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Takashi Uchiyama8, Gen Ueshima7, Tatsuki Washimi6, Takahiro Yamamoto8 & 
Takaaki Yokozawa8

In the data obtained by laser interferometric gravitational wave detectors, transient noise with non-
stationary and non-Gaussian features occurs at a high rate. This often results in problems such as 
detector instability and the hiding and/or imitation of gravitational-wave signals. This transient noise 
has various characteristics in the time–frequency representation, which is considered to be associated 
with environmental and instrumental origins. Classification of transient noise can offer clues for 
exploring its origin and improving the performance of the detector. One approach for accomplishing 
this is supervised learning. However, in general, supervised learning requires annotation of the 
training data, and there are issues with ensuring objectivity in the classification and its corresponding 
new classes. By contrast, unsupervised learning can reduce the annotation work for the training 
data and ensure objectivity in the classification and its corresponding new classes. In this study, we 
propose an unsupervised learning architecture for the classification of transient noise that combines 
a variational autoencoder and invariant information clustering. To evaluate the effectiveness of the 
proposed architecture, we used the dataset (time–frequency two-dimensional spectrogram images 
and labels) of the Laser Interferometer Gravitational-wave Observatory (LIGO) first observation run 
prepared by the Gravity Spy project. The classes provided by our proposed unsupervised learning 
architecture were consistent with the labels annotated by the Gravity Spy project, which manifests 
the potential for the existence of unrevealed classes.

Gravitational waves are distortions of the space–time continuum that propagate (with high probability) at the 
speed of light. They are emitted during events such as the coalescence of compact star binaries and supernova 
explosions. The first observation of a gravitational wave, which was from the coalescence of a black hole binary, 
was achieved by the Laser Interferometer Gravitational-wave Observatory (LIGO)1 located in Livingston, Loui-
siana and Hanford, Washington in the USA in September 20152. Subsequently, LIGO and Virgo3 in Europe made 
three international joint observation runs and observed as many as 90 events of gravitational waves emitted by 
the coalescence of compact binaries4–7. Moreover, GEO6008, in Germany and KAGRA​9–12, in Japan, made a 
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2-week observation run (O3GK) in April 202013,14. The subsequent fourth observation run (O4) is planned to 
be conducted jointly with LIGO, Virgo, and KAGRA.

When searching for a gravitational wave signal in the data from the interferometers, suitable techniques for 
separating the gravitational waves from instrumental noise in the observed data are essential because the signals 
of the gravitational waves are generally smaller than the detector noise. The gravitational-wave detector is sensi-
tive to environmental and instrumental states (such as ground motions, air pressure, optics suspensions, fluctua-
tions in the laser, vacuum, and mirror). Consequently, non-stationary and non-Gaussian noise, called “transient 
noise”, frequently appears in the detector. Transient noise causes instability in the detector and the hiding and/
or imitating of the gravitational-wave signals. The LIGO and Virgo collaboration reported that transient noise 
with a signal-to-noise ratio > 6.5 occurred at a rate of 1.10 events per minute at LIGO Livingston (LLO) in the 
first half of the third observation run (O3a) between 1 April 2019, 15:00 UTC and 1 October 2019, 15:00 UTC​5, 
and at a rate of 1.17 events per minute at LLO in the second half of O3 (O3b) between 1 November 2019, 15:00 
UTC and 27 March 2020, 17:00 UTC​7, respectively.

Transient noise has various time–frequency characteristics that are related to its causes in the detector. Clas-
sifying transient noise could provide us with clues to explore its origins and improve the performance of the 
detector. Among others, the Gravity Spy project15–18 is one such effort to classify transient noise. The Gravity 
Spy project used the Omicron software19 to identify the signal of transient noise observed in the time-series 
data. Thereafter, Omega Scan20 was used to create a time–frequency spectrogram around the identified transient 
noise as two-dimensional (2D) images. Based on a part of these created 2D images, using cloud resources in 
collaboration with LIGO detector characterisation experts and volunteer citizen scientists for the analysis, 22 
types of labels associated with the characteristics or causes of transient noise were annotated. Both images and 
labels were recorded. Finally, they classified the transient noise in the remaining images by supervised learning 
using the pre-classified images and labels. As this process shows, the data annotation for machine learning is 
highly labour-intensive.

