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Incorporation of machine 
learning and deep neural network 
approaches into a remote 
sensing‑integrated crop model 
for the simulation of rice growth
Seungtaek Jeong1,2, Jonghan Ko2*, Taehwan Shin2 & Jong‑min Yeom1

Machine learning (ML) and deep neural network (DNN) techniques are promising tools. These 
can advance mathematical crop modelling methodologies that can integrate these schemes into 
a process‑based crop model capable of reproducing or simulating crop growth. In this study, an 
innovative hybrid approach for estimating the leaf area index (LAI) of paddy rice using climate data 
was developed using ML and DNN regression methodologies. First, we investigated suitable ML 
regressors to explore the LAI estimation of rice based on the relationship between the LAI and three 
climate factors in two administrative rice‑growing regions of South Korea. We found that of the 10 ML 
regressors explored, the random forest regressor was the most effective LAI estimator, and it even 
outperformed the DNN regressor, with model efficiencies of 0.88 in Cheorwon and 0.82 in Paju. In 
addition, we demonstrated that it would be feasible to simulate the LAI using climate factors based on 
the integration of the ML and DNN regressors in a process‑based crop model. Therefore, we assume 
that the advancements presented in this study can enhance crop growth and productivity monitoring 
practices by incorporating a crop model with ML and DNN plans.

Process-based crop models can simulate sequential variations in crop growth as a function of mathematical 
 procedures1,2. Although these crop models deliver a reliable simulation performance, assembling the different 
spatial inputs and complicated crop parameters can substantially restrict the modeling  efficiency3. Despite spa-
tiotemporal limitations in observation, remote sensing (RS) can be a valuable technique for observing dynamic 
spatial variations in crop growth and development within plant ecosystem environments, depending on RS 
 platforms4. A hybrid approach, combining a crop model with RS information, may increase the advantages of 
both and compensate for the weaknesses of the individual techniques, filling the spatiotemporal gaps in both RS 
and simulation  data5,6. Therefore, there have been extensive efforts to advance crop simulation performances by 
incorporating RS information using various data assimilation approaches involving RS and crop  modelling6–8. 
For instance, the RS-integrated crop model (RSCM) is based on a hybrid scheme and is used to simulate staple 
crops, including barley, paddy rice, soybean, and  wheat6,9–11. RSCM can incorporate the leaf area index (LAI) or 
vegetation indices (VIs) from various types of RS data.

LAI has been employed as a critical variable for simulating sequential crop growth in most process-based 
crop models integrated with RS data and RSCM as a function of mathematical optimisation  procedures7,8. The 
LAI variable in these crop models is formulated using the linear relationship with VIs obtained from various RS 
 platforms6,12. However, developing steady mathematical formulations presents some challenges, including the 
dimensional (D) differences between LAI (that is, 3-D) and VIs (that is, 2-D), possible variations in the relation-
ship among different RS platforms, and dynamic relational variabilities among other crop species that are even 
apparent in different growth stages, specifically during leaf senesce. Therefore, a novel approach for a consistent 
LAI estimation and improving the performance of the process-based crop models incorporated with RS data, 
including RSCM, should be investigated.
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Deep neural network (DNN) and machine learning (ML) techniques are promising tools for advancing math-
ematical crop modelling methodologies to integrate these schemes into a process-based crop model capable of 
reproducing and predicting crop growth and development. ML has proven to be an effective method for address-
ing the limitations of conventional empirical methods in the simulation of crop yield using RS data because it 
considers nonlinearity between the input variables and crop  yield13–15. Therefore, some efforts have been made to 
incorporate an ML approach with a crop model to advance yield  estimation16–18. These study approaches included 
simulation crop model variables as input features in ML models. Certain reports have also revealed that recent 
improvements in DNN methodologies, based on their powerful prediction performance, are applicable to the 
more advanced and precise simulation of crop  yields19,20. The ML and DNN methodologies applied to crop yield 
prediction encompass, but are not limited to, the support vector machine, random forest (RF), dimensional con-
volutional neural network, and long short-term memory. Popular DNN applications in agriculture include weed 
identification, land cover classification, plant recognition, fruit counting, and crop type  classification21. Therefore, 
it appears that the ML and DNN approaches have been adopted to address each attribute of crop productivity 
and management, which is being correlated with its biotic and abiotic environments.

