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Analysis of immune related gene 
expression profiles and immune 
cell components in patients 
with Barrett esophagus
Lin Shi, Renwei Guo, Zhuo Chen, Ruonan Jiao, Shuangshuang Zhang & Xuanxuan Xiong*

Barrett’s esophagus (BE) is a well-known precancerous condition of esophageal adenocarcinoma. 
However, the immune cells and immune related genes involved in BE development and progression 
are not fully understood. Therefore, our study attempted to investigate the roles of immune cells 
and immune related genes in BE patients. The raw gene expression data were downloaded from the 
GEO database. The limma package in R was used to screen differentially expressed genes (DEGs). 
Then we performed the least absolute shrinkage and selection operator (LASSO) and random forest 
(RF) analyses to screen key genes. The proportion of infiltrated immune cells was evaluated using the 
CIBERSORT algorithm between BE and normal esophagus (NE) samples. The spearman index was 
used to show the correlations of immune genes and immune cells. Receiver operating characteristic 
(ROC) curves were used to assess the diagnostic value of key genes in BE. A total of 103 differentially 
expressed immune-related genes were identified between BE samples and normal samples. Then, 7 
genes (CD1A, LTF, FABP4, PGC, TCF7L2, INSR,SEMA3C) were obtained after Lasso analysis and RF 
modeling. CIBERSORT analysis revealed that resting CD4 T memory cells and gamma delta T cells 
were present at significantly lower levels in BE samples. Moreover, plasma cell and regulatory T cells 
were present at significantly higher levels in BE samples than in NE samples. INSR had the highest 
AUC values in ROC analysis. We identified 7 immune related genes and 4 different immune cells in our 
study, that may play vital roles in the occurrence and development of BE. Our findings improve the 
understanding of the molecular mechanisms of BE.

Barrett’s esophagus (BE) is a well-documented precancerous condition of esophageal adenocarcinoma (EAC)1, 
which is characterized by the occurrence of metaplasia and is followed by cellular changes in the columnar 
 epithelium2 due to many causes, such as gastroesophageal reflux disease (GERD)3. It is difficult to define an 
accurate global prevalence of BE However, recent studies have shown that nearly 15% of GERD patients suffer 
from BE worldwide and the incidence of BE is higher in patients with  heartburn2. A multinational systematic 
review of 28 studies reported that the prevalence of GERD in adult populations had increased by approximately 
50% in 20  years4. As a common complication of GERD, the incidence of BE is rapidly  increasing3. Therefore , it 
can be confirmed is that the overall prevalence of BE is  increasing5. However, the molecular mechanism of BE 
is still unclear.

The local immune system in esophageal mucous plays a vital role in BE development and  progression6,7. Factor 
fork head box protein P3 (FOXP3) is always a marker of CD4 + regulatory T cells, which suppress local immunity, 
aid in tumor cell immune escape and promote tumor development and  progression8. Previous studies showed 
that BE tissues always had significantly higher FOXP3 expression than normal  tissues9. Moreover, FOXP3 + T 
cells were more common in BE  tissues10. In addition, study also shown that RALDH2, an anti-inflammatory 
gene, was associated with the expression of myeloid dendritic cells and had a higher expression in BE  tissues9.

Although immune cells have been evaluated in many studies, the impact of immune cells and immune related 
genes in BE development and progression has not been fully investigated. Fortunately, bioinformatics analysis 
generates large and complex biological data, and these biological data can help us study the molecular mecha-
nisms of different  diseases11,12. Therefore, our present study aims to analyze immune-related gene expression 
profiles and immune infiltration in BE patients with bioinformatic methods. Our study will provide new insights 
into the pathogenesis of BE and may help develop immunotherapies for BE patients.
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Materials and methods
Data collection. The transcription profile dataset of Barrett’s Esophagus was obtained from the NCBI GEO 
databases (http:// www. ncbi. nlm. nih. gov/ geo/). The accession number is  GSE3949113, which is based on the 
GPL571 Platform. The dataset contains 80 fresh frozen tissue samples of Barrett’s metaplasia (40 samples) and 
matched normal esophagus (NE, 40 samples) from squamous esophagus. The background correction, normali-
zation and probe summarization of the microarray dataset with raw data were carried out by R software. The 
2498 immune-related genes were downloaded from the ImmPort database (Immunology Database and Analysis 
Portal database, https:// www. immpo rt. org/ shared/ home).