Previous studies21 using unsupervised classification grouped together similar transient noise in the Gravity 
Spy dataset16. Bahaadini et al. used the DIRECT method22 to analyse the feature embedding learned from the 
Gravity Spy dataset16 and observed a different class of transient noise from the existing classes. Unsupervised 
clustering applying transfer learning23 exhibited a new class of transient noise in addition to the 22 classes of 
the Gravity Spy project. Moreover, supervised classification using the latest observation O3 dataset presented a 
new class of transient noise17.

As unsupervised learning does not require any pre-assigned labels for the training dataset, this architecture 
is expected to reduce annotation work for the training data, increase the objectivity of the classification, and 
even classify a new class of the transient noise. Unsupervised learning is also useful in various fields, such as 
text categorisation, feature representation, and clustering24–27. In this study, we focus on unsupervised learning 
using a deep convolutional neural network (CNN) and propose a classification architecture for transient noise. 
Our proposed architecture consists of two processes: feature learning and classification. In the feature learning 
process, the features of transient noise are extracted from the time–frequency spectrogram images (2D images) 
using a variational autoencoder (VAE)28,29. In the classification process, invariant information clustering (IIC)30 
is used to classify images of the transient noise using features extracted by the encoder of the pre-learned VAE. 
We applied the proposed architecture to the dataset16 created by the Gravity Spy project of the LIGO observation 
run 1 (O1)4 as our input images, examined the validity of the unsupervised classification result, and analysed the 
correspondence with the labels of the Gravity Spy project.

Results
The result section consists of two subsections: the results of the training process and evaluation of the unsu-
pervised learning architecture. The Gravity Spy dataset of LIGO O1, which was developed by the Gravity Spy 
project shown in Fig. 1, was used for training in our proposed architecture. This dataset contains a total of 8535 
transient noises in four time durations: 0.5, 1.0, 2.0, and 4.0 s. Each data unit has a label with one of the 22 types 
which are related to the origins or characteristics of the transient noise. The labels annotated by the Gravity Spy 
project under Zooniverse, which is the online citizen science platform, were used only when evaluating the 
training results of the proposed architecture. In addition, the pre-processing of the dataset is shown in “Pre-
processing” section.

Training process of our architecture.  We investigated the training parameters to use for the VAE as fol-
lows. The dimensions of the feature variable z were 64, 128, 256, 512, and 1024; the training size rate was in the 
range of [0.6, 0.9] in increments of 0.1; the learning rate using the Adam31 optimiser with parameters β1 = 0.9 , 
β2 = 0.999 (coefficients used for computing running averages of gradient and its square) and ǫ = 10−8 (term 
added to the denominator to improve numerical stability) was in the range of [5× 10−7, 5× 10−2] in incre-
ments of one digit; the minibatch size was in the range of [32, 128] in increments of 32. The maximisation of 
the lower bound (3) (i.e. let δ = −

∑N
i L(x(i), θ ,φ) ) was used as a training objective, and the minimisation of 

δ was used for training. The value of δ does not have a significant effect on the dimension of z and the train-
ing size rate. By contrast, the learning rate and minibatch size are related to the value of δ and its stability. The 
representative parameters for training are shown on the left side of Fig. 2a, and the training curves using these 
parameters are shown in Fig. 2b. Considering Case 1 (black line in Fig. 2b), the learning rate seems too low and δ 
does not decrease. Regarding Case 2 (grey line), the result of the training is not stable, showing the fluctuation in 
the curve, although δ has decreased compared with Case 1. In Case 3 (blue line), δ decreases in both the training 
and evaluation and seems stable after 100 epochs. Considering these results, for the remainder of the study, the 
parameters of Case 3 were utilised in the proposed architecture.
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Figure 1.   (a) Example of 2D image of the time–frequency spectrogram of transient noise in the Gravity Spy 
dataset. Regarding each transient noise, four time durations (0.5, 1.0, 2.0, and 4.0 s from the left of the figure) 
are recorded from the centre time. (b) Table showing all the classes, the number of data, and its ratio to the 
number in the Gravity Spy dataset. There are 22 classes in total, and each of 21 classes is given a name related to 
an occurrence cause or a characteristic of the shape on the spectrogram of transient noise. The other is “None_
of_the_Above”, which does not belong to any class. (c) Example of the image for each class in the Gravity Spy 
dataset. The figure shows 12 of the 22 classes of the transient noise with 0.5 s.
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Examples of the reconstructed images of the transient noise generated by the decoder of the VAE at 100 
epochs are shown in Fig. 2c. The characteristics of the reconstructed images seem similar to those of the input 

