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Geometric property 
of off resonance error robust 
composite pulse
Shingo Kukita*, Haruki Kiya & Yasushi Kondo

The precision of quantum operations is affected by unavoidable systematic errors. A composite 
pulse (CP), which has been well investigated in nuclear magnetic resonance (NMR), is a technique 
that suppresses the influence of systematic errors by replacing a single operation with a sequence of 
operations. In one-qubit operations, there are two typical systematic errors, Pulse Length Error (PLE) 
and Off Resonance Error (ORE). Recently, it was found that PLE robust CPs have a clear geometric 
property. In this study, we show that ORE robust CPs also have a simple geometric property, which 
is associated with trajectories on the Bloch sphere of the corresponding operations. We discuss the 
geometric property of ORE robust CPs using two examples.

Quantum technologies that utilise quantum states, such as quantum computing1–3 and metrology4–6, require 
precise control of the states. However, the quantum systems that we are attempting to control basically experi-
ence unavoidable environmental noise and systematic errors caused by experimental apparatuses. They prevent 
us from precise control of quantum states.

To suppress the effects of systematic errors, a composite pulse (CP) has been investigated7–9 particularly in 
the field of nuclear magnetic resonance (NMR), which can be utilised to implement toy quantum computers10–12. 
In CPs, a single operation is replaced by a sequence of operations, and the error in each operation cancels each 
other up to a certain order with respect to the error magnitude. In this paper, we focus on first-order CPs, which 
compensate for first-order effects of error magnitude. The effectiveness of CPs has been exhibited in NMR13, ion 
traps14, and superconducting circuits15.

In NMR, two types of errors, Pulse Length Error (PLE) and Off Resonance Error (ORE), in one-qubit opera-
tions have been intensively studied. If we adopt the Bloch sphere representation, in which a state of a qubit is 
represented by a point in a three-dimensional sphere (Bloch sphere) while an operation by a rotation, PLE 
corresponds to the error of the rotational angle of an operation, and ORE corresponds to the error of the rota-
tion axis. Many CPs that are robust against PLE, such as BB116, SCROFULOUS17 and SK118, have been found. 
Similarly, we have many construction methods for CPs that are robust against ORE8,19–23. When we perform a 
specific target operation, such as π - and π/2-rotations in the Bloch sphere representation, these methods work 
well and can provide simple and explicit formulae for determining ORE robust operations. The CORPSE family 
is one of the simplest and most tractable ORE robust CPs for implementing an arbitrary θ-rotation24; all of its 
parameters are explicitly determined as a simple function of the parameters of the target operation. This family 
is often used when ORE robust arbitrary θ-rotations are required25–28.

Recently, it was revealed that PLE robust CPs have a geometric property related to the concept of the geo-
metric quantum gates29. Additionally, a geometric meaning of robustness against any type of noise is discussed 
in Ref.30; however, it is associated with the geometry of Lie algebras and abstract. A concrete geometric property 
of ORE robust CPs has not yet been addressed.

In this study, we investigated a geometric property of ORE robust CPs via geometry on the Bloch sphere. 
We obtained the relation between the ORE robustness of a CP and its trajectory. This geometric property will 
provide a deeper understanding of the ORE robustness and increase its tractability. Further, we illustrated this 
property using two ORE robust CPs, CORPSE and another CP, which we have newly invented. For some simple 
cases, this property will help us to obtain new ORE robust CPs intuitively.

The remainder of this paper is organised as follows. We briefly review basic concepts of CPs in “Review of 
composite pulses”. In “Geometric property of ORE robust CP”, we explain our result on the geometric property 
of ORE robust gates. “Two examples of ORE robust composite pulses” introduces two ORE robust CPs, CORPSE 
and our proposed CP, and we examine how the geometric picture of ORE robust CPs works. “Conclusions and 
discussions” presents the conclusions and discussions. We use the natural unit � = 1 throughout the paper.
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Review of composite pulses
General framework.  Here, we introduce a general theory of CPs, which is applicable to any quantum sys-
tems although we will focus on two-level systems from the next subsection. The Schrödinger equation with a 
time-dependent Hamiltonian H(t) is

The formal solution from t = 0 to t = T in the Schrödinger picture is given by

where we introduce the symbol of the time-ordered product:

Its extension to cases of multiple operators is trivial. If the Hamiltonian is piecewise constant, the time-ordered 
exponential can also be rewritten as

where we set t0 = 0 and tk = T and the Hamiltonian is

k is the number of periods in which the Hamiltonian is constant. We refer to an operation during the Hamiltonian 
is constant as an elementary operation. Then, k represents the number of elementary operations.

