel segments with high shear rates and high 
concentrations of VEGF form new sprouts and  branch27,28,73. A detailed description of the mathematical model 
of angiogenesis, hemodynamics and interstitial fluid flow, hemorheology, and dynamic structure adaptation 
method are presented in Supplementary File.

Fluid flow in interstitium. The momentum and continuity equations in the interstitium space are solved to 
provide the velocity and pressure. The momentum equation in biological tissues, as porous media, is simplified 
to Darcy’s  law12, which illustrates the relationship between interstitial fluid velocity (IFV) and interstitial fluid 
pressure (IFP)  as12,13,29:

where 
−→
V i, Pi , and κ are IFV, IFP, and hydraulic conductivity of interstitium, respectively.

The continuity equation in the biological tissues, by considering the presence of source/sink terms, is modi-
fied  as12,13,29:

in which φv is the net fluid flow per volume from microvessels to the interstitium and vice versa, and φl is the net 
fluid flow per volume from interstitium to lymphatic microvessels, which are described by Starling’s law  as12,13,29:

where PB is intravascular blood pressure, and πB plasma oncotic pressure, πi , interstitial fluid oncotic pressure, 
and PL the hydrostatic pressure of the lymphatic vessel. The detailed definition of related parameters with their 
values is provided in Table 1.

(1)−→
V i = −κ∇Pi ,

(2)∇ .
−→
V i = φv − φl ,

(3)φv = LP
S

V
(PB − Pi − σs(πB − πi)),

(4)φl = LPL

(

S

V

)

L

(Pi − PL),

Table 1.  Parameters of interstitial transport used in numerical simulations.

Parameter Definition Value (tissue type) Unit References

πB Oncotic pressure of microvessels 20 (healthy)
20 (tumor) mmHg 7,73

πi Oncotic pressure of interstitial fluid 10 (healthy)
15 (tumor) mmHg 7,73

σs Coefficient of average osmotic reflection 0.91 (healthy)
0.82 (tumor) – 7,73

LP Hydraulic conductivity of the microvessel wall 0.27 ×  10–11 (healthy)
2.1 ×  10–11 (tumor) m/(Pa s) 7,73

LPL
(

S
V

)

L
Coefficient of lymph filtration 1 ×  10–7 (healthy) 1/(Pa s) 7,73

κ Hydraulic conductivity of interstitium 8.53 ×  10–9 (healthy)
4.13 ×  10–8 (tumor) cm2/(mmHg s) 7,73

PL Hydrostatic pressure of lymph vessels 0 (healthy) Pa 7,73
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Modeling of radiopharmaceutical transport. In the current study, radiopharmaceutical transport in 
the SDM is described by the convection–diffusion–reaction (CDR) equations with the aim of obtaining a more 
patient-specific related model. This system of equations is employed for the radiopharmaceutical transport 
between different compartments via diffusion and convection mechanisms. They potentially investigate several 
biochemical and physiological phenomena, including radiopharmaceutical transport across the microvessels 
due to diffusion and convection process, transport rate in interstitial space by diffusion and convection in tissue, 
as well as cell binding and uptake. Therefore, based on the processes of FDG transport in different compart-
ments, as demonstrated in Fig. 1, the system of equations of the SDM is represented as  follows30,73:

where Ci is the extracellular concentration of FDG normalized to extracellular volume, Ce is FDG intracellular 
concentration, and Cm is phosphorylated intracellular (FDG-6-P) concentration. L1 , L2 are the exchange rate 
parameters between plasma and ECM and L3 , L4 , and L5 are defined as the transport rate constant between the 
ECM and tumor cell, the inverse rate from tumor cell to the ECM, and the phosphorylation rate of FDG, respec-
tively. Deff  is the effective diffusion coefficient, Pe is the Peclet number, σf  is the filtration reflection coefficient 
and Pm is the permeability coefficient of microvessels.