Figure 2.   Left (a) Training parameters for the VAE of the proposed architecture. The dimension of z is the 
output number of the encoder. The training size rate is the ratio of the total number of data to the data size of 
the input at training. Regarding the architecture evaluation, the input size is set to (1− Training size rate) . The 
learning rate is the initial learning rate, and the optimiser used is Adam31. Right (a) Training parameters for the 
IIC of the proposed architecture. The number of output classes is set to the number of classes to be classified. 
The classifier number is for multiple classifiers that are used to improve the performance of the classifier using 
spectral clustering. (b) Training curve during the training and evaluation of the VAE. The solid and dashed 
lines in the figure show the training objective δ ≡ −

∑

N

i
L(x(i), θ ,φ) at the time of training and evaluation, 

respectively. (c) Reconstructed images generated by the decoder of the VAE at 100 epochs in Case 3.
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images. We confirmed a similar tendency for all the other inputs and reconstructed images. Therefore, the 
encoder of the VAE at 100 epochs was applied to the IIC for the classification of the transient noise.

Furthermore, the validity of the features by VAE is shown in Supplemental Material “Feature Visualization of 
Transient Noise using t-SNE” section by visualised features z , which are projected using t-SNE.

After training the VAE, the training parameters of IIC were also investigated using the pre-trained encoder. 
The output classes were in the range of [22, 100] in increments of 2; the output over the classes was in range 
of [50, 500] in increments of 50; the classifier number was one of 3, 5, 10, 20; the learning rate of the Adam 
optimiser with parameters β1 = 0.9 , β2 = 0.999 and ǫ = 10−8 was in the range of [5× 10−7, 5× 10−2] in incre-
ments of one digit; the minibatch size was in the range of [64, 256] in increments of 32. Owing to the training, 
the mutual information from (4) was high, between 30 and 40 output classes, which is consistent with the fact 
that the subclasses are implied in the dataset. When the output over classes and the classifiers change, the mutual 
information does not seem to change. In this study, the IIC parameters shown on the left side of Fig. 2a were 
used for the classification. In addition, considering the parameters of spectral clustering with multiple classifiers, 
the number of classifiers K = 5 , and the number of classes C = 36 . These values are the optimal performance 
for classification using the accuracy shown in “Discussion” section. The training for the VAE and IIC with a 128 
mini-batch size took approximately 1.0 h/100 epochs and approximately 0.3 h/100 epochs, respectively, using 
two NVIDIA GeForce RTX 2080 Ti GPUs, an Intel Xeon CPU E5-2637 v4 (core 8), and 125 GB of main memory.

Evaluation of our architecture.  The evaluation results are presented in this section. The proposed archi-
tecture shown in “Proposed architecture” section was trained using the pre-processing dataset described in “Pre-
processing” section.

Figure 3 shows a randomly selected image from each class (representative image) and similar images that 
have a high degree of similarity to the representative image in a class. These similar images are derived from 
the cosine similarity32 between the representative image and the other images, using an affinity matrix which is 
calculated by spectral clustering.

The representative images seem to have different characteristics for each class, and similar images are close 
to their representative images. Moreover, the image of class (15) in Fig. 3 shows that the classifier recognises 
the same class even if the data are shifted in the time direction. Therefore, training that does not depend on the 
perturbation in the time duration is achieved by pre-processing the dataset.

To investigate the correspondence between the results of supervised and unsupervised learning, a confusion 
matrix using the Gravity Spy labels is shown in Fig. 4. Considering the classes (classes (6) (“1080 Lines”), (8) 
(“Repeating_Blips”), (14) (“Chirp”), (18) (“Helix”), and (24) (“Scratchy”)), unsupervised learning classifies the 
Gravity Spy labels (noted parentheses) as one class. In addition, the output images by the classifier shown in 
Fig. 3 are similar to those of the Gravity Spy labels.

The “Scattered_Light” class is separated into classes (2), (3), (11), and (16) on the confusion matrix, respec-
tively. These classes are classified into different classes on unsupervised learning, whereas their characteristics are 
similar to Fig. 3. A previous study17 on supervised learning with the Gravity Spy labels indicated the existence of 
a subclass that might be in the “Scattered_Light” class. The unsupervised classification yielded the same results 
as in the previous study, indicating the existence of a subclass of the “Scattered_Light” class.

