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An analysis of the dynamic spatial 
spread of COVID‑19 across South 
Korea
Dayun Kang1, Jungsoon Choi2,3*, Yeonju Kim4 & Donghyok Kwon4

The first case of coronavirus disease 2019 (COVID‑19) in South Korea was confirmed on January 
20, 2020, approximately three weeks after the report of the first COVID‑19 case in Wuhan, China. 
By September 15, 2021, the number of cases in South Korea had increased to 277,989. Thus, it is 
important to better understand geographical transmission and design effective local‑level pandemic 
plans across the country over the long term. We conducted a spatiotemporal analysis of weekly 
COVID‑19 cases in South Korea from February 1, 2020, to May 30, 2021, in each administrative region. 
For the spatial domain, we first covered the entire country and then focused on metropolitan areas, 
including Seoul, Gyeonggi‑do, and Incheon. Moran’s I and spatial scan statistics were used for spatial 
analysis. The temporal variation and dynamics of COVID‑19 cases were investigated with various 
statistical visualization methods. We found time‑varying clusters of COVID‑19 in South Korea using 
a range of statistical methods. In the early stage, the spatial hotspots were focused in Daegu and 
Gyeongsangbuk‑do. Then, metropolitan areas were detected as hotspots in December 2020. In our 
study, we conducted a time‑varying spatial analysis of COVID‑19 across the entirety of South Korea 
over a long‑term period and found a powerful approach to demonstrating the current dynamics of 
spatial clustering and understanding the dynamic effects of policies on COVID‑19 across South Korea. 
Additionally, the proposed spatiotemporal methods are very useful for understanding the spatial 
dynamics of COVID‑19 in South Korea.

Abbreviations
COVID-19  Coronavirus disease 2019
WHO  World Health Organization
Min  Minimum
SD  Standard deviation
Q1  First quartile
Q2  Second quartile
Q3  Third quartile
Max  Maximum

After the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China, in late December  20191, the number 
of cases of COVID-19 in most countries, including China, dramatically increased. The World Health Organiza-
tion (WHO) reported 95,324 confirmed cases with 3281 deaths globally by March 5, 2020, and declared COVID-
19 a pandemic on March 11,  20202.

South Korea was one of the first countries to announce and respond to a COVID-19 case. On January 20, 
2020, the first confirmed case was reported, and 30 confirmed cases were reported by February 17, 2020. After 
the 31st patient was identified on February 18, 2020, attending Shincheonjii church services in Daegu (located 
in the country’s southeast region), the number of newly confirmed patients dramatically increased to approxi-
mately 750 by February 24, 2020 (6 days). As of September 15, 2021, 277,989 confirmed cases and 2380 deaths 
of COVID-19 were reported in South Korea (https:// kdca. go. kr).

The Korean government implemented various strategies, including rapid diagnostic testing, social distanc-
ing, and wearing face masks nationwide, to control and reduce the spread of COVID-19. In addition, different 
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COVID-19 control policies at the local administrative level have been implemented based on the volume of 
cases. It is possible to visualize the dynamics of the disease from the results of spatial and temporal analysis of 
COVID-19 confirmed cases at the local administrative level, which may help us understand epidemics of the 
newly emergent infectious disease.

In many countries, various spatial or spatiotemporal analyses of COVID-19 have been performed to under-
stand the characteristics of epidemics and evaluate public health policies. In China, the spatial spread of COVID-
19 cases at the early stage was  investigated3,4, and the spatiotemporal characteristics of COVID-19 transmission 
in 31 provincial-level regions and 337 prefecture-level cities were  examined5. In the United States, the dynamic 
spatial spread of COVID-19 at the state level using metric geometry was  analyzed6, and spatiotemporal clusters 
of county-level daily COVID-19 cases were detected from January 22nd to March 27th,  20207. Additionally, the 
patterns of COVID-19 cases in rural and urban areas were compared, showing different temporal and spatial 
 distributions8,9. In the UK, the spatial distribution of COVID-19 cases was explored and regional outbreaks were 
 detected10. The spatiotemporal distribution of COVID-19 infection using unaggregated data was  explored11. 
Daily COVID-19 cases and deaths in Brazil were used to explore their spatial  patterns12. The spatiotemporal 
distribution of local-level COVID-19 cases in Italy was modeled and a significant impact of strict control poli-
cies on the spread was  found13.