�V and �L represent radiopharmaceutical transport rate per unit volume from microvessels into the inter-
stitial space and from the interstitial space into the lymphatic microvessels, respectively. �V and �L are defined 
based on Patlak’s model,  as12,31,73:

in which Cp demonstrates FDG plasma arterial concentration. Related parameters in radiopharmaceutical trans-
port modeling are defined in Table 2.

Semi‑quantitative assessment of FDG transport modeling. For quantitative analysis of radiophar-
maceutical uptake at different stages of tumor progression, SUV is calculated. SUV is determined by the ratio 
of the total tissue radioactivity concentration investigated in an ROI to the radioactivity injected in the body, 
normalized by the body weight as  shown35:

(5)
∂Ci

∂t
= −

−→
V i∇Ci + Deff∇

2Ci − L3Ci + L4Ce +�V −�L,

(6)
∂Ce

∂t
= L3Ci − L4Ce − L5Ce ,

(7)
∂Cm

∂t
= L5Ce ,

(8)L1 = φv
(

1− σf
)

−
PmS

V

Pe

exp(Pe)− 1
,

(9)L2 =
PmS

V

Pe

exp(Pe)− 1
+ φl ,

(10)Pe =
φv(1− σf )

PmS/V
,

(11)�V = φv
(

1− σf
)

Cp + Pm
S

V

(

Cp − Ci

) Pe

exp(Pe)− 1
,

(12)�L = φlCi ,

Table 2.  Parameters for spatiotemporal distribution modeling of radiopharmaceutical transport.

Parameter Definition Value (tissue type) Unit References

Deff Effective diffusion coefficient 0.37 ×  10–9 (healthy)
1.23 ×  10–9 (tumor) m2/s 32,33,73

Pm Microvessel permeability coefficient 2.26 ×  10–6 (healthy)
7.83 ×  10–6 (tumor) m/s 8,73

σf Filtration reflection coefficient 0.9 – 7,73

L3 Transport rate parameter into the cell 8.2 ×  10–4 1/s 34,73

L4 Transport rate parameter out of the cell 6.7 ×  10–4 1/s 34,73

L5 Phosphorylation rate 5.3 ×  10–4 1/s 34,73
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in which a patient with 75 kg weight is considered for further  analysis36. It is worth noting that total FDG con-
centration ( Ctotal ) is determined as a sum of three other concentrations ( Ci , Ce , and Cm).

Computational domain and boundary condition. A 2D computational domain with the dimension of 
5 × 5  cm2 is taken into consideration in which a solid tumor with a diameter  DTumor is located at the center of its 
surrounding healthy tissue (Supplementary Fig. S1). Additionally, the capillary network grows from two parent 
vessels on the vertical lines of both sides of the computational domain to achieve a more realistic tumor model. 
To represent various stages of tumor progression, different tumor sizes—1  cm, 1.5  cm, 2  cm, 2.5  cm—with 
unique structures of microvessels for each size are considered. These diameter threshold values are chosen based 
on the previous works so that the tumor-induced angiogenesis process has been  initiated14,37,38.

For intravascular blood flow simulation, the inlet and outlet pressure values of both parent vessels are selected 
based on the physiological-accurate boundary conditions determined in the  literature7,39,40 as follows (Supple-
mentary Fig. S1):

Continuity boundary conditions for interstitial flow fields and radiopharmaceutical concentration as well 
as its flux are selected at the inner boundary (i.e., the boundary between tumor and healthy tissue). Different 
boundary conditions used in the interstitial fluid flow and FDG concentration modeling are outlined in Table 3; 
where �n and �t denote the healthy and tumor tissues at their interface, respectively. Since the IFP at the outer 
boundary (i.e., boundary around healthy tissue) is fixed, a Dirichlet boundary condition is  selected13. For radi-
opharmaceutical concentration at the outer boundary, an open-type boundary condition is  used7. In addition, 
for radiopharmaceutical distribution modeling, a plasma TAC is obtained from Backes et al.7,36.