Considering the “Blip” and “Koi_Fish” classes, both classes are separated into multiple classes as shown in 
Fig. 4. The representative images and their similarity images from separating the classes are shown in Fig. 5, 
where the similarity images are sorted in descending order and are sampled randomly from the cosine similar-
ity to the representative image. Each separating class is grouped into its own class, even for images with low 
cosine similarity. The images of the classes separated from “Blip” have a common Gravity Spy label. Moreover, 
the frequency growth of the spectrogram image for classes (9), (20), and (30) looks roughly similar, and the 
unsupervised classification classifies each class using their characteristics details. Similar results can be observed 
in “Koi_Fish” (class(5) and class(7)). Therefore, the images of “Blip” or “Koi_Fish” may be classified into more 
detailed subclasses.

The “Paired_Doves”, “Wandering_Line”, and “Air_Compressor” classes are a few of the samples in the data-
set (Fig. 1b). “Air_Compressor” is classified into one class; however, the other classes are not classified into any 
unique classes in the unsupervised classification. We assume that “Air_Compressor” is a class that cannot be 
divided further. Therefore, it is classified into one class, even with few data. Conversely, “Paired_Doves” and 
“Wandering_Line” are assumed to have more subclasses. The reason why they are not classified into a specific 
class can be explained by the fact that a limited amount of transient noise is classified into “Paired_Doves” and 
“Wandering_Line”.

The “None_of_the_Above” class of the O1 dataset comprises data that do not belong to any other Gravity Spy 
labels. The unsupervised classification does not classify these data into unique classes; instead, it distributes them 
into various class types. This result is consistent with a previous study by Bahaadini et al.16. In fact, Soni et al.17 
used the O3 dataset5 and reported that several of the “None_of_the_Above” appear in the “Blip” class or the 
new population of “Scattering_Light”. A similar classification result is expected when applying our architecture 
to the O3 dataset and retraining it.

Based on the above results, the data of the Gravity Spy labels that are classified into multiple classes in unsu-
pervised classification are shown in grey in the “Estimated number of class” in Fig. 4. These data that are separated 
from the Gravity Spy labels may imply the existence of subclasses.
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Figure 3.   The representative and similar images in all the classes were classified using unsupervised 
learning. This representative image which is denoted by i in the image is randomly selected from a class 
i ∈ c = {0, . . . , 35} , and its most similar image is to the right of a representative image in class (i). The cosine 
similarity to the representative image in class (i) is shown at the top of the image.
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Discussion
Let the number of Gravity Spy classes (labels) be C′ = 22 and the classified result (vector) whose unsupervised 
class is the i-th class be v(i) ∈ R

C′ , where i ∈ c = {0, . . . , 35} . Alternatively, v(i)j  , indicating the j-th component 
of v(i) , is the number of the j-th images, and the Gravity Spy label is classified as the i-th unsupervised class. The 
total number of classified i-th unsupervised classes is expressed by the L1 norm32 of v(i) (i.e. |v(i)|1 =

∑C′

j=1 |v
(i)
j | ). 

The j-th component of a normalised vector v(i)/|v(i)|1 is the ratio of the j-th image of the Gravity Spy label on the 
i-th unsupervised class. Therefore, we define the accuracy of unsupervised learning as

It should be noted that the confusion matrix shown in Fig. 4 is not a square matrix, and its indices of unsu-
pervised labels (columns) depend on the initial values of training. Therefore it is difficult to define the evaluation 
indicators, such as recall, precision, and F-measure. The accuracy of the proposed architecture was 90.9%, where 
the total number of unsupervised classes was set to C = 36 . Comparatively, although (1) is a slightly different 
definition from the usual definition of the accuracy of supervised learning, the supervised learning of the Gravity 
Spy project15 achieved 97.1% accuracy on the testing data using the same dataset as that used here. Furthermore, 
we compared our results with those (shown in Table I of reference23) of different CNN models, such as Google 
Inception33 (with versions 2 and 3), Microsoft ResNet34, VGG35 (with 16 and 19 layers), and the retrained CNN 
model based on the Gravity Spy project15,18. Google Inception, ResNet, and VGG are the most popular image 
recognition architectures, all of which were submitted to the ILSVRC competitions36. Note that all models used 
the same dataset (Gravity Spy dataset of LIGO O1). The accuracy was more than 96% for all models. Although 
the accuracy of our model is less than the that of above models, unsupervised learning has the advantage that 

(1)A =

C
∑

i=1

max(v(i))

|v(i)|1
.

