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Automated soccer head impact 
exposure tracking using video 
and deep learning
Ahmad Rezaei & Lyndia C. Wu*

Head impacts are highly prevalent in sports and there is a pressing need to investigate the potential 
link between head impact exposure and brain injury risk. Wearable impact sensors and manual video 
analysis have been utilized to collect impact exposure data. However, wearable sensors suffer from 
high deployment cost and limited accuracy, while manual video analysis is a long and resource-
intensive task. Here we develop and apply DeepImpact, a computer vision algorithm to automatically 
detect soccer headers using soccer game videos. Our data-driven pipeline uses two deep learning 
networks including an object detection algorithm and temporal shift module to extract visual and 
temporal features of video segments and classify the segments as header or nonheader events. The 
networks were trained and validated using a large-scale professional-level soccer video dataset, with 
labeled ground truth header events. The algorithm achieved 95.3% sensitivity and 96.0% precision 
in cross-validation, and 92.9% sensitivity and 21.1% precision in an independent test that included 
videos of five professional soccer games. Video segments identified as headers in the test data set 
correspond to 3.5 min of total film time, which can be reviewed through additional manual video 
verification to eliminate false positives. DeepImpact streamlines the process of manual video analysis 
and can help to collect large-scale soccer head impact exposure datasets for brain injury research. The 
fully video-based solution is a low-cost alternative for head impact exposure monitoring and may also 
be expanded to other sports in future work.

Repetitive sports head impact exposure may not only increase the risk for sustaining acute brain injury such 
as  concussion1,2, but also lead to cumulative brain changes in the long  term3. However, there are limited data 
to quantify the correlation between impact exposure and brain health consequences. In soccer, head impacts 
are common since players often use their head to redirect the ball. In fact, soccer heading represent approxi-
mately 90% of head impacts in soccer, and the remaining impacts are mostly unintentional player-to-player or 
head-to-ground  impacts4. It is unclear whether intentional soccer heading, which are more frequent but mostly 
lower-severity than unintentional head impacts, may have deleterious effects on the brain. Exposure to a single 
session of controlled heading has been associated with increases in reported concussion  symptoms5, alterations 
in postural  control6, and increases in corticomotor inhibition with impaired memory  function7. For players that 
self-reported long-term exposure of 885 to 1800 headers per year, brain white matter microstructure abnormality 
and neurocognitive dysfunction has been  found8. However, some studies have not found significant neurocogni-
tive performance or neuropsychological changes associated with short-term soccer heading  exposure9,10. Using 
self-reported impact estimates in some studies can be a potential reason for the mixed results in the literature. 
Such subjective exposure reports may not provide accurate estimates of head impact  count11. Because of the 
inconclusive results of repeated soccer head impact exposure, longitudinal research to correlate accurate exposure 
measurements with brain outcomes is  recommended12. Therefore, collection of accurate large-scale head impact 
exposure data is a vital step to study brain injury mechanisms.

Some studies have used wearable head impact sensors to objectively and quantitatively monitor impact 
 exposure13. These sensors contain inertial measurement units (IMUs) to measure head kinematics, and typically 
set a linear acceleration threshold (e.g. 10g) to detect and record impact  events14–16. Despite the simplicity of this 
method, it has limited accuracy in head impact detection as it fails to record any information about the events 
occurring below the threshold. Therefore, selecting the right threshold is important but it is also highly subjec-
tive, which can introduce bias in the exposure  data17–19. To accurately quantify head impact exposure, methods 
that can detect most impacts (high sensitivity) without a substantial number of false positive detections (high 
precision) are required. Applying a low acceleration threshold may be a strategy to increase impact detection 
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sensitivity at a cost of high false positive rate, while increasing the threshold to improve precision can lead to 
increased false negative  rate19,20. Furthermore, limited kinematic accuracy in sensors leads to uncertainty in the 
estimated head accelerations for impact  triggering21,22. Some sensors have combined the simple acceleration 
threshold method with additional filtering algorithms to remove false positive recordings. However, laboratory 
and field evaluation studies have shown poor performance of such  algorithms21,23–25. Table 1 gives a summary of 
sensor-based head impact studies in soccer. A few studies have quantified impact detection performance of the 
applied sensors and found limited sensitivity and precision. Moreover, wearable head impact sensors are costly 
for large-scale deployment and exposure tracking, and they may not always be readily accepted or regularly 
worn by sports participants.