Let us assume that the Hamiltonian is decomposed into two parts:

The part  H0(t) represents  the ideal  Hamiltonian,  whose corresponding dynamics 
U0(T , 0) := T exp(−i

∫ T
0 dtH0(t)) will be implemented herein. We can control this part of the Hamiltonian. 

Meanwhile, Herr(t) describes the effect of undesired systematic errors during the operation. The magnitude of 
Herr(t) is assumed to be sufficiently small compared to that of H0(t) for the entire time region. (Mathematically, 
all the matrix components of Herr(t) are small compared to that of H0(t) .) Either part H0(t) or Herr(t) can have 
(piecewise) time dependence. We define the state in the interaction picture with respect to H0(t) as

where |�(t)� is a solution to the Schrödinger equation (1). The state |�I(t)� satisfies the following equation:

where H̃err(t) := U†
0 (t, 0)Herr(t)U0(t, 0) . A formal solution of Eq. (8) is

By comparing the above Eq. (9) and the definition of the interaction picture (7), the solution of the 
Schrödinger equation with the Hamiltonian (6) is written as

We intend to implement the ideal unitary operation U0(T , 0) as accurately as possible under the effect of the 
error term Herr . As the magnitude of Herr is assumed to be small enough, we can ignore its higher-order terms 
in Ũerr(T , 0) , and then

When the condition

is satisfied, the operation (10) equals the ideal operation U0(T , 0) for any initial state |�(0)� up to the first order 
with respect to H̃err(t) . If better accuracy is required, we obtain more conditions from higher-order terms. Note 

(1)
d

dt
|�(t)� = −iH(t)|�(t)�.

(2)|�(T)� = T exp
(

−i

∫ T

0

dtH(t)
)

|�(0)�,

(3)T (A(t1)B(t2)) =
{

A(t1)B(t2) t1 > t2,
B(t2)A(t1) t2 > t1.

(4)T exp
(

−i

∫ T

0

dtH(t)
)

= exp
(

−i(tk − tk−1)Hk

)

exp
(

−i(tk−1 − tk−2)Hk−1

)

· · · exp
(

−i(t1 − t0)H1

)

,

(5)H(t) = Hi , ti−1 ≤ t < ti , (i = 1 ∼ k).

(6)H(t) = H0(t)+Herr(t).

(7)|�I (t)� :=
(

T exp
(

−i

∫ t

0

dt′H0(t
′)
))†

|�(t)� = U†
0 (t, 0)|�(t)�,

(8)
d

dt
|�I(t)� = −iH̃err(t)|�I (t)�,

(9)|�I (T)� = Ũerr(T , 0)|�I (0)� := T exp
(

−i

∫ T

0

dtH̃err(t)
)

|�I (0)�.

(10)|�(T)� = U0(T , 0)|�I (T)� = U0(T , 0)Ũerr(T , 0)|�(0)�.

(11)Ũerr(T , 0) ∼
(

1− i

∫ T

0

dtH̃err(t)
)

.

(12)
∫ T

0

dtH̃err(t) = 0.
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that to implement a unitary evolution U as the target operation, there are many choices of H0(t) that satisfy 
U = U0(T , 0) . If we know the error model Herr(t) , we can take H0(t) to satisfy U = U0(T , 0) and Eq. (12) using 
the degrees of freedom of this choice of H0(t) . Thus, the operation caused by such a Hamiltonian H0(t) traces 
the unitary operation U in a robust manner against the specific error model Herr(t) . This is called a CP, one of 
several methods compensating for the effect of specific errors, such as adiabatic pulses, shortcuts to adiabaticity, 
and optimal control.