We assume that ML and DNN methodologies can improve the simulation performances of present math-
ematical crop models by effectively assimilating these data-driven modelling techniques. While some earlier 
hybrid efforts were to add simulation crop model variables to ML models, integrating ML or DNN processes into 
a mathematical crop model has not been researched. Therefore, in this study, we aimed to develop an innovative 
hybrid approach of integrating ML and DNN methodologies into a process-based crop model for estimating 
the LAI of rice. We investigated suitable ML and DNN models to calculate the LAI values of rice (Oryza sativa) 
based on the relationship between LAI and weather factors.

Results
Training scores using 10 machine learning regressors for the regression analyses of LAI with respect to three 
climate factors for rice in Cheorwon ranged from 0.441 to 0.863, whereas test scores varied from 0.428 to 0.622 
(Table 1). Training scores for those in Paju ranged from 0.423 to 0.855, whereas test scores varied from 0.416 
to 0.568. Assuming that the RF regressor was the best working model in both regions based on the test scores 
(that is, 0.622 in Cheorwon and 0.568 in Paju), we analysed its capabilities for simulating LAI compared to that 
of the DNN regressor. In Cheorwon, simulated LAI values agreed with the corresponding observed LAI values 
with a root mean square error (RMSE) of 0.63  m2  m−2 and a normalised Nash–Sutcliffe model efficiency (ME) 
of 0.88 using the RF regression (Fig. 1a) and an RMSE of 0.67  m2  m−2 and an ME of 0.76 using the DNN regres-
sion (Fig. 1b). In Paju, simulated LAI values agreed with the observed LAI values with an RMSE and ME of 
0.62  m2  m−2 and of 0.82, respectively, for the RF regression (Fig. 1c) and an RMSE and ME of 0.63  m2  m−2 and 
0.66, respectively for the DNN regression (Fig. 1d).

We applied the RF and DNN regressors considering enhancement for reproducing the regional rice growth 
for Cheorwon, Paju, and Gimje, South Korea and Pyeongyang, North Korea from 2014 to 2017 (Fig. 2). The 
calibrated regression models were cross-validated between Cheorwon and Paju while those developed for Cheo-
rwon were applied for the typical rice growing regions of Gimje, South Korea and Pyeongyang, North Korea. 
In Cheorwon and Paju, simulated LAI values corresponded to the observed LAI values, with an RMSE range 
of 0.34–0.81  m2  m−2 and an ME range between 0.68 and 0.1 using the RF regression and an RMSE range of 
0.42–0.78  m2  m−2 and an ME range of 0.58–0.96 using the DNN regression (Table 2). In Gimje and Pyeongyang, 
simulated LAI values corresponded to the observed LAI values with an RMSE range of 0.63–1.18  m2  m−2 and 
an ME range of 0.09–0.76 using the RF regression and an RMSE range of 0.72–1.1  m2  m−2 and an ME range of 
0.0–0.76 using the DNN regression.

The RF and DNN-estimated LAI values were applied for simulating LAI values at Cheorwon (Fig. 3a–d) and 
Paju (Fig. 3e–h) with cross-validation. In addition, the RF and DNN-estimated LAI values using the Cheorwon 

Table 1.  Training and test scores for regression analyses of leaf area index (LAI) with respect to climate factors 
using 10 machine learning (ML) regressors for rice in Cheorwon and Paju, South Korea. HGB, XGB, and 
LightGBM stand for Histogram-based Gradient Boosting, Extreme Gradient Boosting, and Light Gradient 
Boosting machine regression.