Solution strategy. A step-by-step description of the methodology employed in the present study is shown 
in Fig. 2. First, microvascular networks during tumor‐induced angiogenesis are generated based on the differ-
ent stages of tumor growth with various tumor diameters. Subsequently, the mass and momentum equations 
in the interstitium are solved stationary, after which the architecture of the microvascular network is validated 
qualitatively. IFP and IFV values are then utilized to solve the CDR equations. Subsequently, SUV is calculated in 
each stage of tumor progression based on different measured FDG concentrations. Ultimately, the distribution 
of SUV-based parameters in TME is quantitatively and qualitatively verified to be used in further investigations.

The governing equations, including continuity, Darcy, and CDR equations are solved using the commer-
cial computational fluid dynamics (CFD) software COMSOL Multiphysics 5.5 (COMSOL, Inc., Burlington, 
MA, USA) which works based on the finite element method. The residual square errors are set to 6 orders of 
magnitudes. The grid independency test is also performed and the results of IFP and concentration of the FDG 
radiopharmaceutical for four different generated computational grids (i.e., coarse, medium, fine, and extremely 
fine) are evaluated. There is a maximum of about 3% difference between the medium and fine meshes, and about 
1% variation between the fine and extremely fine grids. To save computational costs, the fine mesh with about 
27,500 triangular elements is selected and used in the subsequent different simulations.

Model validation. Figure 3 depicts the comparison of the average FDG concentration in the tumor region, 
showing a remarkable correspondence between two experimental results of Backes et  al.36 and the current 
numerical results by varying tumor sizes. Backes and co-authors determine reference tissue kinetic parameters 
in 11 rats from PET data and calculate the tissue TACs in rats suffering from acute focal cerebral ischemia. 
Despite the difference in boundary conditions and computational domains, the average FDG concentration 
uptake by solid tumors illustrates a similar trend compared to the experimental data. Given the complexity of 
the biology, physiology, as well as oncology under measurement, the exceptional arrangement obtained is evi-
dence of the level of sophistication. As demonstrated, 20-min post-injection of FDG tracer, the total uptake in 
both extracellular and intracellular spaces has been matched with the first experimental data. Moreover, results 
of total average FDG uptake during tumor growth have the same trend compared to experimental studies pub-
lished in the  literature34,41 and our previous numerical  studuies7,73. It should be noted that interstitial fluid fields, 

(13)SUV =
Tissue radioactivity concentration(Ctotal)

Injected radioactivity
× Body weight,

(14)Ctotal = Ci + Ce + Cm,

PB,Inlet = 35
(

mmHg
)

& PB,Outlet = 10
(

mmHg
)

.

Table 3.  Boundary conditions employed in computational modeling.

Region

Boundary conditions

Interstitial fluid flow Radiopharmaceutical concentration

Inner boundary (−κt Pi |�t ) = (−κnPi |�n )
(Pi |�t ) = (Pi |�n )

(

(Deff
t
∇C − ViC)C|�t

)

=
(

(Deff
n∇C − ViC)C|�n

)

(C|�t ) = (C|�n )

Outer boundary Pi = Constant −n.∇C = 0



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10062  | https://doi.org/10.1038/s41598-022-13345-4

www.nature.com/scientificreports/

intravascular pressure values, the formation of microvessels, and the distribution of FDG uptake by tumor cells 
will be verified quantitatively and qualitatively with the literature in the following sections.

Results
In the present study, four different complex vascular networks during tumor‐induced angiogenesis are presented. 
To obtain the spatial and temporal distribution of FDG concentration, Darcy and continuity equations in the 
interstitium, as well as CDR equations are solved simultaneously. In the following, the distribution of IFP, IFV, 
intravascular pressure, FDG concentration, and related SUV-based parameters in the tumor and healthy tissues 
will be evaluated in-depth.