Qubit control.  The most fundamental quantum system in quantum information processing is a two-level 
system, called a qubit. Hereinafter, we focus on the control of one qubit. The control Hamiltonian of a qubit is 
given as

where the vector �n(t) = (nx , ny , nz) is a time-dependent unit vector, and �σ := (σx , σy , σz) are the Pauli matrices:

We implement an arbitrary control of a qubit by adjusting ω(t) and �n(t) . The time dependence of these con-
trollable parameters is often piecewise constant, as shown in Eq. (5), which corresponds to a sequence of pulses. 
Note that any state of a qubit can be mapped to a point on a sphere (called the Bloch sphere). In this represen-
tation, we map the eigenvectors of σz , | ↑� := (1, 0)t and | ↓� := (0, 1)t to the north pole �z = (0, 0, 1)t and the 
south pole −�z = (0, 0,−1)t on the Bloch sphere, respectively. The superscript t means the matrix transposition. 
Accordingly, the operation of the qubit by the Hamiltonian (13) with constant ω and �n corresponds to the rotation 
with the rotation angle θ := ωτ and the axis �n , where τ is a period during which ω and �n are applied. Hereinafter, 
we consider the case where the Hamiltonian is piecewise constant.

When we consider the control of one qubit, there are two types of systematic errors: PLE and ORE.

PLE case.  PLE is described by the change in ω(t) in the control Hamiltonian, ω(t) → ω(t)(1+ ǫ) , where ǫ is 
a small parameter representing the magnitude of PLE. We should comment that the name of PLE might not be 
appropriate. This error has two origins: imperfection of the pulse (control field) amplitude and pulse duration. 
Because pulse duration has less imperfection in NMR, the error in the amplitude is the dominant origin of PLE. 
As the name of pulse length error rather sounds to be caused by the pulse duration error, we may be ought to call 
it pulse amplitude error. However, in this paper, we call this error PLE following the fashion in NMR.

The control Hamiltonian H0(t) and the error Hamiltonian Herr(t) are given by

Here, we assume that ǫ is constant at 0 < t < T because it represents a systematic error. In this case, U0(t, 0) 
and H̃err are given as

where Vi denotes exp(−iθi�ni · �σ/2) while V0 is the identity matrix and θi := ωi(ti − ti−1) . V0 is inserted in the last 
line just for ensuring the consistency with the range of i = 1 ∼ k . The condition of error robustness (12) for PLE is

 In Ref.29, it was shown that Eq. (17) means a vanishing total dynamic phase, and then it leads to a geometric 
quantum gate31–33 based on the concept of holonomy34–37. Many PLE robust CPs, such as BB116, SCROFULOUS17, 
and SK118, have been found to date.

ORE case.  ORE is typically caused by the miscalibration of the resonance frequency of a qubit. When the quan-
tisation axis is the z-axis of the Bloch sphere, the (piecewise constant) control Hamiltonian H0(t) and the error 
Hamiltonian Herr(t) are given by

(13)H0(t) = ω(t)�n(t) · �σ
2
:= ω(t)(nx(t)

σx

2
+ ny(t)

σy

2
+ nz(t)

σz

2
),

(14)σx =
(

0 1
1 0

)

, σy =
(

0 − i
i 0

)

, σz =
(

1 0
0 − 1

)

.

(15)H0(t) = ωi�ni · �σ/2, Herr(t) = ǫωi�ni · �σ/2, ti−1 < t < ti .

(16)
U0(t, 0) =e−iωi(t−ti−1)�ni ·�σ/2Vi−1· · ·V0, ti−1 < t < ti ,

H̃err(t) =U†
0 (t, 0)(ǫωi�ni · �σ/2)U0(t, 0) = ǫωiV

†
0 · · ·V†

i−1(�ni · �σ/2)Vi−1· · ·V0, ti−1 < t < ti ,

(17)

∫ T

0

dtH̃err(t) =
(
∫ t1

0

dt +
∫ t2

t1

dt· · · +
∫ T

tk−1

dt

)

H̃err(t)