Considering the limitations of impact sensors, video analysis is recommended to improve the accuracy of 
impact exposure  data34. Most studies use video data only to confirm recordings of the  sensor4,16,26,31, which is 
limited since this approach does not identify potential false negatives and may underestimate impact exposure. 
Therefore, other studies have conducted independent analysis of the video to identify all potential exposure events 
based on human reviewer  observation14,20,35. Video information has also been used to extract contextual factors 
characterizing head impacts, such as impact location, impacting object and impact  type14,16,20, which cannot be 
fully informed by IMU-based impact sensing. However, video analysis is a time-consuming process that requires 
substantial human resources. In a previous study, fourteen trained raters reviewed 163 hours of video to fully 
verify 217 head  impacts20. Generating large-scale head impact exposure data using independent video analysis 
would be a cost-prohibitive and lengthy task.

Automatic analysis of sports games using video information has been extensively studied in computer vision 
 research36. Computer vision algorithms, more specifically deep learning (DL) techniques, have been applied to 
automate tasks such as player/ball detection and tracking, player pose estimation, game reconstruction, and 
generation of game  statistics36. In this work, the feasibility of a video-based approach for automatic soccer header 
detection through DL algorithms is investigated. The goal of this study is to develop a more efficient and less 
resource-intensive approach for video-based head impact exposure estimation.

Methodology
DeepImpact, a DL algorithm with the novel application of automatic header impact exposure tracking using a 
single-view broadcast soccer video is proposed. This data-driven algorithm uses video information and computer 
vision algorithms to detect headers, which are defined as any contact between a player’s head and the soccer ball. 
Header detection in the video can be categorized as a video understanding problem in computer vision research, 
which consists of the identification and temporal localization of actions in a video.

Algorithm overview. The video data has two types of information: visual information present in each 
frame of the video as well as dynamic temporal information that can be obtained from consecutive frames. 
DL-based research in video understanding follows a general structure to use this spatiotemporal information. 
The common method comprises of extracting visual features in the spatial domain from each frame using con-
volutional neural networks (CNN), then temporally aggregating the features of consecutive frames to generate 
a video  descriptor37–39. The descriptor is then used to train an action classifier. This is a complete data-driven 
approach in which the algorithm is trained on a dataset comprised of video samples from each action.

Figure 1 shows the proposed framework, which consists of 5 steps. The input video is divided into short 
segments and in each segment, ball position is detected using a DL object detector algorithm. A ball tracking 

Table 1.  Previous head impact exposure studies in soccer.

Study Players and Games Sensor Detection method Verification method Sensitiviy Precision

Hanlon et al.26 23 players HIT (headband) 10g impact threshold Video confirmation – –

McCuen et al.27 53 players, 1 season XPatch (skin patch) 20g impact threshold No confirmation – –

Caccese et al.16 25 players, 14 games SIM-G (headband) 10g impact threshold Video confirmation – –

Lynall et al.28 22 players, 57 ses-
sions XPatch (skin patch) 10g threshold with 

proprietary algorithm No confirmation – –

Press et al.4 26 players, 46 ses-
sions XPatch (skin patch) 10g threshold with 

proprietary algorithm Video confirmation 85.9 16.3

Lamond et al.29 23 players SIM-G (headband) 10g impact threshold Visual confirmation 91.4 6.1

Chrisman et al.15 46 players XPatch (skin patch) 15g impact threshold Visual confirmation – –

Rich et al.30 4 players, 14 sessions Mouthpiece 5g impact threshold Independent video 
analysis 69.2 80.3

Patton et al.31 72 players, 41 ses-
sions SIM-G (headband) 16g threshold with 

proprietary algorithm Video confirmation – 69.5

Miller et al.14 7 players, 31 sessions Mouthpiece 10g impact threshold Independent video 
analysis 50.6 –

Tomblin et al.32 14 players, 66 ses-
sions Mouthpiece 5g impact threshold Independent video 

analysis 43.1 –

Filben et al.33 14 players, 96 ses-
sions Mouthpiece 5g impact threshold Video confirmation – 20.0
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algorithm is then applied to the detected ball positions to improve the estimation of ball location. Using the 
estimated ball position, each frame is cropped around the location of the ball. Next, spatial and temporal infor-
mation of all frames in each video segment are extracted and aggregated into a feature vector. Similar to the 
ball detection network, a DL-based spatiotemporal feature aggregation network is used, which is trained using 
a soccer header dataset. Lastly, a neural network classifier is trained to classify the visual-temporal features as a 
header or nonheader event. The purpose of the ball detection and frame cropping step is to minimize distractions 
in visual information. Soccer headers only happen in the presence of a soccer ball. Considering the relatively 
small size of the ball and players in broadcast soccer video, cropping the frames helps to preserve an area of the 
image relevant to header events.