Regressor

Cheorwon Paju

Training score Test score Training score Test score

Polynomial linear 0.498 0.490 0.427 0.417

Ridge 0.498 0.490 0.427 0.417

Lasso 0.441 0.428 0.426 0.416

Support vector 0.513 0.500 0.475 0.459

Random forest 0.843 0.622 0.828 0.568

Extra trees 0.863 0.590 0.855 0.489

Gradient boosting 0.549 0.543 0.508 0.499

HGB 0.611 0.590 0.579 0.551

XGB 0.671 0.613 0.650 0.561

LightGBM 0.612 0.590 0.580 0.552
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dataset were applied at Gimje (Fig. 3i–l) and Pyeongyang (Fig. 3m–p) employing the RSCM regime. As a result, 
simulated LAI values more closely corresponded to the RF and DNN-estimated LAI values in the cross-validation 
at Cheorwon and Paju than those at Gimje and Pyeongyang. The most LAI disagreement values in the RSCM 
simulation with the BL values were observed during the early rice-growing season. The early season difference 
is attributed to the ML and DNN estimation inaccuracies.

Discussion
This study adopted normalized differenc vegetation index (NDVI) and climate data from satellite and climate 
projection model data to reproduce the rice LAI and develop an integrated crop modelling approach through 
an ML or DNN technique. We employed this approach to obtain large datasets that allow effective ML and DNN 
modelling. We observed that the RF regressor was the best working model for simulating the rice LAI in the 
regions of interest; furthermore, it outperformed the DNN regressors. However, the finding of the current study 
conflicts with earlier research reports of DNN approaches outperforming state-of-the-art ML  approaches22,23. 
Therefore, it appears that the simulation outcomes depend on the data scope and associated features. The dataset 
that we employed indicated the supremacy of ML approaches. However, it is possible that using more extensive 
data than those implemented in the present study or applying other latest DNN structures may produce results 
more in line with those of earlier  research22,23, which exhibited the efficacy of DNN regressors.

Using satellite-based datasets in this study had the following respective advantages and disadvantages: repro-
ducing the rice LAI and obtaining solar radiation but using the local climate projection model to produce 
temperatures. The advantages included the availability of big data and accessibility of the regions of interest, 
depending on the satellite paths. The disadvantages included limited spatial, temporal, and radiometric resolu-
tions, likely due to using different satellite sensors. Satellite imagery contains multiple pixels that allow research-
ers to implement ML and DNN methodologies using big data. This is also true for the local climate production 
data. However, the use of satellite imagery with a coarse spatial resolution (for example, Geostationary Ocean 
Color Imager (GOCI) or Moderate Resolution Imaging Spectroradiometer (MODIS)) can result in discrepan-
cies, as observed in a small part in the current study, owing to errors from mixed-pixel consequences. The errors 

Figure 1.  Simulated (Sim) versus observed (Obs) leaf area index (LAI) of paddy rice using the (a and c) 
random forest (RF) regressor and (b and d) deep neural network (DNN) regressor in (and b) Cheorwon 
(n = 10,388) and (c and d) Paju (6,622), South Korea. RMSE and ME stand for root mean square error and 
model efficiency.
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include the underestimation of small paddy areas and overestimation of large paddy areas (particularly areas with 
considerably heterogeneous land cover)24,25. These errors are even more apparent when performing estimations 
based on the equivalence of paddy patches because small areas are often  untraceable26–28. Irrespective of this 
inaccuracy, it is necessary to use coarse ground resolution images at a high temporal resolution for continuous 
and sequential land cover classification and monitoring of important crop-growth information over large regions.

The current study showed that simulated LAI values agreed with the RF and DNN-estimated LAI values in 
the cross-validation at Cheorwon and Paju more tightly than the RF and DNN-estimated LAI values using the 
Cheorwon dataset for the evaluations at Gimje and Pyeongyang. This inconsistency should be directly associated 
with the regional distances between the parameterisation and evaluation datasets. Therefore, we assume that 
the inconsistency is attributable to different rice-growing environments and genetic factors to affect leaf growth 
untrained in the ML and DNN models developed in the Cheorwon environment. This issue could be addressed 
using the adjacent region application methodology (likewise, the cross-validation between Paju and Cheorwon). 
Another approach would be using a more wide-ranging area dataset encompassing the most different environ-
ments and rice cultivars while it is not out of the current research scope.