=ǫ

∫ t1

0

dt(ω1�n1 · �σ)+ ǫ

∫ t2

t1

dtV†
1 (ω2�n2 · �σ)V1 + · · · + ǫ

∫ T

tk−1

dtV†
1 · · ·Vk−1(ωk�nk · �σ/2)Vk−1· · ·V1

=ǫω1t1(�n1 · �σ/2)+ ǫω2(t2 − t1)V
†
1 (�n2 · �σ/2)V1 + · · · + ǫωk(T − tk−1)V

†
1 · · ·V†

k−1(�nk · �σ/2)Vk−1· · ·V1

=ǫ

k
∑

i=1

V†
0 · · ·V†

i−1(θi�ni · �σ/2)Vi−1· · ·· · ·V0 = 0.

(18)H0(t) = ωi�ni · �σ/2, Herr(t) = f
σz

2
, ti−1 < t < ti .
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where f is a small parameter corresponding to ORE magnitude. Note that the error term for ORE is time inde-
pendent. The error Hamiltonian in the interaction picture is

where we use the same definition of Vi as Eq. (16). Note that e−iωi(t−ti−1)�ni ·�σ/2 does not commute with Herr(t) ( σz 
in this case) unlike the case of PLE. Then the condition (12) is calculated as

 This ORE robustness condition seems to be more complicated than that of PLE (17). However, in this study, 
we show that this condition has a simple geometric understanding via geometry on the Bloch sphere.

CORPSE, which was proposed in Ref.24, is a well known ORE robust CP. This CP can perform an arbitrary θ 
rotation in an ORE robust manner with considerably simple operations. Each parameter in the CORPSE sequence 
is explicitly determined as a function of the parameters of the target operation.

Geometric property of ORE robust CP
General case.  Here, we explain a geometric property of Eq. (20). First, note that for any 3-dimensional unit 
vector �n and �m,

where R(θ , �m) is a 3× 3 rotation matrix with rotational axis �m and angle θ . Using this equality, the right hand 
side of Eq. (20) can be rewritten as

Thus, we obtain the following condition from Eq. (20),

This condition is also equivalent to the following for any vector �p ∈ R
3:

where �pi := R(θi , �ni)· · ·R(θ1, �n1)�p with �p0 := �p . In the second line, we transpose the equation and use 
R
t(θ , �m) = R

−1(θ , �m) . As the above equation is linear, we can normalise the length of �p without loss of general-
ity, and then we identify �p with a position vector (quantum state) on the Bloch sphere. Let R3

n denote the space 
of the position vectors on the Bloch sphere.

�pi represents the point after the sequence of rotations R(θi , �ni)R(θi−1, �ni−1)· · ·R(θ1, �n1) . By introducing 
�p(t) := R(ωi(t − ti−1), �ni)pi−1 (ti−1 ≤ t < ti) , we further summarise Eq. (24) as

(19)H̃err(t) = V†
0 · · ·V†

i−1e
iωi(t−ti−1)�ni ·�σ/2

(

f
σz

2

)

e−iωi(t−ti−1)�ni ·�σ/2Vi−1· · ·V0, ti−1 < t < ti ,

(20)

∫ T

0

dtH̃err(t) = f

∫ t1

0

dteiω1t�n1·�σ/2 σz
2
e−iω1t�n1·�σ/2

+ f

∫ t2

t1

dtV†
1 e

iω2(t−t1)�n2·�σ/2 σz
2
e−iω2(t−t1)�n2·�σ/2V1 + · · ·

+ f

∫ T

tk−1

dtV†
1 · · ·V†

k−1e
iωk(t−tk−1)�nk ·�σ/2 σz

2
e−iωk(t−tk−1)�nk ·�σ/2Vk−1· · ·V1

= f

k
∑

i=1

V†
0 · · ·V†

i−1

(

∫ ti

ti−1

dteiωi(t−ti−1)�n1·�σ/2 σz
2
e−iωi(t−ti−1)�n1·�σ/2

)

Vi−1· · ·V0 = 0.