Intravascular and interstitial fluid flow. Tumor-induced vascular networks with their pressure values 
for tumor sizes of 1–2.5 cm are shown in Fig. 4. In addition, the growth of microvessels from parent vessels in 
tumors with 1 and 2 cm diameters is provided in Supplementary File (Supplementary Figs. S2 and S3, respec-
tively). The percentages of MVD (%MVD) for each capillary network are calculated by dividing the microvessel 
nods by all computational domain nodes (see Supplementary Information, numerical method section). MVD 
for 1–2.5 cm tumor sizes is calculated as 3.67, 4.25, 4.72, 5.23%, respectively. In other words, by increasing the 
tumor size, the heterogeneous distribution of tumor-associated vasculature is also increased. Intravascular pres-
sure in all tumor sizes has almost similar values (an average of 2660–3325 Pa).

Two major components of the biomechanical microenvironment of cancer are the IFP and IFV, which are 
illustrated in Fig. 5a,b, respectively. Maximum IFP in all stages of tumor progression is seen within the tumor 
tissue. The average of maximum IFP in the tumor regions is about 2.94 kPa. In other words, the maximum IFP 
value increases slightly from 2.7 kPa in 1-cm tumor to 3.1 and 3.2 kPa in tumor sizes of 2 and 2.5 cm, respectively. 

Figure 2.  Flowchart used to step-by-step description of radiopharmaceutical transport modeling in solid 
tumors.

Figure 3.  Comparison of simulated average FDG radiopharmaceutical uptake by tumors in different sizes and 
the experimental results of Backes et al.36.
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IFP distribution does not vary significantly between various networks during tumor growth and only a few 
variations may be observed. The IFP has a spatially lower value at the bottom and upper regions of tumor tissue 
in each network, where the MVD is lower therein. Figure 5b indicates the non-uniform distribution of IFV in 
TME. IFV has a low value, less than 3 ×  10–8 m/s, throughout the whole domain, unless at the tumor border (i.e., 
the interface of tumor and healthy tissues), where reaches its maximum value.

Radiopharmaceutical concentration. Distribution of different FDG concentrations at various time 
intervals post-injection is presented in Supplementary Fig.  S3. For a better comparison of the results, FDG 
concentrations have been non-dimensionalized by dividing each one by a constant value (750 kBq/ml, which is 
the average maximal value in the domain). At the initial moments of radiotracer injection, FDG is located only 
within the microvessels but they are rapidly extravasated across the wall of microvessels through the convection 
and diffusion mechanisms. The extracellular FDG concentration ( Ci ) is prevailing at early time steps and it is 
quickly transported into intracellular space ( Ce ). Intracellular FDG gradually turns into phosphorylated intra-
cellular FDG ( Cm ) over time and finally accumulates intracellularly. FDG concentration within cancerous tissue 
in all tumor sizes is several times higher than the concentration in healthy tissue.

A qualitative comparison between the present synthetic images of PET produced by mathematical modeling 
and the real FDG-PET images in two tumor-bearing mice as well as in a 10-month-old boy with parietal gan-
glioglioma is illustrated in Fig. 6. Present computational results demonstrate the higher FDG uptake in tumor 

Figure 4.  Intravascular pressure distribution and %MVD at different stages of vascularized tumor progression. 
MVD is increased as the tumor diameter increases (white and gray color regions indicate tumor and healthy 
tissues, respectively).

Figure 5.  Interstitial fluid fields. (a) IFP and (b) IFV for tumors with (i) 1 cm, (ii) 1.5 cm, (iii) 2 cm, and (iv) 
2.5 cm diameter.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10062  | https://doi.org/10.1038/s41598-022-13345-4

www.nature.com/scientificreports/

tissue compared to healthy tissue, which is consistent with in vivo observations of Sha et al.42 and Pirotte et al.43. 
In agreement with in vivo observations, created color gradient demonstrates that tumor tissue can be character-
ized by higher FDG uptake compared to healthy tissues.

TACs of different FDG concentrations across the tumor tissue for different sizes are shown in Fig. 7. During 
the first five minutes of injection, extracellular FDG concentration in all tumor sizes has increased until reaching 
its maximum value and then gradually transported into the cancer cells. Results of total FDG uptake indicate 
that tumors with 2.5 and 1.5 cm diameters absorb about 8% and 2% higher FDG compared to 1 cm tumor, 
respectively. Overall, one-hour post-injection, for all the concentration results, the tumor with a larger diameter 
has relatively shown a higher amount of FDG uptake.

