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Outcome prediction for acute 
kidney injury among hospitalized 
children via eXtreme Gradient 
Boosting algorithm
Ying‑Hao Deng1, Xiao‑Qin Luo1, Ping Yan1, Ning‑Ya Zhang2, Yu Liu1 & Shao‑Bin Duan1*

Acute kidney injury (AKI) is common among hospitalized children and is associated with a poor 
prognosis. The study sought to develop machine learning‑based models for predicting adverse 
outcomes among hospitalized AKI children. We performed a retrospective study of hospitalized 
AKI patients aged 1 month to 18 years in the Second Xiangya Hospital of Central South University 
in China from 2015 to 2020. The primary outcomes included major adverse kidney events within 
30 days (MAKE30) (death, new renal replacement therapy, and persistent renal dysfunction) and 
90‑day adverse outcomes (chronic dialysis and death). The state‑of‑the‑art machine learning 
algorithm, eXtreme Gradient Boosting (XGBoost), and the traditional logistic regression were used 
to establish prediction models for MAKE30 and 90‑day adverse outcomes. The models’ performance 
was evaluated by split‑set test. A total of 1394 pediatric AKI patients were included in the study. The 
incidence of MAKE30 and 90‑day adverse outcomes was 24.1% and 8.1%, respectively. In the test 
set, the area under the receiver operating characteristic curve (AUC) of the XGBoost model was 0.810 
(95% CI 0.763–0.857) for MAKE30 and 0.851 (95% CI 0.785–0.916) for 90‑day adverse outcomes, The 
AUC of the logistic regression model was 0.786 (95% CI 0.731–0.841) for MAKE30 and 0.759 (95% CI 
0.654–0.864) for 90‑day adverse outcomes. A web‑based risk calculator can facilitate the application 
of the XGBoost models in daily clinical practice. In conclusion, XGBoost showed good performance 
in predicting MAKE30 and 90‑day adverse outcomes, which provided clinicians with useful tools for 
prognostic assessment in hospitalized AKI children.

Acute kidney injury (AKI) is a common complication among hospitalized children, characterized by an abrupt 
increase in serum creatinine (SCr) or decline in urine  output1,2. Recent studies have suggested that AKI occurs 
in 26.9% of critically ill children and at least 5% of pediatric patients outside the intensive care unit (ICU)3,4. In 
China, the overall incidence of AKI is 20% in hospitalized  children5. AKI has been found to be associated with 
poor prognosis in pediatric patients, including death, prolonged lengths of stay, longer ventilator support, and 
chronic kidney disease (CKD)1,2,6.

Recently, there has been increased concern about short- and long-term clinical outcomes in hospitalized AKI 
children. Major adverse kidney events within 30 days (MAKE30), a composite of death, new renal replacement 
therapy (RRT), or persistent renal dysfunction, is recommended to be a patient-centered outcome for clinical 
trials in  AKI7–10. Previous studies have examined MAKE30 in specified pediatric patients, but there is limited 
information on this outcome among hospitalized AKI  children11,12. Additionally, it is essential to understand 
the long-term prognosis of AKI  patients13. Even after hospital discharge, AKI patients are still at high risk of 
long-term mortality or chronic renal insufficiency.

Early prediction of adverse outcomes can allow clinicians to stratify pediatric AKI patients for individualized 
management and may improve patient outcomes. However, there is little clinical information on how we can 
identify patients at high risk of short- and long-term adverse outcomes at an early stage. Recently, machine learn-
ing approaches have been developed and applied in diverse medical fields, including predicting the development 
and outcomes of  AKI14–20. The eXtreme Gradient Boost (XGBoost) algorithm, one of the state-of-the-art machine 
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learning approaches, is an efficient implementation of the gradient boosting  framework21. The machine learning 
algorithm has many advantages, such as high predictive accuracy, automatic modeling of non-linearities and 
high-order interactions, and robustness to multicollinearity. XGBoost has been shown to outperform traditional 
statistical methods, such as logistic regression, in diverse  fields15,22,23 and has the potential to improve outcome 
prediction in hospitalized AKI children. Therefore, the study aimed to use the XGBoost algorithm to develop 
outcome prediction models in hospitalized AKI children.