(21)e−iθ �m·�σ/2(�n · �σ)eiθ �m·�σ/2 =
(

R(θ , �m)�n
)

· �σ ,

(22)

f

k
∑

i=1

V†
0 · · ·V†

i−1

(

∫ ti

ti−1

dteiωi(t−ti−1)�n1·�σ/2 σz
2
e−iωi(t−ti−1)�n1·�σ/2

)

Vi−1· · ·V0

= f

k
∑

i=1

V†
0 · · ·V†

i−1

(

∫ ti

ti−1

dteiωi(t−ti−1)�n1·�σ/2(�z · �σ
2
)e−iωi(t−ti−1)�n1·�σ/2

)

Vi−1· · ·V0

= f

( k
∑

i=1

R
−1(θ1, �n1)R−1(θ2, �n2)· · ·R−1(θi−1, �ni−1)

∫ ti

ti−1

dtR−1(ωi(t − ti−1), �ni)�z
)

· �σ
2
.

(23)
k

∑

i=1

(

R
−1(θ1, �n1)R−1(θ2, �n2)· · ·R−1(θi−1, �ni−1)

∫ ti

ti−1

dtR−1(ωi(t − ti−1), �ni)�z
)

= �0.

(24)

�p t ·
( k
∑

i=1

(

R
−1(θ1, �n1)R−1(θ2, �n2)· · ·R−1(θi−1, �ni−1)

∫ ti

ti−1

dtR−1(ωi(t − ti−1), �ni)�z
)

)

= 0,

⇐⇒ �z t ·
( k
∑

i=1

∫ ti

ti−1

dtR(ωi(t − ti−1), �ni)�pi−1

)

= 0,
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The integration in the above equation is the sum of all position vectors on the trajectory,

See Fig. 1. This sequence of rotations corresponds to the action of the errorless unitary operation Vk· · ·V1 
in the Bloch sphere representation. Accordingly, �p(t) (0 < t < T) represents the trajectory of the initial state �p 
by the action of this unitary operation. This leads to the following geometrical expression of the ORE robust-
ness condition: a CP is ORE robust if and only if, for any initial state �p,the time integral of all position vectors 
on the trajectory by this CP in the Bloch sphere representation exists on the xy plane. Thus, we now express the 
ORE robustness condition of a CP via the geometric concept associated with the trajectory by the CP. Note that 
this geometric property is also valid when the Hamiltonian is not piecewise constant but continuously time-
dependent; intuitively, the continuous case corresponds to the limit, k → ∞ and ti − ti−1 → 0 , while keeping 
T = ∑k

i=1(ti − ti−1) constant.

Constant‑ω case.  Here, we consider the case where ωi , the magnitude of the control field H0 , is constant 
throughout the operation: ωi = ω (0 < t < T) , which is a common assumption in quantum information pro-
cessing. In the Bloch sphere representation, a constant ω means a constant angular velocity of the motion of the 
position vector representing a quantum state. We can set ω = 1 without loss of generality. Under this assump-
tion, the above definition (25) of the ORE robustness condition can further be interpreted in a purely geometric 
way.

First, we focus on each part of the sum in Eq. (24):

which represents the integral of all the position vectors on the trajectory from the time ti−1 to ti . The position 
vector p(t) during this time interval sweeps the trajectory from pi−1 to pi with a constant speed because both 
the angular velocity and the rotation radius are constant. The constant rotation radius follows from the constant 
Hamiltonian during ti−1 and ti : The dynamics in the Bloch sphere by the Hamiltonian during this period is a 
simple rotation with a constant radius. Note that the sweeping speed can differ for different time intervals, e.g., 
t1 → t2 and t2 → t3 because the rotation radii are not necessarily the same.

Equation (27) is rewritten as

Here we use ω = 1 and ω(ti − ti−1) = θi , and �Mi
�p can be identified as the geometric centre of all the position 

vectors �p(t) during the interval from ti−1 to ti because of the constant speed of �p(t) . More physically, this geo-
metric centre corresponds to the mass centre of this arc on the trajectory when we assign a constant mass density 
to each point on the arc. We define θi as the mass of this arc. Thus, Eq. (28) can be regarded as (mass of this arc) 
× (mass centre of this arc).

The sum in Eq. (24) is correspondingly rewritten as

(25)�z t ·
∫ T

0

dt�p(t) = 0, ∀�p ∈ R
3
n.