Meanwhile, nearly all disagreements in the LAI estimates in the RSCM simulation were found during the 
early rice-growing seasons of all the regions of interest. Therefore, we assume some inconsistency outcomes could 
be related to biological or abiotic factors influencing early-season rice growth. For example, the lower observed 
LAI values might be attributed to reduced leaf growth due to environmental stresses such as drought or damage 
from microbial or insect occurrences caused by warmer weather conditions.

Integrating RS or satellite data into the process-based crop model (RSCM regime) offered several advantages. 
First, the model requires reasonably small input parameters and variables, in which existing observations are 

Figure 2.  Simulated (Sim) versus observed (Obs) LAI of paddy rice using the RF and DNN regressors for (a–d) 
Cheorwon, (e–h) Paju, (i–l) Gimje, South Korea, and (m–p) Pyeongyang, North Korea in (a, e, i, and m) 2014, 
(b, f, j, and n) 2015, (c, g, k, and o) 2016, and (d, h, l, and p) 2017. ME-RF and ME-DNN represent the model 
efficiency of RF and the model efficiency of DNN.
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introduced as critical factors in the representation of environmental circumstances. Second, the method allows 
the RSCM regime to improve the simulation performance. Third, it enables RSCM to incorporate RS information 
from various operational optical satellite-based sensors of varying spatial  resolutions6,29,30 and other platforms 
such as remotely controlled aerial  systems31. Finally, the RSCM regime in the methodology is applicable to any 
region of interest on the Earth’s surface, including data-sparse and inaccessible  regions30,32, as long as satellite 
images are attainable. The optimisation technique was designed to incorporate RS data from various platforms 
into the RSCM regime, causing it to closely rely on the LAI inputs established from the remotely sensed infor-
mation. However, the RSCM optimisation methodology has several constraints, including the incomplete rep-
resentations of RS information and restricted observations during the crop-growing season. These limitations 
can eventually cause inconsistencies between the simulations and observations and inaccurate predictions of 
crop growth and productivity.

In conclusion, this study validated the feasibility of integrating an ML or DNN approach into a process-based 
crop model that uses RS data. First, we investigated the modelling performances of available ML regression mod-
els to simulate paddy rice LAI using three climate factors. The test scores obtained to estimate the rice LAI using 
the 10 ML regression models indicated the best performance scores in both the regions of Cheorwon and Paju 
with the RF regressor. Furthermore, we noted that a well-calibrated state-of-the-art ML model, such as RF, could 
reproduce the rice LAI using climate factors at least as effective as a well-trained DNN regressor. Therefore, we 
propose that the innovation of integrating an ML or DNN scheme into a process-based crop model can improve 
crop growth and productivity monitoring methodologies. Although this paper proposes an innovative integration 
approach for RSCM with an ML regressor using climate data, further efforts are required to incorporate ML or 
DNN methodologies such as an advanced hybrid system employing the LAI and VIs relations.

Methods
Study locations and rice data. The ML and DNN models were developed for the rice growing areas in 
the entire geographic regions of Cheorwon and Paju in South Korea (Fig. 4). Then, the parameterised ML and 
DNN models were evaluated for the representative rice growing areas of Gimje, South Korea and Pyeongyang, 
North Korea. Cheorwon and Paju were selected as these areas are typical rice cultivation regions in the central 
portion of the Korean peninsula. The paddy rice cultivation regions in Cheorwon and Paju have areas of 10,169 
and 6,625 ha, respectively, representing 80.4% and 62.6% of the total staple croplands for each region, according 
to the Korean Statistical Information Service, KOSIS (https:// kosis. kr/).

The leading rice cultivar in Cheorwon and Paju was Odae (bred by NICS in 1983), cultivated in more than 
80% of the paddy fields during the study period, according to KOSIS. Rice seedlings were transplanted in these 
areas between May 15 and 20, deemed as the ideal transplanting period.