Video segmentation. Frames of the input video were extracted and segmented based on the selected seg-
ment length, which is the number of frames in each segment. Segment lengths between 5 to 15 frames were 
selected and the performance of the algorithm was evaluated for each length using cross validation on the full 
dataset (see “Performance evaluation”). A segment length of 11 frames yielded the best results. For header seg-
ments, the frame that contained the header moment was centred.

Ball detection. The ball detection algorithm used in this work is a modification of the DL-based object 
detection algorithm, You Only Look Once v5 (YOLOv5)40. YOLOv5 is currently one of the best performing 
object detection algorithms. A series of convolutional layers are applied to the input image to extract its visual 
features for object identification inside the  image40. The algorithm detects each object by estimating a bounding 
box around it as well as a probability that represents its confidence in the detected category of the bounding box. 
YOLOv5 has 4 model sizes, YOLOv5s/m/l/x, which have different numbers of learnable network parameters. A 
larger model with more learnable parameters can achieve higher accuracy considering that the training dataset 
is large enough to avoid over-fitting. However, more parameters require higher graphics processing unit (GPU) 
memory in the training process, which limits the possible highest batch size. In this study, YOLOv5l was used for 
the ball detector network because it was the largest size that allowed a minimum batch size of 32 on an NVIDIA 
RTX 3080 Ti GPU.

Soccer ball dataset. SoccerDB41 dataset was used to train the ball detection network. SoccerDB is a large-scale 
soccer video understanding dataset, which contains videos of 53 full-match and 18 half-match professional male 
soccer games. It has annotations for object detection, including 64,232 images with ground truth (GT) bound-
ing box of the soccer ball. Furthermore, SoccerNet-v242 dataset was used to achieve a larger dataset size as well 
as higher variability in the images of the training dataset. SoccerNet-v2 is a soccer activity recognition dataset 
that contains high quality videos of 500 professional male soccer games. Ball positions in 55,000 randomly 
selected images that were extracted from the SoccerNet-v2 were labeled. Overall, the soccer ball dataset con-
tained ground truth ball position in 119,232 images from 221 soccer games. These images contained a diverse set 
of scenes including different stadiums, lighting conditions, camera positions/angles, ball size/color/location, and 
scenes with a partially covered ball. This diversity helped to train a robust ball detection network.

Training. The ball detection network was first pre-trained on the Common Objects in COntext (COCO) 
 dataset43. COCO is a large-scale object detection dataset that contains 330,000 images with 80 object  categories43. 
Weights of the pre-trained network were used to initialize the ball detector network. The pre-training helps to 
achieve a more accurate ball detection network and reduce the necessary training  time44. The last layer of the 

Figure 1.  Overview of the proposed header detection algorithm. The video is divided into short segments and 
ball position is detected and tracked in each segment. Each frame is then cropped around the ball position. 
Spatiotemporal features of each cropped video segment are extracted using a convolutional neural network 
(CNN) and temporal shift module (TSM). The extracted feature vector is then classified as a header or 
nonheader event in the last step of the algorithm.
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network was modified for two object categories (ball and background). The network was then trained on the 
soccer ball dataset.

The suggested training hyper-parameters of YOLOv5 were used in the training process. Initial learning rate 
was set to 0.001 and the Adam optimizer was used in all experiments. Batch size was set to 32 and the network 
was trained for 300 epochs. The soccer ball dataset was randomly split into 100,000 images for training and 
19,232 images for validation. Average precision (AP) was selected as the validation metric, which is commonly 
used to evaluate the performance of object detection  algorithms40,45. Performance of the network was evaluated 
after each epoch and the best performing set of weights with the highest AP were used for the next steps of the 
header detection process. The network provides a confidence score for its detections. F1-score46, which combines 
sensitivity and precision into one metric was calculated to determine the best threshold on this confidence. 
Detections with a confidence lower than the selected threshold were considered as background.

Ball tracking. Some frames could contain false positive ball detections or fail to detect the ball. To reduce 
the effect of such noisy detections, a Kalman filter (KF) based ball tracking method was implemented. KF has 
been extensively used for visual object  tracking47,48 and the same approach was followed in this work. A constant 
speed model was used to model ball movement, with the state vector defined as

where u and v denote the horizontal and vertical coordinates of the center of the bounding box, respectively, with 
time derivatives u̇ and v̇ . Detailed formulation of the KF can be found in Forsyth and  Ponce49. In this application, 
the ball detection network provided the bounding box location in each frame as the measurement of the KF 
and the constant speed model provided the prediction of the ball location. The parameters of the measurement 
covariance matrix were set to 15 pixels for horizontal and vertical coordinates to optimize performance.