The spatiotemporal dynamics of COVID-19 may be influenced by various local confounding  factors14. For 
example, any intervention effects, such as social distancing or vaccination rates, may be related to COVID-19 
 spread15–17. Several studies have investigated the effects of air pollution, climate, and weather-related factors, 
such as temperature, wind, and humidity, on COVID-19  spread18–23. In addition, the spatial associations between 
COVID-19 and population mobility and demographic characteristics have been  discussed14,24.

Several studies have examined spatially dependent effects or detected spatial clusters using Moran’s I statistics 
and spatial scan statistics in  China3–5 and  Iran25,26. Additionally, the spatial association between COVID-19 and 
the government response in South Korea at the early stage, from January 20 to May 2020 was  assessed27. Follow-
ing the COVID-19 outbreak in 2020, the spatial diffusion and patterns of COVID-19 have varied dynamically, 
depending mainly on the control policy, human mobility, and epidemic mechanism. When the outbreaks or 
the size of the high-risk spatial clusters increased, the government might have implemented a stronger social 
distancing policy at the national level or in high-risk areas to control COVID-19 transmission and reduce the 
spread of the virus. Thus, it is important to understand and investigate the dynamic spatial patterns of COVID-
19 over a longer period.

In this study, we conducted a spatiotemporal analysis of confirmed COVID-19 cases across South Korea from 
February 18, 2020, to May 31, 2021, to investigate the spatial and temporal variations in COVID-19 and identify 
the temporally varying spatial cluster patterns of COVID-19 in South Korea.

Data and methods
Data sources. To investigate the spatial dynamics of COVID-19 cases across South Korea, the district-level 
(called si/gun/gu) number of daily or weekly COVID-19 cases was needed. However, the district-level COVID-
19 dataset across South Korea was not publicly available, and there were no real figures. Thus, we used the official 
daily confirmed COVID-19 cases by district obtained by the Korea Disease Control and Prevention Agency. In 
this study, we analyzed district-level weekly cases from February 18, 2020, to May 31, 2021, in 250 districts across 
South Korea. The daily statistics of COVID-19 cases in South Korea include information on whether the case 
was infected outside or inside the country. Because we focused on local transmission within the community, 
cases from foreign countries were excluded from the study. All methods were performed in accordance with 
relevant guidelines and regulations as reviewed and approved by the Institutional Review Boards of Hanyang 
University Seoul Hospital (HYU-2019-04-021).

Research methods. Global Moran’s I. Moran’s I statistic measures spatial  autocorrelation28 and is defined 
as follows:

where i and j are the region indices and the element Wij is the adjacency between areas i and j . We set Wij to 1 
if areas i and j shared a border and 0 if otherwise. The variables Xi and Xj denote the number of new confirmed 
cases in areas i and j , respectively, and X  indicates the average number of new confirmed cases in the area. A 
value of 0 implies complete spatial randomness in the data. If Moran’s I value is larger than 0, it indicates the 
clustering of similar values, whereas a negative value indicates the clustering of distinct values. A large absolute 
value of Moran’s I implies a strong spatial autocorrelation. The mathematical formula of the statistic is similar to 
the Pearson correlation coefficient, but Moran’s I is not bounded in [−1, 1] . Some alternative versions of Moran’s 
I were proposed to explain heterogeneous populations or consider various weight  functions29–31.

In this study, we focused mainly on the spatial autocorrelation among COVID-19 cases, not adjusting the 
population sizes. In the weight function formula, the definition of the geographic distance for our irregular 
district-level data is not clear. Thus, the original Moran’s I with the adjacent weight function was considered in 
the analysis.

Spatial scan statistic. The spatial scan statistic is a typical statistic for spatial cluster  detection32. The scan 
statistic �z is defined using the likelihood function as follows:

I =
n
∑

i,j Wij(Xi − X)(Xj − X)
∑

i �=j Wij
∑

i

(

Xi − X
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where z and Z denote a scanning window in the spatial domain and the collection of all scanning windows, 
respectively. Here, L(θ |z) is the likelihood function. The null hypothesis H0 is that a spatial cluster does not exist 
in the spatial domain. Alternatively, hypothesis Ha is that a certain cluster does exist in the spatial domain. The 
size of the scanning windows can vary and usually does not exceed 50% of the study  domain33. Various probability 
distributions can be assumed appropriately for the data. Our COVID-19 data have excess zeros at some weeks. 
Thus, this study assumed a zero-inflated Poisson distribution if the number of areas with zero cases exceeded 
30% of the total and the Poisson distribution if otherwise. The maximum size of the scanning window was set to 
20%. We defined the scanning window z with the maximum �z as the most likely cluster. Monte Carlo hypoth-
esis testing is widely used to obtain the p value of the most likely cluster. We simulated 999 random datasets for 
Monte Carlo testing. Additionally, we chose the most likely cluster as the final spatial cluster only if the number 
of cases for each area was above the 90th percentile.

For analysis, we used R statistical software (version 3.6.3; https:// www.r- proje ct. org/) using the ‘SpatialEpi’34 
and ‘scanstatistics’35 packages for the spatial scan statistic. We used the ‘ape’ package for Moran’s I  statistic36. In 
addition, all the figures were created using R software.

Ethical approval. No human or animal samples were included in the research presented in this article; 
therefore, ethical approval was not necessary for this research.

�z =

max
z∈Z,Ha

L(θ |z)

max
z∈Z,H0

L(θ |z)
= max

z∈Z
LR(z),

Figure 1.  Time series plot for weekly confirmed cases and cumulative confirmed cases of COVID-19 in South 
Korea from February 18, 2020, to May 11, 2021 (The bar colors distinguish the six temporal periods based on 
Table 1).

Table 1.  Summary statistics for the number of weekly cases in six periods in South Korea. Min Minimum, SD 
standard deviation, Q1 first quartile, Q2 second quartile, Q3 third quartile, Max maximum.

Period Mean SD Min Q1 Q2 Q3 Max

Feb 18–Apr 6, 2020 1359 1375 245 470 573 1836 4085

Apr 7–Aug 10, 2020 138 83 6 90 125 207 284

Aug 11–Nov 9, 2020 883 583 406 464 624 1076 2145

Nov 10, 2020–Jan 18, 2021 4290 1943 1191 3138 4120 5649 6887

Jan 19–Mar 29, 2021 2766 214 2433 2606 2732 2941 3062

Mar 30–May 31, 2021 4065 334 3558 3764 4110 4314 4507

https://www.r-project.org/
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(a) Cumulative cases of COVID-19 across 250 administrative areas 

(b) Cumulative cases of COVID-19 in metropolitan areas, including 77 administrative 
areas of Seoul, Gyeonggi-do, and Incheon 

Figure 2.  Map of the cumulative confirmed cases of COVID-19 in South Korea from February 18, 2020, to May 
31, 2021.
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Results
Weekly incidence of COVID‑19 cases. Figure 1 presents the time series plots of the newly confirmed 
cases and the cumulative confirmed cases every week. Bars indicate the weekly new cases with the left axis, and 
the blue line indicates the cumulative cases with the right axis. Within the temporal domain of the study, from 
February 18, 2020, to May 31, 2021, the highest count of new cases was 6887 between December 15 and Decem-
ber 21, 2020 (inclusive). A total of 132,060 patients were diagnosed with COVID-19 during the study period. 
To understand and compare temporal patterns of the weekly number of cases, we divided the dataset into six 
periods based on the number of cases. If the number of cases at each week was greater/less than the mean plus/
minus standard deviation of the number of cases for the previous three weeks and the period length was greater 
than 4 weeks, then the new period was determined. Table 1 provides summary statistics for each period. The 
number of new cases was the highest from November 10, 2020, to January 18, 2021 (weekly mean of 4290 cases) 
and the lowest from April 7 to August 10, 2021 (weekly mean of 138 cases).

After February 18, 2020, the number of confirmed cases increased dramatically until the beginning of March 
2020. During this period, mass transmission occurred in Daegu and Gyeongsangbuk-do. From February 18 
to March 9, 2020, a total of 7021 patients were diagnosed with COVID-19 in Daegu and Gyeongsangbuk-do, 
which was 90% of the total number of COVID-19 patients in South Korea in this period. Later, the number of 
new infections has greatly increased again since November 2020, mainly in metropolitan areas, including Seoul, 
Gyeonggi, and Incheon. From December 2020 to May 2021, a total of 68,952 cases were reported from Seoul, 

Figure 3.  Time series plot for global Moran’s I statistic (black line) and p value (red line) of COVID-19 cases 
for each week in South Korea from February 18, 2020, to May 11, 2021.