Cumulative crop NDVI data. We used the temporal profiles of NDVI from the Terra MODIS MOD09A1 
surface reflectance 8-day product with a spatial resolution of 500 m, which were employed for the ML and DNN 
model input variable. This product is the composited imagery by selecting the best pixels considering the cloud 
and solar zenith during eight  days33. It is essential to secure reliable and continuous phenological NDVI data 

Table 2.  Comparison of observed (Obs) and simulated (Sim) LAI values of paddy rice in terms of the root 
mean square error (RMSE) and Nash–Sutcliffe efficiency (NSE) for the random forest (RF) and deep neural 
network (DNN) regressors for Cheorwon (CW), Paju (PJ), Gimje (GJ), South Korea and Pyeongyang (PY), 
North Korea, from 2014 to 2017.

Site Year

RF DNN

Sim Obs RMSE ME Sim Obs RMSE ME

m2  m−2 None m2  m−2 None

CW

2014 2.63 2.55 0.38 0.99 2.63 2.48 0.58 0.83

2015 2.66 2.56 0.34 1.00 2.66 2.87 0.67 0.58

2016 2.61 2.89 0.64 0.87 2.61 2.99 0.78 0.63

2017 2.66 2.62 0.46 0.97 2.66 2.97 0.49 0.89

PJ

2014 2.59 2.86 0.57 0.79 2.59 2.78 0.56 0.83

2015 2.47 2.93 0.73 0.68 2.47 2.77 0.55 0.80

2016 2.48 2.90 0.67 0.77 2.48 2.95 0.63 0.66

2017 2.69 3.16 0.81 0.74 2.69 2.74 0.42 0.96

GJ

2014 2.45 2.82 0.84 0.58 2.45 3.04 0.92 0.00

2015 2.56 2.79 0.63 0.76 2.68 3.34 0.89 0.00

2016 2.25 3.16 1.18 0.09 2.25 2.85 0.72 0.76

2017 2.34 2.96 1.02 0.54 2.34 2.99 1.04 0.05

PY

2014 2.19 3.14 1.25 0.41 2.19 2.99 1.18 0.06

2015 2.29 2.99 1.05 0.20 2.29 2.82 0.88 0.64

2016 2.25 3.23 1.14 0.31 2.25 2.73 0.77 0.54

2017 2.17 2.89 0.99 0.24 2.17 3.12 1.10 0.29

https://kosis.kr/
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for determining crop yield in monsoon regions like the current study area concerning input variables for the 
process-based crop model. Therefore, the cloud-contaminated pixels were interpolated with other poor quality 
pixels caused by aerosol quantity or cloud shadow using the spline interpolation algorithm during the rice-
growing season to improve data quality during the monsoon season. This approach has been widely used in 
time series satellite imagery for  interpolation34–36. The criteria for poor quality pixels for interpolation were 
determined from the 16-bit quality assurance (QA) flags from the MOD09A1  product33.

Weather data. Furthermore, we estimated the incoming solar radiation on the surface (insolation) obtained 
from the COMS Meteorological Imager (MI). Insolation reflects the energy source of photosynthesis for the crop 
canopies. We adopted a physical model to estimate solar radiation by considering atmospheric effects such as 
aerosol, water vapour, ozone, and Rayleigh  scattering37–41. Before estimating the solar radiation from the physical 
model, we classified clear and cloudy sky conditions because cloud effects should be considered for their high 
attenuation influences. If the pixel image was assigned as a clear sky condition, atmospheric parameterisations 
were performed for direct and diffuse irradiance owing to the effects of atmospheric constituents and solar-
target-satellite sensor  geometry40,42–44. If the pixel images were considered as under cloudy conditions, the cloud 
attenuation was calculated using a cloud factor for visible reflectance and the solar zenith  angle42. Finally, the 
estimated solar radiation from COMS MI was used as one of the main input parameters of the RSCM system. 
Comprehensive descriptions of those parameters used for the physical model can be referenced from earlier 
 studies41,43.