Semi‑quantitative measurement of radiopharmaceutical transport modeling. In tumor imag-
ing using PET, SUV is the commonly used indicator for characterizing tumor uptake. Indeed, SUV thresholds 
are utilized to distinguish malignant from benign disorders. Figure 8 provides an overview of the spatiotemporal 
distribution of SUVs in different tumor sizes investigated in the present work. Moreover, Supplementary Videos 
1 and 2 demonstrate how the SUV was distributed within 1 and 2 cm tumor sizes, respectively. For all examined 
tumor sizes, at initial times post-injection, a high concentration of FDG at the tumor core diffuses throughout 
the TME into the regions with the lower MVD. Similar to total FDG concentration distribution, SUV has its 
maximum value within the tumor tissue in all tumor sizes at different time frames. Results illustrate that larger 
tumors have higher SUVs, in which the SUV in healthy tissue has approximately a median maximal value of 
0.65. In tumor tissues, the maximum SUV reaches 2.75.

Figure 6.  Qualitative validation of present computational results with longitudinal FDG-PET images of two 
tumor-bearing mice and a pediatric brain tumor. (a) Synthetic PET image that is generated by the current 
mathematical model. (b) Longitudinal FDG-microPET scans of mice with glioblastoma U87 (right picture) and 
adenocarcinoma MDA-MB-231 (left picture) tumor  cells42. The tumors can be easily detectable on micro-PET 
images by red color regions. (c) Preoperative PET image in a 10-month-old boy with parietal  ganglioglioma43. 
(d) Tumor contours with its vessels are illustrated in the preoperative 3D planning. Reprinted by permission 
from Refs.42,43.
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SUVmean, the mean pixel activity evaluated in the ROI, and  SUVmax, the maximum pixel activity evaluated in 
the ROI, are two meaningful metrics widely used in clinical-decision support by radiologists and oncologists. 
TACs of these two parameters within tumor tissue in four examined tumor sizes are illustrated in Fig. 9.  SUVmean, 
like total FDG concentration ( Ctotal ), increases over time, where larger tumors have relatively higher  SUVmean. 
According to Fig. 8b,  SUVmax increases over time, but no large significant correlation is found between  SUVmax 
and different tumor stages.

Discussion
According to Fig. 4, tumor growth greatly affects the microvessels’ distribution within the ECM, especially inside 
the tumor tissue, where the gradient of VEGF is much higher than that of healthy tissue. Results of the formation 
of capillary networks show an excellent qualitative agreement with the previous in vivo  experiments44,45 and a 
more recent study by Rebling et al.46, who proposed a non-invasive and label-free imaging framework for long-
term visualization of blood microvessels in non-injured dorsal mouse skin. In a general way, the transverse and 
longitudinal movement of tumor-induced microvascular networks are increased by tumor growth, indicating 
enhanced angiogenesis rate and higher heterogeneous distribution of microvessels over TME. In other words, by 
increasing the tumor size, a greater proportion of the tumor area is covered by microvessels. Moreover, average 
intravascular pressure values in all tumor sizes are in good correspondence with the numerical  studies7,13,73 and 
physiological values at the capillary  scale39.