(26)�p(t) : �p R(θ1,�n1)−−−−→ �p1
R(θ2,�n2)−−−−→ · · · R(θk ,�nk)−−−−→ �pk .

(27)
∫ ti

ti−1

dtR(t − ti−1, �ni)�pi−1,

(28)
∫ ti

ti−1

dtR(t − ti−1, �ni)�pi−1 = (ti − ti−1)

∫ ti
ti−1

dtR(t − ti−1, �ni)�pi−1

ti − ti−1
= (ti − ti−1) �Mi

�p = θi �Mi
�p.

Figure 1.   Schematic picture of the trajectory of �p by R(θk , �nk)· · ·R(θ1, �n1) on the Bloch sphere. The thick curve 
represents the trajectory of the i-th operation from �pi−1 to �pi . The i-th part of the summation in Eq. (24) is the 
integration of all position vectors along this trajectory.
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To further consider this sum of the vector, we recall the mass centre for a composite system that consists of 
k subsystems. When i-th subsystem has the mass mi and the mass centre �Mi , the mass centre �M of the entire 
composite system is calculated as �M = ∑k

i=1 mi �Mi/m , where m is the total mass 
∑k

i=1 mi . Thus, we define the 
mass centre of all the position vectors on the trajectory as

Note that the mass 
∑k

i=1 θi equals to the operation time T. Substituting this definition and Eq. (29) into Eq. 
(24), we obtain the following simple equation:

where we use the fact that 
∑k

i=1 θi = T is non-zero. This immediately implies that a CP is ORE robust if and only 
if the mass centre of the errorless trajectory by this CP on the Bloch sphere exists on the xy plane for any initial state �p . 
This is the geometric property of ORE robust CPs when we assume that ω is constant. In this case, all the informa-
tion for calculating the ORE robustness is extracted purely graphically from the trajectories on the Bloch sphere.

Two examples of ORE robust composite pulses
In this section, we verify that the mass centre of the trajectory lies on the xy plane for two ORE robust 
CPs: CORPSE and our newly proposed CP. First, we explain the notation. We assume that the unit vector 
�n for each operation e−iθ �n·�σ/2 is directed into the xy plane. Without loss of generality, we can represent �n by 
�nφ := (cosφ, sin φ, 0) . We parametrise an operation by θ and φ , and thus define (θ)φ := e−iθ �nφ ·�σ/2 . Accordingly, 
a CP is written as a sequence (θk)φk (θk−1)φk−1

· · ·(θ1)φ1 . Also, we assume that ω = 1 during the entire operation. 
Hence, the discussion below is understood using the mass centre of trajectories, which is a purely geometric 
concept.

CORPSE.  A well-known ORE robust CP, CORPSE, can implement (θ)φ as the target operation for any θ and 
φ . The CORPSE sequence of implementing (θ)φ comprises three elementary operations (k = 3) given by the 
following parameters:

where κ = arcsin(sin(θ/2)/2) and ni ( i = 1, 2, 3 ) are integers that satisfy n1, n3 ≥ 0 , and n2 ≥ 1 . Simple algebraic 
calculations show that the CORPSE sequence (θ3)φ3(θ2)φ2(θ1)φ1 satisfies (θ)φ = (θ3)φ3(θ2)φ2(θ1)φ1 and is ORE 
robust.

We show the ORE robustness of CORPSE from a geometric viewpoint. For simplicity, we consider the case in 
which CORPSE implement (π)0 , that is, the π rotation with the direction �x := (1, 0, 0) . Also, we take n1 = n3 = 0 
and n2 = 1 . The parameters for this case are θ1 = θ3 = π/3 , θ2 = 5π/3 , φ1 = φ3 = 0 , and φ2 = π . First, we note 
that it is only necessary to consider three linear independent unit vectors as �p to examine the condition (31) 
owing to the linearity. We take �x = (1, 0, 0)t , �y = (0, 1, 0)t , �z = (0, 0, 1)t as �p . The vector �x is a fixed point dur-
ing the entire operation, and thus, the mass centre of the trajectory starting from �x is on the xy plane. We then 
examine the trajectory from the staring points �y and �z . It is convenient to show the yz plane to consider the mass 
centre of these trajectory (Fig. 2). Note that the information of the x direction is redundant when we consider 
these trajectories by CORPSE. The mass centre of the trajectory from �z is calculated as follows.