Figure 4.   Confusion matrix of the classification results of the proposed architecture. The vertical axis of the 
confusion matrix represents the labels and number of data in the Gravity Spy dataset. The lower and upper 
horizontal axes denote the number of images classified into the unsupervised classes and the labels of the 
unsupervised classes, respectively. Each column of the confusion matrix is coloured using the ratio of the 
Gravity Spy-labelled images classified into the unsupervised class (i). In addition, the classes that are separated 
from the Gravity Spy labels on the confusion matrix, such as classes (0), (13), (26), (32), (35), and (36), also 
show the ratio values in the matrix. The potential number of classes on Gravity Spy labels which are estimated 
by unsupervised learning are shown in the right column of the figure. The notation “1” (in white cells) indicates 
that the number of classes labelled by the Gravity Spy matches the result of the unsupervised learning, and the 
inequality sign (in light grey cells) indicates that the class is separated into multiple classes in the unsupervised 
learning. The notation “0” (in dark grey cells) indicates an unclassified class in this training and dataset, and “–” 
notation indicates that they do not belong to any class of the unsupervised learning.
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data annotations are not required, and our model has the potential to suggest the existence of subclasses, as 
shown in “Evaluation of our architecture” section.

Let us now examine the classification results in Fig. 4, one of the factors that decrease the accuracy of unsu-
pervised learning in (1). The representative images of the major characteristics and images of their low similari-
ties are shown in Fig. 6. Considering classes (0) and (35), the classifier is able to identify the global features of 
images because the images are similar to the representative images that also exist in the data of other Gravity Spy 
labels. Regarding classes (13) and (34), the classifier cannot recognise the images properly and may be learning 
the background features. This problem can be solved by adjusting the neural-network configuration. Moreover, 
regarding class (26), it is observed that the minor images (such as “Power_Line”) are mixed with the major class 
(“Air_Compressor”). The same result can also be observed for class (32). Because the characteristics of both 
images are similar, it is possible that both noises have similar characteristics. Additionally, a comparison of the 
classification results shown in Fig. 4 with the feature visualisation using t-SNE is discussed in Supplemental 
Material “Feature Visualization of Transient Noise using t-SNE” section. Based on the above results, we can 
confirm the consistency between the label annotated by the Gravity spy project and the class provided by our 
proposed unsupervised learning architecture and provide the potential for the existence of the unrevealed classes.

Subsequently, we will build a system for the classification of transient noise using the proposed architecture 
in KAGRA. In addition, we will extend our architecture to self-supervised learning37 to enhance the accuracy 
of the classification. This algorithm trains the data of a specific label, known as the golden set15, which generates 
a pseudo label to the given dataset and retrains it. Using the new classes classified by unsupervised learning, the 
semi-supervised learning can help reduce the annotation process for the training and can solve the problem of 
ensuring objectivity in the classification. We would like to construct a semi-supervised architecture that incor-
porates the advantages of both Gravity Spy’s supervised and unsupervised learning.

Methods
The proposed unsupervised learning method consists of two architectures: a variational autoencoder (VAE) 
and invariant information clustering (IIC). The VAE is used to learn the features from the time–frequency 
spectrogram (2D images) of transient noise, and the IIC classifies the transient noise from the features that are 
learned by the encoder of the VAE. Before we present the details of the method, we explain the target dataset.

Figure 5.   Representative images and images similar to unsupervised learning. Considering the figure, classes 
(9), (22), and (30) are separated from the ‘‘Blip” class, and classes (5) and (7) are separated from the “Koi_Fish” 
class. The representative images in the left column are sampled randomly from the images classified in class (i) 
using unsupervised learning. The similar images in the other columns are sorted in a descending order and are 
sampled randomly from the cosine similarity (a value at the top of an image), considering the representative 
image.
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Target dataset.  The Gravity Spy dataset16, which is the input dataset, is an image set of transient noise 
obtained from the LIGO O14. Omicron software19 searches for transient noise in time-series data, and Omega 
Scan20 software generates an image of the time–frequency spectrogram of each transient noise using Q-trans-
formation20,38. Q-transformation is a method that estimates the frequency component of the time-series data by 
setting a window function on each time–frequency component, generating a 2D image of the time–frequency 
spectrogram. The spectrogram image of each transient noise in the Gravity Spy dataset has four time durations 
(0.5, 1.0, 2.0, and 4.0 s) at the centre, as shown in Fig. 1a. In addition, these transient noises are given 22 labels, 
which are related to cause as shown in Fig. 1b. For example, the images of 12 classes of transient noise are shown 
in Fig. 1c.