Methods
Study design. We performed a retrospective study of admissions from January 1, 2015 to December 31, 
2020 in the Second Xiangya Hospital of Central South University in China. Pediatric AKI patients were identi-
fied from hospitalized children aged between 1 month and 18 years, with at least two serum creatinine (SCr) 
measurements in any 7-day window during the first 30 days of hospitalization. AKI was determined according to 
the SCr criteria of the 2012 Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice  Guideline24. 
The time of AKI diagnosis was identified as the earliest time when the change in SCr met the KDIGO criteria. 
Baseline SCr was defined as the lowest SCr in the 7 days before AKI diagnosis, or the minimum inpatient SCr 
value for patients who met the criteria of community-acquired  AKI5. We analyzed only the first hospitalization 
when a patient had multiple admissions during the study period. We excluded patients with end-stage renal dis-
ease (CKD stage 5, maintenance dialysis, and renal transplantation, identified by diagnosis codes) and hospital 
stay < 48 h. The study was approved by the Medical Ethics Committee of the Second Xiangya Hospital of Central 
South University (No. 2013-S061) and registered in the Chinese Clinical Trial Registry (ChiCTR-1800019857). 
Informed consent was waived due to the retrospective nature. The study was performed in accordance with the 
Declaration of Helsinki.

Data collection. We extracted data on patients’ demographics, diagnoses, clinical laboratory tests and treat-
ments from the electronic medical record system and laboratory information system. AKI stage was defined 
based on the KDIGO criteria and determined using the highest SCr value during the first 7 days after AKI diag-
nosis. We excluded initiation of renal replacement therapy (RRT) when determining AKI stage 3 but recorded 
it as a separate variable. Patients were recognized as community-acquired AKI when the increase in SCr on the 
first day met the KDIGO criteria, or the SCr value on admission was ≥ 1.5 times the standardized SCr refer-
ence value and ≥ 1.5 times the lowest SCr value during  hospitalization5. Patients who did not meet the criteria 
for community-acquired AKI were categorized as hospital-acquired AKI. Comorbidities were identified by the 
diagnosis codes (International Classification of Diseases, 10th Edition) on admission and at discharge. We ana-
lyzed surgery operations and exposure to nephrotoxic drugs in the 7 days before the time of AKI diagnosis. 
Surgery operations were determined based on the procedure codes and the surgery date, and both were recorded 
at hospital discharge. The use of nephrotoxic drugs was determined in accordance with the list of nephrotoxic 
drugs presented in a recent  study5. We also collected laboratory data and clinical interventions within 7 days 
after AKI diagnosis. Laboratory data included hemoglobin, white blood cells, platelets, proteinuria (urinary 
protein dipstick values ≥ 1 +), total bilirubin, albumin, serum potassium, and serum sodium. If multiple meas-
urements of a laboratory parameter were available during the period, we used the one taken closest to the time 
of AKI diagnosis. Clinical interventions included the use of loop diuretics, mechanical ventilation, and RRT.

Outcomes. The primary outcomes included MAKE30 and 90-day adverse outcomes. MAKE30 was defined 
as a composite of death, new RRT, or persistent renal dysfunction at hospital discharge or 30 days after AKI diag-
nosis, whichever occurred  first7,8. Persistent renal dysfunction was defined as a final inpatient SCr value ≥ 200% 
of the baseline value. 90-day adverse outcomes included death and chronic dialysis 90 days after the time of AKI 
diagnosis. Survival status after hospital discharge was obtained from the Chinese Center for Disease Control and 
Prevention cause-of-death reporting system. Chronic dialysis was determined by reviewing patients’ inpatient 
and outpatient medical records, making phone calls to the patients or their families, and referring to the Chinese 
National Renal Data System. The secondary outcome was the length of hospital stay, defined as the number of 
days between AKI diagnosis and hospital discharge.