(29)
k

∑

i=1

∫ ti

ti−1

dtR(t − ti−1, �ni)�pi−1 =
k

∑

i=1

θi �Mi
�p.

(30)�M�p :=
∑k

i=1 θi
�Mi
�p

∑k
i=1 θi

.

(31)�z t · �M�p = 0, ∀�p ∈ R
3
n.

(32)θ1 = 2n1π + θ/2− κ , θ2 = 2n2π − 2κ , θ3 = 2n3π + θ/2− κ , φ1 = φ2 − π = φ3 = φ,

Figure 2.   Errorless trajectories on the yz plane by CORPSE ( π
3
)0(

5π
3
)π (

π
3
)0 , which performs (π)0 . The left 

(right) panel has �z ( �y ) as the initial state. The initial (final) states are represented by the blue (red) points. The 
blue, green, and red curves represent the first, second, and third pulse trajectories, respectively. The left (right) 
panel has �z ( �y ) as the initial state.
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 Thus �z t · �M�z = �z t · �0 = 0 . It is also shown that �M�y = �0 because the trajectories from �y and �z (and these mass 
centres) are related by π2-rotation. Refer to Fig. 2. Thus, the condition (31) is satisfied for CORPSE.

CORP2 SE (Compensation for Off Resonance with a Perpendicularly combined Pulse 
SEquence).  CORPSE is a k = 3 symmetric CP satisfying φ1 + π = φ2 ( �n1 · �n2 = −1 ). It is a natural question 
whether there exists a symmetric k = 3 CP with the condition φ1 + π/2 = φ2 ( �n1 · �n2 = 0 ). Under the assump-
tion that �n1 · �n2 = 0 , we find the following symmetric k = 3 CP that implements (θ)φ:

where α = cos(θ/2) . We named this sequence CORP2 SE (Compensation for Off Resonance with a Perpendicu-
larly constructed Pulse SEquence). CORPSE has the same rotation axis for all elementary operations whereas 
CORP2 SE has one orthogonal rotation axis at the middle operation. In Materials, we evaluate the performance 
of CORP2 SE comparing with CORPSE.

We consider the case in which CORP2 SE (34) performs (π)0 . The parameters are taken to be θ1 = θ3 = 3π
2  , 

θ2 = π/2 , φ1 = φ3 = − 3π
4  , and φ2 = −π

4  . In Fig.  3, we show the errorless trajectories from �z  , 
�n−π/4 = 1√

2
(1,−1, 0) , and �nπ/4 = 1√

2
(1, 1, 0) , which are convenient to evaluate the mass centres of trajectories. 

Each trajectory has the same length on the northern and southern hemispheres. For instance, the trajectory from 
�z (right panel) has a length of 3× π/2 for each hemisphere. As trajectories from all three initial states are always 
on great circles, or equivalently the rotation radius is always 1, the length is simply translated to the mass. That 
is, the northern and southern parts of the trajectory has the same mass. Also, one can graphically find that the 
mass centres of the northern and southern part have the same absolute value of the z component for all cases. 
These two facts implies that the mass centre of the trajectory is directed onto the xy plane for all initial states. 
Thus, for π-rotation, we graphically confirm that this CORP2 SE is ORE robust.

Conclusions and discussions
In this study, we found the geometric property of the ORE robustness condition. We consider the position vec-
tor �p(t) on the Bloch sphere, which represents a quantum state during a CP. The time average of �p(t) for any 
initial state has a vanishing z component if and only if the CP is ORE robust. When the magnitude of the control 

(33)

�M�z =
1

T

∫ T

0

dt�p(t) = 3

7π

∫ 7π
3

0

dt�p(t)

= 3

7π

∫ π
3

0

dθR(θ , �x)(0, 0, 1)t + 3

7π

∫ 5π
3

0

dθR(θ ,−�x)
(

0, sin
(π

3

)

, cos
(π

3

)

)t

+ 3

7π

∫ π
3

0

dθR(θ , �x)
(

0, sin
(2π

3

)

, cos
(2π

3

)

)t

= 3

7π

(
∫ π

3

0

−
∫ 2π

3

π
3

+
∫ π

2π
3

)

dθ(0, sin θ , cos θ)t

= 3

7π

(

[(0,− cos θ , sin θ)t ]
π
3
0 − [(0,− cos θ , sin θ)t ]

2π
3
π
3

+ [(0,− cos θ , sin θ)t ]π2π
3

)

= �0.