Pre‑processing.  The pre-processing applied to the Gravity Spy dataset for the training of our proposed 
architecture is shown in Fig. 7. 

1.	 For each transient noise, stack the images of the time–frequency spectrograms with the four time widths 
shown in Fig. 7, and use it as the input data for this transient noise. The resolution of the transient noise 
image for each time duration is 224 px × 272 px (frequency and temporal direction, respectively), and the 
dimensions of the stacked images are 4 × 224 × 272 px.

Figure 6.   Examples of images in the classes with reduced accuracy in unsupervised learning. The major images 
in the left column are randomly sampled data from class (i). The minor images in the other columns are sorted 
in an ascending order from the cosine similarity to its major image, indicating that they are sampled from the 
lowest similarity to the major one. The Gravity Spy label and the value of the cosine similarity are on top of the 
sampled image.
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2.	 Convert the stacked data into two types: 

Input Image	� : Crop the left and right parts of the image equally such that the resulting image has dimen-
sions of 4 × 224 px × 224 px

Perturbed Image	� : Crop the left part of the image at the randomly time-shifted position in the range 0–24 px 
and also crop the right part of the image so that the resulting image has dimensions of 4 × 
224 px × 224 px

Considering the characteristics of the time–frequency spectrogram, a small displacement in the time direc-
tion does not change its physical characteristics because this operation can be interpreted as a change in the 
event time. Therefore, the time-shifted images can be regarded as new events of transient noise, and it makes the 
architecture realise the classification of transient noise that does not depend on small displacements in the time 
direction. Conversely, a possible small displacement of the spectrogram in the frequency direction changes its 
physical characteristics. Therefore, the frequency-shifted images fall into different classes to that of the original 
image in the classification. Thus, the perturbation of transient noise is not applied in the frequency direction; 
nonetheless, they are applied only in the time direction.

Figure 7.   Overview of the input data pre-processing. The original samples are stacked in four time durations 
(0.5, 1.0, 2.0, and 4.0 s) to generate the data, where the width and height of each image are 224 px and 272 px, 
respectively, and the dimensions of the stacked data are 4, 224, and 272. Considering the training process of the 
proposed architecture, after a random time shift of image in the range 0–24 px, the dimensions of the data (4, 
224, and 224) are cropped and the cropped data are used as training data. The data that are cropped without a 
time shift are used for the evaluation of the VAE and as the input image of the IIC.
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In the training process of the proposed architecture, there is a random time shift of the image in the 0–24 px 
range used for the training data. The data that were cropped without a time shift were used for the evaluation of 
the VAE and the input image of the IIC.

Variational autoencoder.  In this study, the features of transient noise are obtained from their time–fre-
quency 2D spectrogram image using VAE, one of the approaches for feature learning39,40 using convolutional 
deep learning. Generally, feature learning is a method for acquiring features that are effective for the prediction 
and classification of data. It also has the ability to convert high-dimensional data to low-dimensional features.

Let the input dataset be D = {x(1), . . . , x(N)|x(i) ∈ R
D , i = 1, · · · ,N} and the marginal likelihood for D be 

pθ (x
(1), . . . , x(N)) , where D is the dimension number, N is the number of the input data, and θ are parameters 

for the architecture. The objective of the learning is to maximise the marginal likelihood. When the dataset D is 
independent and identically distributed, the log marginal likelihood becomes 

∑N
i=1 lnpθ (x

(i)) . Consider that the 
inference architecture qφ(z|x(i)) (also known as encoder) approximates qφ(z|x(i)) ≃ pθ (z|x

(i)) , where z ∈ R
J is 

a feature variable and J < D . Therefore, the log marginal likelihood lnpθ (x(i)) can be expressed as

The second inequality is obtained by the Jensen’s inequality, and L(x(i), θ ,φ) is an objective function known 
as the lower bound. Let a prior and a posterior distribution of z be a multivariate Gaussian distribution, indicat-
ing that pθ (z) = N (z|0, I) and qφ(z|x(i)) = N (z|µφ(x