Statistical analysis. Continuous variables are presented as medians and interquartile ranges and were 
compared by Mann–Whitney U test. Categorical variables are presented as counts and percentages and were 
compared by chi-square tests. Survival analysis was performed by Kaplan–Meier method. Multivariable logis-
tic regression analysis was used to determine risk factors of MAKE30 and 90-day adverse outcomes. Baseline 
variables considered clinically relevant or statistically significant on univariable analysis were selected into the 
stepwise regression model. The percentages of missing values in all baseline variables were less than 20%, and 
the median (for continuous variables) or mode (for categorical variables) was used for missing value imputation.

To establish and validate prediction models for MAKE30 and 90-day adverse outcomes, we randomly allo-
cated pediatric AKI patients to the training and the test sets by the ratio of 7 to 3. In the training set, both 
XGBoost and logistic regression were used for model construction. The list of all predictor variables included 
in the prediction models is shown in Supplementary Table S1. XGBoost is an optimized distributed gradient 
boosting method with high efficiency, flexibility and  portability21. It implements machine learning algorithms 
under the Gradient Boosting framework. The final output is obtained by weighting multiple decision trees and 
decreasing the gradient of the loss function. XGBoost provides a variety of hyper-parameters for different settings. 
This study used grid search and five-fold cross-validation to identify optimal hyper-parameters. The training set 
was randomly split into 5 equal-sized subsets, and 4 of them were used for model training, while the remaining 
one served as the validation set. This process was repeated 5 times, using one subset for model validation each 
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time. After parameter-tuning, seven hyper-parameters (eta, max_depth, min_child_weight, subsample, colsam-
ple_bytree, gamma and lambda) were optimized, and they were set in the final model. Feature importance of the 
XGBoost model was calculated using the gain as the measure, representing each feature’s fractional contribution  
to the model based on the total gain of this feature’s splits. Finally, the performance of the prediction models was 
further evaluated in the test set. Evaluation metrics included the area under the receiver operating characteristic 
curve (AUC), the area under the precision-recall curve (AUPRC), and the Brier score, in which AUC was selected 
as the primary metric. The optimal cutoff points were determined based on the maximum Youden index in the 
training set. In addition, we conducted 5 random splits to test the robustness of the findings.

In sensitivity analysis, we examined the performance of the XGBoost models and the logistic regression 
models in predicting MAKE30 and 90-day adverse outcomes in pediatric AKI patients in different age groups. 
We also examined the models’ performance in AKI children in the ICU and those in other units.

Statistical analyses were performed using R 4.1.2 (https:// cran.r- proje ct. org). We used the xgboost package, 
version 1.4.1.1, for XGBoost modeling. p-value < 0.05 was considered statistically significant.

Results
Patient characteristics. During the study period, 18,194 of 93,040 hospitalized children had at least two 
times SCr measurements in a 7-day window during the first 30 days of hospitalization. Of them, 1394 pediat-
ric AKI patients who met all eligibility criteria were included in our study (Fig. 1). The overall occurrence of 
AKI was 7.7% (1394/18,194) among hospitalized children. The incidence of AKI was 16.6%, 7.1% and 4.8% in 
patients aged 1 month to 1 year (infancy), aged 2 to 10 years (childhood), and aged 11 to 18 years (adolescence), 
respectively.

Baseline characteristics of the study cohort are shown in Table 1. The study cohort consisted of 504 (36.2%) 
AKI patients in infancy, 502 (36.0%) in childhood, and 388 (27.8%) in adolescence. Hospital-acquired AKI 
accounted for 75.4% of pediatric AKI patients. Most patients (60.5%) were diagnosed with AKI stage 1, while 
22.9% were diagnosed with AKI stage 2 and 16.6% with AKI stage 3. For hospitalized AKI children, the top 
three most common clinical settings were nephrotoxic drugs (48.3%), congenital heart disease or cardiac surgery 
(32.4%) and sepsis (13.0%).

Outcomes. Outcomes of the study cohort are shown in Table 2. MAKE30 occurred in 24.1% of all pediatric 
AKI patients. The Kaplan–Meier curves for mortality within 30 days and 90 days are shown in  Supplemen-
tary Figs. S1 and S2. During the follow-up, the incidence of 90-day adverse outcomes was 8.1%. Baseline char-
acteristics of pediatric AKI patients stratified by MAKE30 and 90-day adverse outcomes are presented in Sup-
plementary Tables S2 and S3, respectively. Overall, compared with those who showed a good prognosis, patients 

93040 admissions aged 1 month to 18 years from The Second Xiangya hospital of 
Central South University in China between 1/1/2015 and 12/31/2020.