The maximum and minimum air temperature data were obtained from the Regional Data Assimilation and 
Prediction System (RDAPS) provided by the Korea Meteorological Administration (KMA, https:// www. kma. go. 
kr). The spatial resolution of the RDAPS is 12 km, and it is composed of 70 vertical levels up to about 80 km. The 
global data assimilation and prediction system is provided at 3-h intervals for the Asian regions, and forecasts 

Figure 3.  Simulated (Obs) versus observed (Obs) LAI of paddy rice for the datasets, obtained using the RF and 
DNN regressors in comparison with the baseline (BL) for (a–d) Cheorwon, (e–h) Paju, (i–l) Gimje, South Korea 
and (m–p) Pyeongyang, North Korea in (a, e, i, and m) 2014, (b, f, j, and n) 2015, (c, g, k, and o) 2016, and (d, 
h, l, and p) 2017. Sim LAI values were produced using a remote sensing-integrated crop model, while Obs LAI 
values of the BL were obtained from the MODIS imagery.

https://www.kma.go.kr
https://www.kma.go.kr
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are performed four times a day (00, 06, 12, and 18 UTC) for 87 h. In addition, the system is operated in a 6-h 
interval analysis-prediction-circulation system using the four-dimensional variational data  assimilation45. The 
weather datasets were resampled to a spatial resolution of 500 m using the nearest neighbour method that does 
not change the existing values to match the MODIS imagery.

Process‑based crop model. The current study employed the RSCM to incorporate an ML and DNN pro-
cedure and then simulate rice growths and yields (Supplementary Fig.  S1). We integrated an ML and DNN 
regressor into the RSCM-rice system based on the investigation of the ML or DNN regressors described in 
the following subsection. The ML or DNN scheme was implemented to improve the mathematical regression 
approach for the RS-based VIs and LAI relationships, as described below.

RSCM is a process-based crop model designed to integrate remotely sensed data, allowing crop modellers 
to simulate and monitor potential crop  growth6. This model can accept RS data as input to perform its within-
season calibration  procedure5, wherein the simulated LAI values are compared to the corresponding observed 
values. Four different parameters (that is, L0, a, b, and c) are utilised in the within-season procedure to define 
the crop-growth processes based on the optimisation of LAI using the POWELL  procedure46. In addition, these 
parameters can be calibrated using the Bayesian method to obtain acceptable values with a prior distribution 
that was selected based on the estimates from earlier  studies6,47. The current research project applied consistent 
initial conditions and parameters to calibrate the RSCM-rice system.

ML and DNN models. The ML models investigated in this study were Polynomial regression, Ridge, Least 
Absolute Shrinkage and Selection Operator (LASSO), Support Vector Regression (SVR), RF, Extra Trees (ET), 
Gradient Boosting (GB), Histogram-based Gradient Boosting (HGB), Extreme Gradient Boosting (XGB), and 
Light Gradient Boosting machine regression (LightGB) regressors. These models are implemented in scikit-
learn (https:// scikit- learn. org/), while the DNN model (Supplementary Fig. S4) is implemented in Keras (https:// 
keras. io/), which are achievable on Python (https:// www. python. org/).

The Polynomial regression model is a particular regression model to overcome the limitations of simple lin-
ear regression by estimating the relationship with the  Nth degree polynomial. The Ridge and Lasso additionally 
use l2-norm and l1-norm as constraints in the existing model. These characteristics of the models show better 
performance than the conventional linear regression, which uses the least-squares method to find appropriate 
weights and biases to reduce  overfitting48,49.

The SVR allows the definition of the amount of allowable error and finds a hyperplane of higher dimensions 
to fit the data. The SVR is widely used for classification and numerical prediction and is less overfitting and easier 
to use than neural networks. However, it takes a long time to build an optimisation model, and it is difficult to 
interpret the  results50.