Mechano-pathological features of tumors have a crucial role in metastasis, invasion, and  growth47. IFP is a 
metric of wide clinical significance, especially in chemotherapy and  immunotherapy12. According to Fig. 5a, 
generally in all examined networks, the highest value of IFP is seen in tumor tissue because of the lack of an 
efficient lymphatic system in the tumor area as well as the greater permeability of tumor  vasculatures14,37,73. The 
average maximum IFP within the tumor regions is approximately in good agreement with those in numerical 
studies of Boucher et al.48, and Soltani et al.7, as well as experimental results of Huber et al.49 and Boucher and 
 Jain50, which investigate the IFP in a range of 587 and 4200 Pa. Increasing IFP with tumor size is also reported in 
several  experiments48,51,52 and human  tumors53,54. Since the IFV value is only proportional to the IFP gradient, 
according to Darcy’s law, and the IFP gradient has a uniform distribution in tumor tissue, the IFV has very low 
values throughout the tumor central  areas12,55–57. The maximum IFV occurs near the tumor border, where the IFP 
drop is precipitous, which is exactly matched to the measured values in the previous numerical and experimental 
 studies12,55,57,58,73. Such very low IFV seen in the present results is also completely consistent with the more recent 
in vivo  study47. The negligible impact of the convection term in CDR equations on FDG transport (the first term 
in Eq. 5) is related to these low IFV values, as reported by Soltani et al.7.

Detecting the tumor tissue by intracellular FDG concentration to analyze cancer staging, restaging, treatment 
response evaluation, or even predicting the risk of some diseases has been raised as important clinical roles of 
PET  imaging2,41. Based on the spatiotemporal distribution of different FDG concentrations (see Supplementary 
Fig. S3), in all the snapshots, elevated FDG uptake can be seen in the tumor compared to surrounding healthy 

Figure 7.  TACs of different concentrations of FDG. (a) Extracellular FDG, (b) intracellular FDG, (c) 
phosphorylated intracellular FDG, and (d) total FDG concentration within the tumor tissue.
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tissue, which is referred to as several biological and physiological features. Such radiopharmaceutical distribu-
tion within TME, as seen in Fig. 6, qualitatively corresponds to the outputs of the PET imaging device. Higher 
permeability of tumor-associated microvasculature as well as greater MVD within the tumor result in much larger 
extravasation of FDG into the TME. In addition, the FDG consumption of tumor cells is higher than healthy 
cells, due to their greater energy demand for cellular processes.

Spatiotemporal distribution of total concentration (see Supplementary Fig. S3d and Fig. 6) shows that at 
each time post-injection, by increasing the tumor size, concentrations within a tumor region are changed into 
a more homogenous structure. The capillary network architectures in each stage of tumor growth clearly affect 
the FDG uptake and its distribution within the tumor. Higher absorption of FDG by larger tumors implies that 
more detailed description of tumor physiology can be extracted in larger tumors compared to the smaller ones 
which are in the initial stages of tumor angiogenesis. Since the microvascular networks act as a source term for 
extravasation of radiopharmaceuticals to the interstitium (see Fig. 1), increasing the MVD in larger tumors leads 
to an increase in average total FDG uptake by tumors. This relation with source terms related to flow behavior and 
radiopharmaceutical concentration can be concluded mathematically by the two last terms in Eq. (5), which are 

Figure 8.  Spatiotemporal distribution of SUV at various times post FDG injection for different tumor sizes.
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related to the fluid flow behavior. Furthermore, increasing the MVD in larger tumors and more heterogeneous 
distribution of microvascular networks throughout larger tumor regions induce the extravasated radiopharma-
ceutical to have better transport within tumor tissue. In other words, by increasing MVD, a greater proportion of 
tumor surfaces can be covered in larger tumors. This phenomenon can also be explained by the two first terms in 
Eq. (5), which are related to the convection and diffusion transport mechanisms of FDG. As reported by Soltani 
et al.7, the FDG transport via vascular diffusion mechanism in microvascular network with a greater MVD is 
about 30% higher than that with lower MVD.

In routine clinical examinations, decision-making is based on the visual or semi-quantitative assessment 
of spatial uptake patterns, where both the relative pattern and strength of uptake provide are of value to clini-
cal tasks. Tumor regions in the explored networks are clearly distinguished from surrounded healthy tissues, 
exhibiting higher SUVs. Regardless of the tumor stage and post-injection time, in regions where the MVD is 
relatively lower, SUVs in the tumor areas exhibited relatively lower magnitudes. Additionally, since the amount 
of total concentration within the tumor tissue increases over time, the SUVs in all the examined networks also 
increase. Overall, larger solid tumors depict greater SUVs at all times, as a result of increases in MVDs in larger 
tumors. In other words, larger tumors with higher SUVs imply potentially hazardous microvascular networks 
in their mature phase. This issue is also noted in several recent in vivo  studies42,59,60. In addition, the results of 
Fig. 8 demonstrate the measured SUVs for soft and tumor tissues to be in remarkable agreement with Al-Nabhani 
et al.61, which were in the range of 0.7 ± 0.3 and 1.9 ± 1.4, respectively.