(i)),�φ
2(x(i))I) , where µφ(·) and �φ(·) are the outputs 

from an encoder and I is the identity matrix of dimension J. Let a posterior distribution of x be the multivariate 
Bernoulli distribution, pθ (x(i)|z) = bern(x(i)|gθ (z)) , where gθ (·) are the outputs from the decoder. Thus, the 
expression of the lower bound to be maximised is

where DKL[·||·] is the Kullback–Leibler divergence of two distributions and z(i,l) is referred to as the reparam-
eterisation trick, such that z(i,l) = gφ(ǫ

(l), x(i)) = µφ(x
(i))+ ǫ(l) ⊙�φ(x

(i)) , where ǫ ∼ N (0, I) , and ⊙ signifies 
the Hadamard product.

Classification using invariant information clustering.  A typical method for clustering is the k-means, 
which uses the Euclidean distances between data. Recently, several variants of the k-means have been developed 
(e.g. k-means++41, fuzzy c-means42, and x-means43). Regarding clustering in a high dimensional space, the vari-
ance of the distance between data becomes small owing to the “curse of dimensionality”. Alternatively, IIC30, 
which is a classification method, seems to be effective because it does not use the distances of the data for learn-
ing. In this study, transient noise is classified using IIC by maximising the mutual information. Let x ∈ R

D be the 
input data, x′ be the perturbed data of x , C the number of output classes, and �(x) ∈ R

C be a classifier in which 
the output layer of the classifier uses the SoftMax activation function. Consider a pair of cluster assignments for 
two inputs, x and x′ . Their conditional joint distributions and marginal distributions are Pij = �(x(i)) ·�(x(j)′)T 
and Pi =

∑

j �(x(i)) ·�(x(j)′)T , respectively, where the superscript T denotes the transpose. The objective for 
the maximisation of the mutual information is expressed as

To improve the performance of the classifier, auxiliary over-clustering30 is also used when calculating the 
mutual information. This over-clustering formula is the same as (4), except for �(x) ∈ R

W , where C < W.

Proposed architecture.  We propose the unsupervised classification architecture shown in Fig. 8. It is a deep 
learning architecture that trains time–frequency 2D spectrogram images of transient noise. Considering the pro-
posed architecture, the feature variables of the input image x and its perturbation image x′ = ξ(x) are extracted 
by a pre-trained encoder of the VAE. The perturbation ξ is a transformation that does not change the informa-
tion required for the classification (see “Pre-processing” section). Subsequently, the IIC learns to maximise the 
mutual information I(�(z),�(z ′)) , which is composed of a pair of feature variables (z = µφ(x), z

′ = µφ(x
′)).

The clustering of the IIC depends on the initial values of the neural networks in which the values are randomly 
provided. Thus, the classification results from each classifier varies slightly. Regarding the unsupervised learning, 
it is difficult to apply an ensemble average for each classification result to solve the dependencies of the initial 
values because the classified labels are random at each time. In this study, spectral clustering44 was applied to 
compress the multiple results of classification into one result. The procedure is as follows: 

1.	 Let D, K, and C be the number of datasets, number of classifiers, and estimated number of classes, respec-
tively. Create a hypermatrix H whose dimension is (D,K × C) from each classifier result.

2.	 Considering h(i) as a row vector for each data of H, calculate an affinity matrix using the Gaussian kernel, 
which is given by exp(−�h(i) − h(j)�).

(2)lnpθ (x
(i)) = ln

∫

pθ (x
(i), z)dz ≥

∫

qφ(z|x
(i)) ln

(

pθ (x
(i), z)

qφ(z|x(i))

)

dz ≡ L(x(i), θ ,φ).

(3)L(x(i), θ ,φ) ≃ −DKL

(

N (z|µφ(x
(i)),�φ

2(x(i))I)||N (z|0, I)
)

+
1

L

L
∑

l=1

ln bern(x(i)|z(i,l)),

(4)max
�

I(�(x),�(x′)) =

C
∑

i

C
∑

j

Pij ln
Pij

PiPj
.
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3.	 Compute the spectral clustering to the affinity matrix. Consequently, we have labels for each dataset whose 
dimension is (D, C).

Data availability
All the results are reported for public data of Gravity Spy project. Data on the results of unsupervised learning 
are available upon request from Y. Sakai and HT.

Code availability
All the codes developed in this study are available upon request from Y. Sakai and HT.
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