Figure 4.  Time series plot for the number of areas with COVID-19 cases over a threshold in South Korea from 
February 18, 2020, to May 11, 2021.
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Gyeonggi, and Incheon, which is 68% of the cases in the entire country in the period. The weekly cases have 
never been less than 3000 cases since April 2021.

To investigate the geographical distribution of the number of cases, we produced a map of the cumulative 
cases for 250 administrative areas of South Korea (Fig. 2a) and 77 administrative areas of three metropolitan cit-
ies of Seoul, Gyeonggi, and Incheon (Fig. 2b). The cases were the highest around metropolitan areas and Daegu. 
Moreover, a strong spatial dependency was uncovered, and most of the areas in Seoul had more than 1000 cases.

(a) February 18–24        (b) February 25–March 2 

(c) March 3–9 (d) March 10–16 

Figure 5.  Cluster maps of COVID-19 in South Korea from February 18 to March 10, 2020.

Table 2.  Cluster information of COVID-19 in South Korea from February 18 to March 10, 2020.

Week Areas Observed cases Expected cases Relative risk p value

February 18–24 Daegu Nam-gu
Daegu Dalseo-gu 686 13.98 2.67 0.001

February 25–March 2 Daegu Nam-gu
Daegu Dalseo-gu 1633 32.68 1.39 0.001

March 3–9 Daegu Dalseo-gu 369 7.69 2.47 0.001

March 10–16

Daegu Nam-gu
Daegu Dalseo-gu
Daegu Seo-gu
Daegu Buk-gu
Daegu Suseong-gu

225 11.46 2.2 0.001
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Spatiotemporal analysis over the entire area. We calculated the global Moran’s I statistic for each 
week over the entire area to check the spatial association in the number of confirmed cases. In Fig. 3, the black 
and red lines indicate the statistic and its p value, respectively. The p values of Moran’s I were less than 0.0001 at 
61 weeks (approximately 91% of the time domain), showing highly significant spatial autocorrelation. Addition-
ally, p values at 5 weeks were between 0.005 and 0.025, providing medium significant spatial autocorrelation. 
When the number of new cases dramatically increased, the statistics also tended to increase, such as in August 

(a) December 1–7 (b) December 8–14

(c) December 15–21 (d) December 22–28

Figure 6.  Cluster maps of COVID-19 in South Korea in December 2020.

Table 3.  Cluster information of COVID-19 in South Korea in December 2020.

Week Areas Observed cases Expected cases Relative risk p value

December 1–7
Seoul Jongno-gu and 23 other areas
Gyeonggi Bucheon-si and 12 other areas
Incheon Bupyoung-gu and 2 other areas

2381 640.48 3.36 0.001

December 8–14
Seoul Jongno-gu and 24 other areas
Gyeonggi Bucheon-si and 18 other areas
Incheon Bupyoung-gu and 3 other areas

3514 1085.18 3.13 0.001

December 15–21
Seoul Jongno-gu and 24 other areas
Gyeonggi Bucheon-si and 15 other areas
Incheon Bupyoung-gu and 2 other areas

4007 1212.11 3.18 0.001

December 22–28
Seoul Jongno-gu and 24 other areas
Gyeonggi Bucheon-si and 14 other areas
Incheon Bupyoung-gu
and 2 other areas

3893 1179.23 3.12 0.001
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and November 2020. This implies that the coronavirus spread spatially when the number of new infections 
increased. In particular, in 2021, the statistic tends to increase from March 2021.

In addition to Moran’s I , we calculated the number of areas with a higher number of cases than a threshold 
(5, 10, 15, 20, and 25 cases) for each week to investigate the spatial diffusion, as shown in Fig. 4. The larger the 
number of areas is, the more active the spatial spread. The left side of the y-axis denotes the number of areas, and 
the right side indicates the number of areas divided by the total number of areas (250 areas). All five lines show 
a similar temporal tendency to Moran’s I statistics in Fig. 3. This pattern indicates that the virus spread actively 
during the peak seasons in South Korea. For example, before August 2020, less than 20% of 250 areas had more 
than five cases. In contrast, after November 2020, over 50% of 250 areas had more than five cases.