Differentially expressed immune-related gene identification. The Linear Models for Microarray 
Data (limma) package in Bioconductor was used to identify differentially expressed genes (DEGs) by comparing 
expression values between Barrett’s metaplasia and normal mucosa. Genes with cutoff criteria of |log2FC (fold 
change)|> 1 and adjusted p value < 0.05 were selected as the threshold for DEGs. We used Benjamini–Hochberg 
procedure, also known as FDR method, to adjust the p  value14,15. A volcano plot and a heatmap were used to 
display these genes. Then, the DEGs were overlapped with the 2498 immune-related genes, resulting in 103 
immune-related DEGs.

GO and KEGG enrichment analyses of DEGs. Using the clusterProfiler R package from Bioconduc-
tor, we performed Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis to identify the biological processes for 103 immune-related  genes16–18. P < 0.05 was considered as the 
cut‐off criterion.

Identification of key genes by lasso and random forest analysis. By constructing a penalty func-
tion for all variables, Lasso can compress unimportant variable coefficients to 0, thus excluding those variables, 
and then the independent variables that have a greater impact on the outcome are selected in the final analysis. 
The 103 immune-related genes were entered into the Lasso regression analysis to screen key genes by the glmnet 
package in R. We also constructed a random forest model (RF) to screen key genes by the randomForest package 
in  R19,20. RF is an algorithm that performs classification or regression by combining the voting results of multi-
ple decision trees. The number of decision trees constructed in this study was 500. The RF selected or excluded 
variables according to the feature importance. An RF model was used to predict the BE status in each sample 
based on gene expression profiles. Mean decrease accuracy is an important indicator of variable importance, 
which directly measures the effect of each  variable21. Therefore, mean decrease accuracy was used to identify 
core genes. In our study, we refer to some previous studies that the results of mean decrease gini were similar to 
mean decrease  accuracy22. Therefore we also show mean decrease gini at the same time. The top 20 genes with 
mean decreased accuracy were selected as key genes by the RF  model19,22. The over lapping genes after LASSO 
and RF analyses were used as the key genes.

Analysis of immune cell infiltration. Using its deconvolution algorithm, CIBERSORT can quantify 
the abundance levels of 22 immune cell subtypes based on the expression  files23,24. To compare the difference 
between BE samples and NE samples in immune cells, the CIBERSORT package was used in R software. Samples 
with P < 0.05 in the CIBERSORT analysis results were used in further analysis. The Mann–Whitney U test was 
used to compare differences in immune cell subtypes, and violin plots were generated for the BE samples and 
NE samples.

Statistical analysis. The Wilcox test was used to compare the proportions of 22 immune cells based on 
CIBERSORT analysis between BE samples and NE samples. ROC curves were used to evaluate the diagnostic 
value of each core gene and were constructed by Stata 14.0. P < 0.05 was considered statistically significant.

Results
Identification of DEGs and immune related DEGs. After data preprocessing, 1121 DEGs were 
screened between BE and NE samples, including 480 upregulated genes and 647 downregulated genes (Supple-
mentary table 1). The distribution and expression of DEGs are shown by volcano plot and heatmap plot (Fig. 1). 
The 2498 immune-related genes overlapped with 1121 DEGs, obtaining 103 immune related genes. A volcano 
plot and a heatmap plot of overlapping immune-related genes are also shown (Fig. 2A,B, Supplementary table 2).

Enrichment analysis for immune-related DEGs. GO and KEGG analyses were performed to further 
explore the mechanisms of immune-related DEGs. The top 5 GO terms were receptor ligand activity, leuko-
cyte migration, cell chemotaxis, response to lipopolysaccharide and response to molecules of bacterial origin 
(Fig. 3A). In addition, the KEGG items were associated with cytokine − cytokine receptor interaction, MAPK 
signaling pathway, IL − 17 signaling pathway, fluid shear stress and atherosclerosis and lipid and atherosclerosis 
(Fig. 3B).

Identification of key immune-related DEGs by LASSO analysis. To further identify key immune-
related genes, LASSO analysis was performed for the 103 immune-related DEGs. Eleven candidate key genes 
were identified by LASSO analysis: CD1A, CXCL14, LTF, FABP4, PGC, MUC4, TCF7L2, SEMA3C, IL1R2, 
INSR, and IL12A, which were considered candidate optimal immune related biomarkers (Fig. 4A,B). In addi-
tion, the RF for the 103 immune-related DEGs was also used to screen gene signatures, and the top 20 gene 
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signatures were retrieved (Fig. 4C, Supplementary table 3). Ultimately, there were 7 key overlapping genes after 
LASSO and RF analyses, CD1A, LTF, FABP4, PGC, TCF7L2, INSR, and SEMA3C, which were considered as the 
optimal immune-related biomarkers (Fig. 4D).