Current quantitative and semi-quantitative analyses based on the spatiotemporal model of FDG uptake are 
also designed to examine the effect of the heterogeneous structure of tumor microvessels and tumor progres-
sion. As shown in Fig. 9a,  SUVmean increases over time during tumor progression, in which larger tumors (with 
everything else being the same) can depict higher uptakes. Spatiotemporal distribution of SUV and SUV-based 
parameters (e.g.,  SUVmean) demonstrate that MVD and tumor size play critical roles in the SUV distribution and 
its values, as reported in the  literature42. Therefore, tumor progression, which may cause a rise in MVD, not only 
results in more uniform distribution of SUV, but also leads to relatively higher  SUVmean. It should be noted that 
the stage of tumor progression (i.e., tumor size) and distribution of tumor-induced angiogenesis through the 
ECM (i.e., MVD) are inherently interdependent, in which the MVDs can be calculated by novel computerized 
image analysis within tumor areas and adjacent healthy  tissues62, although such applications in routine clinical 
imaging will require advanced imaging (e.g., perfusion CT) and inverse  problems7,19,63 which are topics of future 
research. These findings suggest that correction of SUV uptake based on tumor size and MVD may better reflect 
accurate tumor glucose utilization levels for clinical assessments. These consequences are consistent with the 
results of an in vivo  study42, which showed that adjustment of the SUV formula to consider the effect of tumor 
size should be applied. In addition, the values of the present SUVs and their trend have remarkable agreements 
with the recent experimental  studies64–66.

Several factors can impact the resolution and accuracy of PET images, which may ultimately influence clinical 
interpretations. For instance, involuntary motions may affect the detection of microenvironment details dur-
ing PET imaging. In particular, respiratory movements can result in displacements as large as 2 cm (e.g., lung 
nodules in the lower lobes or  aorta67,68). This may cause the heterogeneity observed in our simulation results to 
be undetectable or significantly reduced in routine PET imaging. In addition, when existing scan times are in 
the order of minutes (thus adding possible voluntary movements by patients) this issue can be further ampli-
fied. Furthermore, there are a number of resolution degrading phenomena (e.g., inter-crystal blurring) that can 
degrade qualify of PET images (even in the absence of motion), culminating in partial volume  effects69,70. In any 
case, the developed heterogeneity models, such as in this work, have value in understanding the biophysics of 
microenvironments. Furthermore, with extensive, ongoing research towards higher-resolution, significantly-
less-degraded PET images (e.g., much shorter scans using high-sensitivity, long axial field-of-view PET scan-
ners, data-driven motion correction methods, and higher resolution PET scanners), it is expected that greater 
heterogeneity of radiopharmaceutical uptakes can be quantified in next-generation PET imaging.

Figure 9.  Time-radioactivity curves of different tumor sizes. (a) Mean and (b) maximum SUV across the 
tumor tissue.
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Clinical relevance and perspective works. Results of the present study reflect how mathematical mod-
eling and computational tools can be developed synergistically to accurately reproduce synthetic images of PET 
scan. The importance of such an approach to cancer research and clinical translation cannot be underestimated. 
Guaranteeing that computational simulations are accurate and valid is a crucial stage to bridge the gap between 
clinicians and technical researchers. Results of the present work, considering the formation of new capillaries by 
complex tumor angiogenesis process, interstitial and intravascular fluid flow, the average concentration of FDG 
uptake by tumors, as well as the SUV-related parameters, have been accurately verified through quantitative 
and/or qualitative interpretations. However, in order to validate the heterogeneous distribution of the radiop-
harmaceutical at the micrometer scale, a microscopic approach with optical/radioisotope features such as the 
combination of phase contrast  microscopy71 with microscopic  autoradiography72 is needed in our future works, 
which allows detection of uptake gradients in the background of the microvasculature. Once the outcomes are 
validated, such computational models can be employed to produce synthetic images of PET scan imaging at dif-
ferent stages of tumor growth with highly complicated radiotracer distribution and morphological details within 
the TME that would be difficult to investigate and visualize by PET scan technique.