To detect the spatial cluster with elevated risks, we used the spatial scan statistic for two peak seasons: the 
first from February 18, 2020, to mid-March 2020, and the second from December 1 to December 28, 2020. 
During the first peak season, the areas in Daegu were detected as clusters (Fig. 5, Table 2): the areas with black 
borderlines in Fig. 5 represent the clusters. During this period, the number of new infections mainly developed 
in Daegu and Gyeongsangbuk-do.

Unlike the first peak, all the clusters were in metropolitan areas in December 2020 (Fig. 6, Table 3). Most of 
them were in Seoul, and some were in Gyeonggi and Incheon. As shown in the maps, the number of cases was 

Figure 7.  Time series plot for Moran’s I statistic and p value for COVID-19 cases in each week in metropolitan 
areas in South Korea from February 18, 2020, to May 11, 2021 (no calculation of Moran’s I on the week, April 28 
to May 4, 2020, due to the lack of data information).

Figure 8.  Time series plot for the number of metropolitan areas with the number of COVID-19 cases over a 
threshold in South Korea from February 18, 2020, to May 11, 2021.
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focused in metropolitan areas at the beginning of December, and the number increased in other areas as the 
coronavirus spread geographically.

Spatiotemporal analysis over metropolitan areas. The population in metropolitan areas in South 
Korea was approximately 25,674,800 as of 2018, making up more than 50% of the total population. The number 
of cases in metropolitan areas has been dominant since April 2020. Before cluster detection, we calculated the 
global Moran’s I statistic for each week to examine the spatial spread in metropolitan areas (Fig. 7). There was 
statistical significance in many periods, such as August 2020 and May 2021. In addition, we counted the number 
of metropolitan areas with the number of cases over a threshold (Fig. 8). In August 2020, the number of areas 
with more than five cases dramatically increased to over 80% of the entire area. The rate has not dropped to less 
than 80% since December 2020. This implies that spatial spread occurred in metropolitan areas, supporting the 
need for a spatial investigation of the number of cases in metropolitan areas.

We detected spatial clusters with elevated risks using a scan statistic for metropolitan areas from August to 
September 2020 (Fig. 9, Table 4). Most of the districts were in Seoul, and only some were in Gyeonggi.

The cluster sizes detected in May 2021 were larger than those detected in August–September 2020, and the 
number of cases in the detected clusters increased accordingly (Fig. 10, Table 5).

Discussion
In this study, we conducted a spatiotemporal analysis to investigate the spatial spread and time-varying clusters 
of COVID-19 in South Korea. Along with Moran’s I results, we presented various time series plots to examine 
the temporal pattern and produced choropleth maps to visually check the spatial association. To explore spatial 
clusters, scan statistics and visualization methods were considered. In general, the p value is related to sample 

(a) August 11–17  (b) August 18–24 

(c) August 25–31  (d) September 1–7

Figure 9.  Cluster maps of COVID-19 cases for metropolitan areas in South Korea from August to September 
2020.

Table 4.  Cluster information of COVID-19 for metropolitan areas in South Korea from August to September 
2020.

Week Areas Observed cases Expected cases Relative risk p value

August 11–17 Seoul Seongbuk-gu 115 13.6 8.46 0.001

August 18–24 Seoul Seongbuk-gu and 7 other areas
Gyeonggi Namyangju-si and 1 other area 470 216.49 1.83 0.001

August 25–31 Seoul Gangseo-gu and 6 other areas
Gyeonggi Bucheon-si and 2 other areas 391 199.22 1.88 0.001

September 1–7
Seoul Gangdong-gu
Seoul Jungnang-gu
Seoul Nowon-gu

78 30.7 1.79 0.001
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size and  significance37. It is possible to obtain small p values in large datasets with weak associations or large p 
values in small datasets with strong associations. Thus, we considered various visualization methods as well as 
statistical tests to investigate the spatial dynamics of COVID-19.

We found the areas in Daegu to be clusters in the early stage. This result may be due to mass infection in the 
Shincheonji religious  group38,39. Then, metropolitan areas were detected as hotspots in December. It was reported 
that various cluster infections occurred in long-term hospitals, public saunas, and prisons in December  202040.