Immune cell analysis between BE and NE samples. The abundance levels of the 22 immune cells 
between BE samples and NE samples were further analyzed. The CIBERSORT algorithm indicated that plasma 
cells, CD8 + T cells, gamma delta T cells, and resting mast cells had a larger proportions in the BE and NE sam-
ples (Fig. 5A). A heatmap was drawn to show the proportions of immune cells in each sample (Fig. 5B ). Fig-
ure 5C shows that resting CD4 T memory cells (p = 0.006), and gamma delta T cells (p < 0.001) were significantly 
lower in BE samples. In addition, plasma cells (p = 0.049) and regulatory T cells (p = 0.029) were significantly 
higher in BE samples than in NE samples. Differences in immune cells suggested the important role of the 
immune system in Barrett’s esophagus.

Correlation analysis between key genes and immune cells. A Spearman correlation heatmap was 
drawn to show the relevance between key genes and immune cells among BE and NE samples. CD1A was only 
significantly associated with monocytes and resting dendritic cells in BE samples and NE samples, respectively. 
In BE samples, the LTF gene was associated with naïve B cells, resting NK cells and monocytes ,whileFABP4 
was also associated with CD8 + T cells, and resting and activated dendritic cells. The PGC gene was associated 
with CD8 + T cells and resting dendritic cells. Moreover, INSR was significantly associated with CD8 + T cells. 

Figure 1.  Identification of DEGs form GEO dataset. (A) The volcano plot of DEGs between BE and NE 
samples. (B) The heatmap plot of DEGs between BE and NE samples.

Figure 2.  Identification of DEGs form GEO dataset. (A) The volcano plot of immune related DEGs between BE 
and NE samples. (B) The heatmap plot of immune related DEGs between BE and NE samples.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9209  | https://doi.org/10.1038/s41598-022-13200-6

www.nature.com/scientificreports/

Figure 3.  GO function analysis and KEGG pathway analysis. (A) GO functional enrichment analysis of the 
immune-related DEGs. (B) KEGG functional enrichment analysis of the immune-related DEGs.
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Figure 4.  Identification of the optimal immune-related biomarkers. (A,B) LASSO regression analysis. (C) Top 
20 genes by RF model sort by accuracy. (D) Venn diagram of overlapping.
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Figure 5.  Distribution of immune cells between BE and NE samples. (A) Percentage of immune cells in each 
sample. (B) Heatmap. (C) Violin plot.
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SEMA3C was significantly associated with CD8 + T cells, monocytes, plasma cells and neutrophils. Additionally, 
there were significant differences between T1DM and normal samples; the details are shown in the heatmap 
(Fig. 6A,B).

ROC analysis. ROC curves were performed to further explore the diagnostic accuracy of key genes respec-
tively. Genes with an area under the ROC curve greater than 0.8 are shown in the article with INSR having the 
highest AUC values (Fig. 7).

Discussion
BE is a very common esophageal mucosal lesion worldwide. Immune cell components and immune related genes 
are vital in the BE and EAC microenvironments. In the present study, we identified 103 immune related DEGs 
between BE and NE samples based on genomic expression profile analysis. Then 11 candidate immune-related 
key biomarkers for BE were obtained by LASSO analysis, and the RF model was also used to screen potential key 
genes. Then, the 7 overlapping genes (CD1A, LTF, FABP4, PGC, TCF7L2, INSR, SEMA3C) from LASSO analysis 
and the RF model used to select the key genes. In addition, the CIBERSORT algorithm application indicated that 
CD4 T memory cells and gamma delta T cells were present at significantly lower levels in BE samples. Plasma cell 
and regulatory T cells were present at significantly higher levels in BE samples than in NE samples. Furthermore, 
we analyzed the correlation between key biomarkers and immune cells.

We first performed differential gene analysis by R software and obtained 1121 DEGs, Then103 immune-related 
genes involved in BE were identified by intersecting 2498 immune-related genes with 1121 DEGs. Furthermore, 
enrichment analysis for immune related DEGs was conducted to explore gene functions. KEGG analysis indicated 
that cytokine—cytokine receptor interaction, MAPK signaling pathway, IL—17 signaling pathway, fluid shear 
stress and atherosclerosis and lipid and atherosclerosis were the top 5 significant pathways. The MAPK pathway 
is a well-known signaling pathway that is closely associated with the development and progression of various 
 tumors25,26. A previous study showed that RAS or BRAF mutations were detected in approximately 32% of all 
Barrett’s adenocarcinomas, which indicated that disruption of the MAPK kinase pathway is a frequent but also 
early event in the development of Barrett’s  adenocarcinoma27.