Figure 4.  Study location boundary maps of (a) Cheorwon, (b) Paju, (c) Gimje in South Korea and (d) 
Pyeongyang in North Korea.

https://scikit-learn.org/
https://keras.io/
https://keras.io/
https://www.python.org/
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The RF is an ensemble model that trains multiple decision tree models and aggregates its results. It has good 
generalisation and performance, is easy to tune parameters, and is less prone to overfitting. On the other hand, 
memory consumption is higher than in other ML models. Also, it is not easy to expect higher performance 
improvement even when the amount of training dataset increases. Extra trees increase randomness by randomly 
splitting each candidate feature in the tree, which can reduce bias and  variance51. The difference from the RF is 
that ET does not use bootstrap sampling but uses the whole origin data when making decision trees. The GB 
belongs to the boosting series among the RF ensemble models, which combines weak learners to create strong 
learners with increased performance. Meanwhile, the GB training process is slow and not efficient in overfitting. 
There are HGB, XGB, and LightGB in the form of the GB that improve performance by increasing the train-
ing speed and reducing overfitting. The HGB speeds up the algorithm by grouping each decision tree with a 
histogram and reducing the number of features. The XGB improves learning speed through parallel processing 
and is equipped with functions necessary to improve performance compared to the GB, such as regularisation, 
tree pruning, and early stopping. The LightGBM significantly shortens the training time and decreases memory 
use by using a histogram-based algorithm without showing a significant difference in predictive performance 
compared to the  XGBoost52.

The DNN increases the predictive power by increasing the hidden layer between the input and the output 
layers. Non-linear combinations between input variables are possible, feature weighting is performed automati-
cally, and performance tends to increase as the amount of data increases. However, since it is difficult to interpret 
the meaning of the weights, there is a disadvantage in that the results are also difficult to interpret. In addition, 
when fewer training datasets are collected, the performance of the ML models mentioned above can be  better53.

This study used satellite-based solar radiation and model-based maximum and minimum temperatures to 
estimate LAI values during the rice-growing seasons on the study sites (Cheorwon, Paju, Gimje, and Pyeongyang) 
for seven years (2011–2017), employing the ML and DNN regressors. We reproduced rice LAI values from the 
MODIS-based NDVI values using the empirical relationship between LAI and NDVI (Supplementary Fig. S2). 
Cheorwon and Paju datasets were used for the ML and DNN model development, while Gimje and Pyeongyang 
datasets were employed for the model evaluation. The target LAI variable data used for the model development 
showed characteristic seasonal and geographical variations (Supplementary Figs. S3 and S4). The model develop-
ment datasets were divided into train and test sets with a 0.8 and 0.2 ratio using the scikit-learn procedure. All 
the ML and DNN regressors were trained and tested, obtaining appropriate hyperparameters. Alpha values for 
the Ridge and Lasso were determined as 0.1 and 0.01 based on a grid search approach with a possible range of 
values (Supplementary Fig. S5). The activation function employed for the DNN model was the rectified linear 
unit (ReLU), implementing six fully connected layers with a design of gradual increasing and decreasing units 
from 100 to 1,000 (Supplementary Fig. S6). The model was performed with a dropout rate of 0.17, the ‘adam’ 
optimizer at a learning rate of 0.001, 1,000 epochs, and a batch size of 100. The DNN hyperparameters were 
determined based on a grid search approach and a trial and error approach, seeking minimum and steady losses 
for each study region (Supplementary Fig. S7).

Evaluation of the model performance. We analysed the performance of the ML (that is, RF) and DNN 
regimes using two statistical indices in Python (https:// www. python. org), namely the RMSE and the  ME54. This 
index denotes the comparative scale of the residual variance of simulated data compared to the observed data 
variance. Furthermore, ME can assess the agreement between the experimental and simulated data, showing 
how well these data fit through the 1:1 line in a scatter plot. The index value can vary from − ∞ to 1. We employed 
normalized ME for advanced interpretation, allowing for the ME measure in simulation estimation approaches 
used in model evaluation. Thus, ME = 1, 0, and − ∞ correspond to ME = 1, 0.5, and 0, respectively. Therefore, 
the model is considered reliable if the ME value is nearer to 1, whereas the simulated data are considered less 
dependable if the ME value is close to 0.
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