To initialize u and v, the detected ball with the highest confidence score in the first frame of the video seg-
ment was used, with u̇ and v̇ initialized to zero. Process noise covariance matrix was initialized with 20 pixels for 
location parameters and 5 pixels/s for speed parameters.

Outlier rejection. An outlier rejection method was applied to the ball detections in each step of the filter to 
maintain its stability. Ball location should not vary considerably between consecutive frames. Therefore, the hor-
izontal and vertical distance between the detected ball location using the ball detection network ( ud and vd ) and 
the predicted ball location using the constant speed model ( up and vp ) were calculated in each frame. If either the 
u or v distance was higher than a threshold value d, the KF innovation ( [ud − up, vd − vp] ) value was set to zero 
and no correction was applied to the predicted location of the ball. For optimized performance, d was set to five 
times the width of the bounding box in the first frame of the video segment. Similarly, if the ball detection net-
work did not detect any ball in a frame and no measurement was available for the filter, the innovation value was 
set to zero. Furthermore, KF was only applied to video segments that had at least five frames with a detected ball.

Frame cropping. Using the estimated location of the bounding box, each frame was then cropped to center 
the bounding box. The cropped image size was selected to be 10 times the size of the bounding box. In the next 
step of the algorithm, temporal feature aggregation network needs all frames of the input video to have the same 
size. Therefore, cropped images were resized to a fixed size (640,480) using the bicubic interpolation technique, 
which employs polynomial-based interpolation to enlarge the  image50.

Spatiotemporal feature aggregation. A deep learning algorithm called temporal shift  module51 (TSM) 
was used for spatiotemporal feature aggregation. TSM is an efficient method used for video understanding, 
which compares well with other potential approaches for temporal modeling of video such as 3D  CNNs52, recur-
rent neural  networks38, and attention  mechanisms53. TSM employs 2D CNNs to extract visual features of each 
input image and fuses the extracted features using a temporal shift  mechanism51. Using this algorithm, spa-
tiotemporal features of each video segment can be learned using one neural network in an efficient manner. 
Because TSM employs 2D CNNs, common deep CNN structures such as  VGG54 and  ResNet55 could be used 
for visual feature extraction. ResNet-50 structure, which is 50 layers deep was used for visual feature extraction. 
Using deeper ResNet-101 structure did not make any improvement on the results.

The size of the input tensor to the feature aggregation network was (11, 3, 640, 480), in which 11 is the number 
of frames, 3 is the number of color channels in each frame, and (640, 480) is the resolution of the image. The 
network maps this input to a 1× 2048 feature vector. For final classification of this feature vector as a header or 
nonheader event, two fully-connected neural network layers were added to the output of the feature aggregation 
network to generate a 1× 2 probability vector. Parameters of the feature aggregation network and the classifica-
tion layers were trained using a soccer header dataset.

Dataset. For training the feature aggregation network, a dataset containing both header and nonheader events 
was generated using broadcast soccer video. Three source datasets were used to obtain these events: SoccerNet-
v2, SoccerDB, and publicly available soccer videos from the internet. Table 2 shows the details of this dataset. 
In total, 4843 header events from 51 games and 33,034 nonheader events from 185 games were included in the 
dataset. Events were selected from videos with 25, 30, and 50 frames per second. For header events, three trained 
video raters reviewed the game videos to identify any possible head contact with the ball. One of the authors 
then assessed all the identified contact events to ensure only headers are included in the dataset. For nonheader 
events, equal numbers of video segments were randomly selected from each game. One of the authors reviewed 

(1)xk = [u, v, u̇, v̇]T ,
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all nonheaders to ensure the randomly selected segments did not contain any headers. The labeled header and 
nonheader event dataset was then used to train and validate the algorithm.

Training. Similar to the ball detection network, a network pre-trained on the  Kinetics56 dataset, which is a gen-
eral human action recognition dataset with 306,245 short video clips of 400 action classes was used. Parameters 
of the pre-trained network were used as the initialization point of the feature aggregation network and training 
was continued on the soccer header dataset. For training, the learning rate was set to 0.001 using a stochastic 
gradient descent optimizer. 0.0005 was used as the weight decay rate of the optimizer. The network was trained 
for 30 epochs with a batch size of 32. For the hyper-parameters of the TSM mechanism, the same settings as the 
original TSM work was  used51. Performance of the algorithm was assessed on the validation dataset after each 
epoch using the evaluation metrics and the network weights that yielded the best metrics result were selected.