CD1a is a surface glycoprotein of 43–49 kDa that has been shown to be expressed by immune cells such as 
dendritic cells and Langerhans  cells28. Cappello et al. proposed that CD1a could be expressed in metaplastic 
epithelium of Barrett’s esophagus, including gastric and intestinal types. However, normal gastrointestinal tis-
sues do not express  CD1a28. In BE tissues, metaplastic epithelial cells expressing higher CD1a levels could help 
distinguish gastric-type Barrett’s metaplasia from the presence of ectopic gastric epithelium in the esophageal 
 mucosa28. Moreover, epithelial CD1a + cells may interact with dendritic cells or T cells in the development of  BE28.
Fatty acid binding protein 4 (FABP4), predominantly expressed in adipocytes and macrophages, is associated 
with the development and progression of various kinds of  tumors29.FABP4 may have a potential associations 
with hyperlipidemia, hyperinsulinemia, and insulin resistance, indirectly affecting cancer cells by influencing 
these  factors30. Multiple effects mediated by FABP4, such as insulin resistance, promote BE  carcinogenesis31.

Lactotransferrin (LTF) is a member of the transferrin family that transfers iron to cells and controls the levels 
of free iron in the blood and external secretions. Some studies have reported that LTF is significantly lower in 
tumor tissues and that LTF may have a potential role in suppressing tumor growth and  development32,33. For 
patients with papillary thyroid carcinoma, macrophages, mast cells, natural killer (NK) cells, Tfh cells, activated 
dendritic cells (aDCs), B cells, Tregs, CD8 + T cells and DCs were associated with LTF expression, which indicated 
that LTF plays an important role in the tumor  microenvironment32. Insulin receptor (INSR) is a proliferation 
regulator involved in aggressive behaviors in many types of  cancer34.In patients with BE, the insulin/insulin-like 
growth factor axis can mediate cancer progression and cause hyperinsulinemia and insulin resistance. The specific 
mechanisms involved in this tumor-promoting activity are  unclear31. In gastric cancer, the high expression of 
INSR correlates with HER2 status and may have putative therapeutic  implications35. In addition, pepsinogen C 
(PGC)is expressed only in the mucosa of the gastric fundus and is expressed by all regions of the gastric mucosa. 
In a preliminary study, PGC was expressed by columnar non goblet cells in most areas without specialized intes-
tinal metaplasia which can help clinicians identify high risk BE patients and guide endoscopic  surveillance36. 
Semaphorin 3C (SEMA3C) has been reported to drive a number of oncogenic programs, correlate poor cancer 
prognosis, and promote the progression of multiple different cancer  types37,38.

The transcription factor 7-like 2 (TCF7L2) gene has been identified as a novel transcription factor involved in 
epithelial-mesenchymal transition (EMT) in tumor  cells39. TCF7L2 is a member of the Wnt/b-catenin signaling 
pathway, which plays an important role in metabolism, cell differentiation/proliferation, and cell  death39. The 
Wnt − /β-catenin signaling pathway is responsible for cell growth, motility and differentiation during embryo-
genesis. The Wnt/b-catenin signaling pathway has been reported to be activated in the progression of  BE40. 
However the specific role of TCF7L2 in the development of BE is not fully understood. Previous studies have 
shown that TCG7L2 is closely associated with the development, progression and distant metastasis of various 
cancers such as pancreatic  cancer41. The overexpressed TCF7L2 was associated with poor overall survival in 
patients with  glioma42.

Finally, to explore the diagnostic accuracy of key genes, we performed ROC curve analysis and found a strong 
accuracy for the INSR (AUC = 0.93), which also provides a new biomarker for the diagnosis of BE.

Multiple analyses were performed to systematically investigate immune related genes, immune cells and their 
relationships in BE patients. Our study still has some limitations due to a lack of experimental validation and 
the use of a single dataset from the GEO. Future research needs to explore the detailed mechanism between the 
expression of distinct biomarkers and BE.
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Figure 6.  Spearman correlation of the key genes and the immune cells. (A) Correlation in BE samples. (B) 
Correlation in NE samples.
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Conclusions
In our present study, we identified 7 key genes, CD1A, LTF, FABP4,PGC, TCF7L2, INSR and SEMA3C as 
potential immune-related biomarkers in BE. Our study reveals the association between immune related genes 
and immune cells in BE patients for the first time. Our findings improve the understanding of the molecular 
mechanisms in BE and provide suggestions for novel therapy and diagnostic methods for BE patients.

Data availability
The raw data of this study are derived from the GEO data portal(https:// www. ncbi. nlm. nih. gov/ geo/), which are 
publicly available databases.
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