Previous studies on the dynamics of the spatial patterns of COVID-19 have focused on existing spatial 
dependent effects or detecting spatial clusters, mainly using Moran’s I statistics and spatial scan  statistics3–5,25–27. 
The spatial spread of COVID-19 in China at the very early stage, from January 16, 2020, to February 06, 2020, 
was first examined, using 31 province-level COVID-19 confirmed  data3. The spatial patterns of COVID-19 in 
China from January 10, 2020, to March 5, 2020, was also  studied4. The dynamic spatial association of COVID-
19 in 31 province-level regions and 337 prefecture-level cities in China from January to October 2020 was 
 examined5. In Iran, the spatial association and spatial hotspots of COVID-19 at the early stage (March and 
April 2020) was  examined25, and the spatiotemporal patterns of COVID-19 from February 18 to October 21, 
2020 were  analyzed26. Approximately 4 months of the COVID-19 epidemic from January 20 to May 31, 2020, 
in South Korea were  covered27. These studies mapped the spatial pattern and linked the clusters in the early 
epidemics, and the results may have contributed to knowledge on COVID-19 epidemics, especially during the 
period in which information about the virus was lacking. Our study included a longer period of 16 months and 
recent dates with more cases, so that it is a powerful approach for demonstrating the current dynamics of spatial 
clustering across South Korea.

The spatiotemporal dataset may contain excess zero counts owing to the spatiotemporal units; then, such 
property should be considered in the analysis. Here, we accounted for the excess zero counts by utilizing a 
zero-inflated Poisson distribution in the scan statistic. We used various spatiotemporal methods simultane-
ously, leading to better results than using only one method. We compared the results of different approaches 
and provided more comprehensive results. In this study, we conducted weekly spatial analysis to investigate the 

(a) May 4–10  (b) May 11–17 

(c) May 18–24 (d) May 25–31 

Figure 10.  Cluster maps of COVID-19 cases for metropolitan areas in South Korea in May 2021.

Table 5.  Cluster information of COVID-19 for metropolitan areas in South Korea in May 2021.

Week Areas Observed cases Expected cases Relative risk p value

May 4–10
Seoul Gangnam-gu
and 11 other areas
Gyeonggi Guri-si

824 420.05 1.84 0.001

May 11–17 Seoul Gangnam-gu and 8 other areas
Gyeonggi Guri-si and 5 other areas 1015 547.01 1.86 0.001

May 18–24 Seoul Gangnam-gu and 8 other areas
Gyeonggi Guri-si and 5 other areas 953 484.48 1.97 0.001

May 25–31 Seoul Gangnam-gu and 8 other areas
Gyeonggi Gwangju-si and 4 other areas 872 450.18 1.84 0.001
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real-time spatial dynamics of COVID-19 cases across South Korea. Thus, we did not consider the use of multiple 
tests with p value  adjustments41.

Despite the many strengths of this study, it has some limitations. First, we did not investigate possible con-
founding factors on COVID-19 spread. For example, the Korean government has implemented many social 
distancing policies and regulations. If we consider these nonpharmaceutical effects, we might obtain more 
precise results. In addition, we did not investigate the spatial association between COVID-19 and confound-
ing factors, such as air pollution, weather, population mobility, and demographic characteristics. Thus, future 
research should investigate the effects of confounding factors on COVID-19 at the regional level in South Korea 
using statistical models.

Second, we used the official number of COVID-19 cases to study the spatial dynamics of COVID-19 in South 
Korea. However, the official numbers might be underestimated due to limited testing capacities, unexpected false 
negatives, overcrowding of hospitals, and unprepared health  systems42–48. The spatial dynamics of COVID-19 
using official numbers or real numbers might be different. Thus, it may be of interest to conduct spatiotemporal 
analysis of COVID-19 by considering the underestimation of COVID-19 cases.

Conclusion
To the best of our knowledge, this is the first study to conduct a spatiotemporal analysis using long-term COVID-
19 data in South Korea. Here, we showed that spatial spread of the coronavirus occurred, especially in metro-
politan areas. A timely spatiotemporal analysis would be helpful for identifying hotspots and preventing spatial 
transmission of the virus during the pandemic.

Data availability
The data that support the findings of this study are available from the Korean Disease Control and Prevention 
Agency, but restrictions apply to the availability of these data, which were used under collaboration for the cur-
rent study and are not publicly available. Data are however available from the authors upon reasonable request 
and with permission of the Korean Disease Control and Prevention Agency.
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