(34)θ1 = θ3 = arcsin
(

−
√

1− α2

1+ α2

)

, θ2 = arccos(α2)

φ1 + 3π/4 = φ3 + 3π/4 = φ2+π/4 = φ,

Figure 3.   Errorless trajectories by CORP2SE. The left, middle, and right panels show �n−π/4 , �nπ/4 , and �z as 
the initial state. The initial (final) states are represented by the blue (red) points. The blue, green, and red lines 
represent the first, second, and third pulse trajectories, respectively. The black arrows show the action of pulses 
when the state remains at a fixed point of the pulse.
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Hamiltonian is constant, this integral of �p(t) is proportional to the mass centre of the trajectory. For CORPSE 
and our proposed ORE robust CP, CORP2SE, we confirmed that the mass centres of their trajectories from any 
initial point are on the xy plane on the Bloch sphere, as expected. Until now, only the geometric property of PLE 
robust pulses has been concretely known, and such properties of ORE robust CPs have not been well investigated. 
One reason for this is that the error term of ORE does not commute with the control Hamiltonian even at the 
same time unlike PLE. This makes the analysis of the ORE robust condition difficult algebraically. Our results 
of the geometric property will increase the tractability of ORE robust CPs and provide a deeper understanding 
of the ORE robustness. Also, the geometrical property of the ORE robustness could be utilized when we seek 
unknown ORE robust CPs. At least, we can intuitively (or without calculations) check whether an operation 
sequence is ORE robust or not, although direct calculations might be better when the sequence is complicated.

Materials
Performance comparison between CORPSE and CORP2SE.  We evaluate the performance of 
CORP2 SE and compare it with that of CORPSE. Figure 4 (a) shows the trajectories targeting the (π)0 operation 
by them with ORE from the initial state �z . We can observe that both CPs compensate ORE, compared with the 
elementary (π)0 operation.

To examine the performance of the CPs more precisely, we consider the great-circular distance on the Bloch 
sphere. For the (π)0 operation on the state corresponding to �z (north pole), the ideal operation maps the initial 
state �z to −�z . The great-circular distance between −�z and the end point of the operation with ORE from �z has a 
positive value as a function of f. We characterise the accuracy of the π rotation using the great-circular distance 
from −�z . The smaller the distance, the better the accuracy. Figure 4 (b) plots the great-circular distance between 
−�z and the end point of the elementary π operation, CORPSE, and CORP2 SE initiated from �z . While the abso-
lute value of the error rate f increases, the distance increases for any case, and the accuracy of the π operation 
decreases. The distance for CORPSE and CORP2 SE behaves as ∝ f 2 around f = 0 , whereas the distance for 
the elementary π operation behaves as ∝ |f | . These behaviours are due to the definition of the ORE robustness. 
CORP2 SE provides slightly worse accuracy than CORPSE in the entire region of f, and the total CORP2 SE opera-
tion (non-dimensionalised) time is longer than that of CORPSE: 7π/3 for CORPSE and 7π/2 for CORP2SE.

Received: 27 October 2021; Accepted: 23 May 2022

Figure 4.   The performance of the ORE robust CPs. In (a), the trajectories with ORE for two CPs targeting the 
(π)0 operation are drawn. The red, green, and blue lines represent the elementary π operation, CORPSE, and 
CORP2SE, respectively. The ORE rate is set to be f = 0.1 . The initial state is �z . In (b), we plot the accuracy of 
these operations defined by the great-circular distance as a function of the ORE rate f. The colours of the curves 
represent the same operations as those in (a).
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