Performance evaluation. For evaluating the performance of DeepImpact algorithm in differentiating the 
header events from nonheaders, its detections were compared with the ground truth label of each video. Per-
formance metrics of sensitivity, precision, specificity, and accuracy were calculated using the number of true 
positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). Sensitivity and precision are 
especially important for assessing the performance of the header detection algorithm. Sensitivity shows classi-
fier’s performance in identifying all header events of the video while precision reflects the number of nonheader 
events that are classified as headers (FP). These metrics are defined below.

The performance of the header detection network was evaluated by conducting 5-fold cross validation. The 
header dataset consists of a diverse set of different soccer games. Cross validation can reduce potential bias in 
assessment of the performance. The unshuffled dataset was split to 5 partitions and each partition was used as 
the validation set in one pass of training. The averaged metrics were used for assessment.

Performance evaluation using test dataset. To further evaluate the performance of the header detection algo-
rithm, this network was tested on 5 unseen independent soccer games from the SoccerNet-v2 dataset. The entire 
duration of the test games were processed into header and nonheader event segments, which is different from 
the training/validation dataset where a selected number of random nonheader events were used from each 
game. Using this analysis, the performance of the header detection algorithm in its final application scenario, 
where headers should be detected in full soccer videos was assessed.

Effect of algorithm design. To evaluate the contribution of each element of the proposed header detection algo-
rithm on its overall performance, the network was trained and validated in different settings, as described below.

Setting 1 - Classification of Single Uncropped Frame: In the simplest setting, video segmentation, ball detec-
tion, frame cropping, and temporal feature aggregation steps were removed. An image classification network 
(ResNet-50) was trained to classify each frame of the video as a header or nonheader event. No temporal infor-
mation was used in this setting and full-size frames were used without cropping them around the ball position.

Setting 2 - Classification of Uncropped Video Segments: In this setting, ball detection and frame cropping 
steps were removed from the pipeline. Video segments consisting of multiple full-size frames were used to train 
the TSM network. While temporal information was used in this setting, potentially irrelevant and distracting 
spatial information were included as frames were not cropped using ball detection.

(2)sensitivity =
TP

TP + FN
,

(3)precision =
TP

TP + FP
,

(4)specificity =
TN

TN + FP
,

(5)accuracy =
TP + TN

TP + FP + TN + FN
.

Table 2.  Number and source of events in header dataset.

Event Source Number of games Number of events Events with GT ball

Header

SoccerDB 20 1850 1850

SoccerNet-v2 26 2741 2741

Internet 5 252 252

Total 51 4843 4843

Nonheader SoccerNet-v2 185 33,034 2904
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Setting 3 - Full Algorithm: All elements of the algorithm were included in this setting. Other two settings 
were compared with this setting to determine the relative contributions of temporal information and frame 
cropping on header detection performance.

Results
Ball detection. The ball detection network had 0.90 AP using an intersection over  union45 (IoU) of 0.5 
( APIoU=0.50 ). Using IoU values in a range of 0.50 to 0.95 with 0.05 step size, mean AP was 0.40 ( APIoU=0.50:0.05:0.95 ). 
In general, successful detection of the ball proved to be a challenging task. The common cases of incorrect detec-
tion included (Fig. 2a): 1) ball was fully or partially occluded by a player; 2) other objects in the background such 
as a body part were detected as a ball; 3) ball size was extremely small.

The ball detection network provided a confidence score between 0 and 1 for its detections. We selected a 
threshold value of 0.15 on this confidence, which provided an F1-score above 0.8, showing good balance between 
sensitivity and precision of ball detection (Fig. 2b). Detections with confidence above the threshold were used 
in ball tracking, while any detection with lower confidence was ignored.

Ball tracking. To demonstrate the effectiveness of ball tracking, Fig. 2c shows a video segment where the 
ball was occluded in the last three frames. Before applying KF, an outlier object was incorrectly detected as the 
ball (Fig. 2c). It can be seen that after KF was applied, outlier detections were rejected and KF yielded a correct 
smooth track for the ball, even though it was occluded by the players (Fig. 2d). Outlier rejection happened in 
47% of the video segments of the training and validation dataset.

Algorithm performance. We evaluated the DeepImpact algorithm with 5-fold cross validation using sen-
sitivity, precision, specificity, and accuracy (Table 3). 95.3% sensitivity and 96.0% precision ensures identifica-
tion of most header events (low FN), without a high FP rate. Furthermore, we tested the trained DeepImpact 
algorithm on 5 independent soccer games. These games included 546 header events and 60,018 nonheader 
events. The DeepImpact algorithm was able to identify 92.9% of header events with only 39 header events miss-
ing (Table 4), which corresponds to an average of 8 missing headers per game. With a precision of 21.1%, the 
algorithm did not perform as well as it did on the validation set, with an average of 379 nonheaders identified as 
header events in each game.