Such a spatiotemporal model can be used to create a comprehensive atlas of FDG-based features (or any other 
radiopharmaceuticals) in various sizes of solid tumors. Using these snapshots of FDG uptake, presented in the 
proposed atlas, the optimum times for taking a series of images, recorded by a camera during PET imaging in 
each size of the tumor, can be predicted. These reference images can also be employed as an inverse engineering 
problem to estimate vital biological parameters of interest, for instance, MVD, diffusion coefficient, and kinetic 
parameters ( Ki ), which play important role in designing new patient-specific drugs for personalized medicine. 
Additionally, applying novel artificial intelligence (AI) techniques (e.g., generative adversarial networks) to a 
larger dataset of such series of snapshots can generate massive synthesized PET images to solve the problem 
posed by the small medical samples in the conventional deep learning  models73.

Radiation exposure of patients undergoing nuclear medicine imaging is a common concern. Low-dose PET 
images are noisy and have low quality. Another important aspect of the present model is its potential for hybridi-
zation with modern AI approaches to estimate and produce full-dose PET images extracted from low-dose PET 
images using intended image collection to assist clinicians and radiologists in their procedural planning. In 
addition, using this technique not only can result in much lower imaging doses compared to conventional doses, 
but may also assist to minimize the time duration of FDG-PET imaging, especially in whole-body PET imaging.

Conclusion
A multi-scale computational model is presented and utilized to examine the effect of different stages of tumor 
growth and angiogenesis on biological features of interstitial and intravascular flow, as well as routine clinical 
radiotracer metrics used for nuclear medicine imaging. The mathematical model includes CDR equations to 
accurately investigate the spatiotemporal distribution of the FDG radiopharmaceutical by taking into account 
transport through diffusion and convection mechanisms from microvessel to tissue or within the tissue. Even-
tually, intravascular pressure, IFV, IFP, and various FDG concentrations—including extracellular, intracellular, 
phosphorylated—SUV-based metrics and related TACs are calculated based on real physiological data and 
biological considerations. The major findings of the study are:

• As the tumor grows, the IFP values also increase.
• Due to the higher permeability of tumor microvasculature as well as the lack of an efficient lymphatic system 

in the tumor region, in all examined vascularized tumors, the tumor tissue can be distinguished by higher 
FDG uptake compared to surrounded healthy tissues.

• Spatiotemporal distribution of FDG during each phase of tumor angiogenesis is greatly affected by the 
architecture of the microvessels and tumor stages.

• In the initial stage of tumor growth, radiotracer transport into the cancerous cells is limited due to the lower 
MVD.

• In larger tumors, due to the increase in MVD, the distribution of FDG changes to be more homogeneous 
within the tumor tissue.

• SUVs have relatively smaller magnitudes in tumor areas with poor MVD.
• SUVmean in all examined tumor sizes increases over time, while larger tumor sizes with higher MVD have 

higher  SUVmean values.
• Tumor size and MVD can be integrated with SUV computations to enable more meaningful metrics.

The developed model can be utilized to generate different series of synthetic images for clinically relevant 
biological markers. Moreover, this framework can also be used to estimate the biological characteristics in each 
patient-specific microvascular network. Ultimately, this study is presented to improve understanding of FDG 
dynamics and to help bridge the gap between technical researchers, radiologists, and clinicians as a step forward 
toward personalized medicine.

Data availability
All data used for this study are available from the author upon request.
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