Figure 2.  Performance of the ball detection network and ball tracking. (a) Ball detection failed in some cases 
when the ball was occluded by a player, moving on a non-green background, or had very small size (only few 
pixels). (b) F1 score-confidence curve shows the balance between the sensitivity and precision of ball detection 
when the confidence threshold is varied. (c) In frames 8–10 of the segment, the ball is occluded by the players in 
frames 9 and 10 and remains undetected while other outliers are present in each frame. KF rejects the outliers 
and uses its prediction to correctly estimate the location of the ball. (d) Horizontal and vertical coordinates of 
the detected and filtered ball location are shown. KF estimates a smooth track for the ball movement by rejecting 
the outliers.
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Figures 3 and 4 show samples of successful and unsuccessful identification of header events, respectively. 
Successful events mostly included events in which the ball was successfully tracked and few players were present 
in the header scene. Headers that occurred in the centre regions of the soccer field and closer to the camera were 
more likely to be detected. Unsuccessful events happened when the ball was unidentified in most frames of the 
video segments. In such cases, the ball could not be tracked and uncropped frames were used by the algorithm. 
This mostly included crowded events with multiple players in the header’s scene. Headers that happened after a 
corner kick were the most common case of the failed detections. Other unsuccessful cases included events that 
were distant from the camera with very small ball size.

We verified that the DeepImpact algorithm indeed requires both clean spatial information (ball tracking and 
frame cropping using ball position) and temporal information (spatiotemporal feature aggregation) of video 
segments to accurately identify header events. As shown in Table 5, an image classifier that was trained to clas-
sify video frames as header and nonheader without temporal information performed poorly. Adding temporal 
information improved the performance of the simple classifier on the test dataset by enhancing the sensitivity 
from 79.1% to 92.1% and the precision from 0.4% to 1.4%. When frames were also cropped using estimated 
ball position, sensitivity and precision were further improved to 92.9% and 21.1% respectively. Frame cropping 
contributed to a more substantial improvement in precision.

Table 3.  Header detection performance on the validation dataset.

Metric Sensitivity Precision Specificity Accuracy

Cross validation 95.3 96.0 99.4 98.9

Table 4.  Header detection performance on the test games.

Game 1 Game 2 Game 3 Game 4 Game 5 Total Average

TP 78 132 90 127 80 507 101

FN 4 11 6 10 8 39 8

FP 392 485 294 478 248 1897 379

TN 11990 12243 12155 12251 9483 58122 11624

Sensitivity 95.1 92.3 93.8 92.7 90.9 92.9 92.9

Precision 16.6 21.4 23.4 21.0 24.4 21.1 21.1

Specificity 96.8 96.2 97.6 96.2 97.5 96.8 96.8

Accuracy 96.8 96.1 97.6 96.2 97.4 96.8 96.8

Figure 3.  Examples of successful identification of header events. Header events with relatively larger ball size 
and successful ball detection and tracking were identified correctly.
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Discussion
In this work, we present a fully video-based method for detection of soccer header events. Our proposed solu-
tion does not require head kinematics data and only uses a single-view video footage of soccer games to identify 
header events. The DeepImpact algorithm is based on deep learning techniques and uses a data-driven approach 
to learn the visual and temporal features of header and nonheader events present in the video data. Using this 
methodology, video-based features can replace usual head kinematics-based features for header detection. To 
train and validate the algorithm, we also contribute a sizable labeled soccer header video dataset.

Algorithm performance and application in head impact exposure estimation. In cross valida-
tion, our method yielded over 95% performance on all evaluation metrics. In addition, we tested the algorithm 
in its real use case on five independent full soccer games. In the independent test, 92.9% of the headers were 
detected with an average of 8 missing events per game. Considering 20 players on the field (excluding goalkeep-
ers), the 8 missing headers correspond to approximately 0.4 missing headers per player per game. In compari-
son, wearable sensor studies that conducted independent video analysis to verify sensor performance have found 
lower sensitivity (Table 1).

In the independent full-game test, the precision dropped from the cross validation performance of 96% to 
21.1%, with an average of 379 false positive events per game. The difference between validation and test per-
formance can be explained by comparing the validation and test datasets. Header events correspond to a short 
duration of the total video time of the soccer games, and having a highly imbalanced dataset can complicate 
network training. We reduced the imbalance in headers/nonheaders during training and validation by including 
7 nonheaders for each header event. It is best that both validation and test datasets have similar distribution of 
classes. In our full-game test dataset, we had an average of 110 nonheader segments for every header segment, 
i.e. a more imbalanced dataset. Therefore, there was a higher possibility for nonheader events to be identified as 
headers, leading to relatively higher proportions of false positives. While the precision seems low, it is similar to 
the performance of some wearable sensors. In fact, sensor overestimation of head impact exposure due to high 
false positive rate is a common problem, which leads to the best practices approach of further applying video 
verification on sensor-detected  impacts4,29,31.

We would like to note that the false positive detection of nonheader video segments could be mitigated by a 
quick secondary review. Based on the test results, the algorithm could identify around 480 events per game (both 
TP and FP) as potential header events that require further verification by a video rater. With each event segment 
consisting of only 11 frames, the total review duration is approximately 3.5 minutes, which is significantly shorter 

Figure 4.  Examples of unsuccessful header detection. Unidentified header events included crowded header 
scenes (e.g. header after a corner kick) as well as events with the ball being distant from the camera. In these 
cases, the ball could not be detected in most video frames and thus could not be tracked.

Table 5.  Performance of different algorithm designs in header detection.

Settings Validation Test

Temporal Information Frame cropping SENS PREC SPEC ACU SENS PREC SPEC ACU 

Setting 1 72.5 32.3 77.7 77.1 79.1 0.4 33.9 34.1

Setting 2 � 89.5 90.7 98.7 97.5 92.1 1.4 30.5 31.1

Setting 3 � � 95.3 96.0 99.4 98.9 92.9 21.1 96.8 96.8
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than a full soccer game. As such, although the current network may not yet fully automate accurate header 
detection, it would streamline and enable efficient video-based measurement of head impact exposure in soccer.

Efficient video-based head impact exposure measurements can contribute datasets substantially larger than 
currently available sensor-based datasets to study the mechanisms of cumulative brain injury with low resource 
requirements, especially considering that video recordings are already available for many sports events. Wearable 
sensors, on the other hand, have limited utility in large-scale exposure studies due to high cost of sensors, sub-
stantial logistics burden, user compliance issues, and the necessity of video verification. Therefore, a streamlined 
process to estimate impact exposure only using video data is a promising solution to address the limitations of 
wearable sensors. Moreover, video data can further provide information such as impact type and context that 
are not measurable by impact sensors.

Although video data can be a strong solution to measure impact frequency, an inherent disadvantage of 
this data is that it cannot be used to obtain accurate impact magnitude information. Both impact frequency 
and magnitude contribute to our understanding of brain injury. Therefore, combining wearable sensors and 
our proposed video-based algorithm can provide a promising solution for efficient collection of both impact 
frequency and magnitude information. While the proposed algorithm can efficiently assess sensor’s sensitivity 
and collect impact frequency information, wearable sensors can measure the magnitude of the verified impacts.

Algorithm design. Our framework for video-based header detection utilized two sources of information 
in video: ball position and temporal information of video frames. Among these elements, accurate ball detec-
tion was the most challenging task. In general, ball detection in broadcast soccer videos is not a trivial  task57. 
Several factors contribute to the difficulty, including small ball size, variable ball shape due to fast ball/camera 
movement, occlusion, and ball possession by players for extended durations. While the ball detection network 
performed well when header events occurred closer to the camera, it generally did not identify the ball in distant 
events from the camera or when multiple players were in the scene. Since we included nearly 100,000 labeled 
ball images in the training dataset, containing a diverse set of possible ball locations and sizes, the difficulty in 
ball detection cannot be fully explained by the size or quality of the training dataset. As shown in Fig. 2, ball 
position is not easily identifiable even by a human rater in some failure cases. Considering the significant effect 
of frame cropping in header detection performance (Table 5), improving ball detection using multiple camera 
 views57 may help enhance header detection performance. For each video segment, the camera angle with the best 
performance in detection of ball position can be selected and used for the next steps of the algorithm.

In this work, we used TSM methodology to extract and utilize temporal information of the video segments. In 
our early trials on smaller versions of the header dataset, we tested long short-term memory (LSTM)  networks58 
and temporal segment networks (TSN)59 for temporal feature aggregation. TSM showed the best performance 
in these early trials. While TSN had a considerably better performance than LSTM in all the metrics, TSM 
could achieve a slightly better performance than TSN. Thus, we used TSM to conduct our experiments on the 
full header dataset. Using temporal information for activity recognition in video is an active area of research 
in computer vision. Future improved temporal feature aggregation techniques may also aid in improving the 
DeepImpact algorithm.

The dataset used for training DL-based algorithms is an essential element for their successful implementation. 
The dataset should be large enough and well representative of the real use case of the algorithm. Considering 
this point, the SoccerNet-v2 and SoccerDB datasets were highly valuable for this work. Using these datasets, we 
had access to large-scale open-source video datasets, which was crucial to training an effective network in the 
current project.

Limitation and future work. In this work, we used single-view broadcast video footage to train our net-
work. This is a limited source of video information. First, 64% of videos in the dataset had low 720p video quality. 
Second, the broadcast camera angle changes constantly to follow the ball, which can cause blurry ball and players 
in the images. Third, one video angle provides limited information for distant events happening on the opposite 
side of the camera location. In addition, impact events may be invisible in the single video view and remain 
undetected. Fourth, current dataset was selected from videos with different frame per second rates to enlarge 
the dataset. Having a consistent frame rate could improve the performance of the algorithm. To evaluate the 
header detection algorithm, we tested the developed network on an independent set of games. We should note 
that these videos were selected from similar professional-level broadcast soccer games that were used in training 
the network. Further testing using different video sources would be necessary to evaluate the generalizability of 
the proposed solution.

The current solution does not identify the player involved in each header. Therefore, in addition to removing 
false positive detections, further video analysis by raters would be necessary to conduct individual exposure 
estimates. Furthermore, the DeepImpact algorithm is designed to only detect header events. Other types of 
impacts such as head to head, head to body, and head to ground will not be identified by the current network. 
Although the majority of head impacts are header events in soccer, other sports such as American football have 
different impact scenarios that may require different considerations in network design. In addition, an inher-
ent limitation of video-based impact exposure measurements is the lack of impact kinematics information. It 
would be substantially more challenging to use video information to estimate the severity of impacts compared 
to sensor information.

A helpful future step in this research is to add player tracking into the system. Although player tracking 
using video information alone is a challenging  task60, its successful implementation has two advantages. First, 
having players’ position information can complement the DeepImpact algorithm to identify the player in the 
header event. Second, players’ positions, along with their pose information, may not only provide additional 



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9282  | https://doi.org/10.1038/s41598-022-13220-2

www.nature.com/scientificreports/

information to confirm headers but also identify other types of impacts such as falling or head-body contacts. 
Human pose estimation using video has been extensively researched in the computer vision  community61 and 
powerful algorithms have been developed for 2-dimensional and 3-dimensional estimation of human pose. 
Adaption of these algorithms for soccer can be used for impact detection and potentially kinematics estimation.

Future work may also benefit from a multi-view soccer video dataset with better-defined camera position 
and angle. In fact, with multi-view information, we anticipate that a video-based header detection algorithm 
would be capable of fully automating accurate identification of header events, as potential false positive and false 
negative detections may be cross-verified using the multiple views. Another extension of the current work is to 
adapt the system for head impact detection in other sports such as American football. Head impact events in 
the video can be characterized differently in each sport. For example, helmet contact with other objects such as 
other helmets, ground, or another player’s body is the main characteristic of head impacts in American football. 
These characteristics can be used to modify and adapt the header detection algorithm. Expanding this work to 
other sports would enable multi-sport head impact exposure measurements, especially for sports where brain 
injuries are more prevalent.

Conclusion
We developed DeepImpact, an algorithm to identify header events in soccer using only video data. This algorithm 
achieved 95.3% sensitivity and 96% precision in cross validation, and 92.9% sensitivity and 21.1% precision on 
an independent test dataset. This test performance corresponds to correct identification of most header events, 
with an average of 3.5 minutes of each game video requiring further verification by a video rater to eliminate 
false positive detections. Our solution is a first step towards video-based head impact exposure quantification in 
soccer, and can help streamline the process of video analysis for independent or sensor-based impact exposure 
measurements. Such a system may enable the collection of an accurate large-scale head impact exposure dataset 
to study potential cumulative brain injury risk, and may also be further developed into an automated exposure 
monitoring tool for brain injury management in sports.

Data availability
The video data that support the findings of this study are available from  SoccerDB41 and SoccerNet-v242 datasets, 
but restrictions apply to the availability of these data, which were used under license for the current study, and 
so are not publicly available. Data are however available from the authors upon reasonable request and with 
permission from the creators of the original dataset. The label data generated and analysed during the current 
study are available from the corresponding author on reasonable request.

Code availability
The code used to generate results of this study is available at https:// github. com/ AHNR0/ DeepI mpact. git.
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