18194 admissions with ≥ two times serum creatinine assay in a 7-day window within 
the first 30 days of hospitalization.

1536 possible AKI cases screened based on change in serum creatinine by hospital 
electronic medical record system and laboratory information system

142 Excluded
13   Hospital stay <48 h
129 End-stage renal disease

1394 pediatric AKI patients included in the final analysis (follow-up to 90 days after 
the diagnosis of AKI)

Training set
975 included
236 with MAKE30
76 with 90-day adverse outcomes

Test set
419 included
100 with MAKE30
39 with 90-day adverse outcomes

Figure 1.  Study flow diagram. AKI, acute kidney injury. MAKE30, Major Adverse Kidney Events within 
30 days. The figure was created using Microsoft PowerPoint 2019 (https:// www. micro soft. com/).

https://cran.r-project.org
https://www.microsoft.com/
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Table 1.  Baseline characteristics of the study cohort. AKI acute kidney injury, CKD chronic kidney disease, 
RRT  renal replacement therapy. Continuous variables are presented as median (interquartile range) and 
categorical variables are presented as n (%). Missing data: proteinuria (n = 245, 17.6%), serum albumin (n = 4, 
0.3%), serum total bilirubin (n = 7, 0.5%), serum potassium (n = 29, 2.1%) and serum sodium (n = 29, 2.1%). 
a Admission or discharge diagnoses included CKD stage 3–4, identified by ICD-10 codes (N18.803 and 
N18.804).

Characteristics Cohort (n = 1394)

Age, yr 4 (0–11)

Age categories, n (%)

Infancy, 1  mo−1 yr 504 (36.2)

Childhood, 2–10 yr 502 (36.0)

Adolescent, 11–18 yr 388 (27.8)

Sex, male, n (%) 817 (58.6)

AKI type, n (%)

Community-acquired AKI 343 (24.6)

Hospital-acquired AKI 1051 (75.4)

AKI stage, n (%)

Stage 1 844 (60.5)

Stage 2 319 (22.9)

Stage 3 231 (16.6)

Clinical settings, n (%)

Sepsis 181 (13.0)

Glomerulonephritis 57 (4.1)

Nephrotic syndrome 156 (11.2)

CKDa 15 (1.1)

Urinary tract obstruction/malformation 25 (1.8)

Non-cardiac surgery 72 (5.2)

Congenital heart disease/cardiac surgery 451 (32.4)

Heart failure 114 (8.2)

Inherited metabolic disease 24 (1.7)

Cardiac arrest 12 (0.9)

Trauma/burn 27 (1.9)

Shock 61 (4.4)

Respiratory failure 120 (8.6)

Diarrhea/dehydration 56 (4.0)

Nephrotoxic drugs 673 (48.3)

Laboratory data

Hemoglobin, g/L 111 (92–126)

 < 90 313 (22.5)

White blood cells, ×  109/L 9.4 (5.7–14.6)

 < 4 227 (16.3)

 > 10 649 (46.6)

Platelets, ×  109/L 229 (138–345)

 < 100 239 (17.1)

Proteinuria, n (%) 261 (22.7)

Serum albumin, g/L 36.8 (30.3–41.0)

 < 30 332 (23.9)

Serum total bilirubin, μmol/L 9.5 (5.2–18.2)

 > 34.2 156 (11.2)

Serum potassium, mmol/L 4.4 (3.9–4.9)

 < 3.5 144 (10.5)

 > 5.5 89 (6.5)

Serum sodium, mmol/L 138 (136–140)

 < 135 271 (19.9)

 > 145 56 (4.1)

Loop diuretics, n (%) 736 (52.8)

Mechanical ventilation, n (%) 274 (19.7)

RRT, n (%) 105 (7.5)
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with MAKE30 or 90-day adverse outcomes had a higher prevalence of clinical comorbidities, a larger proportion 
of abnormal laboratory data, and more severe renal dysfunction at baseline.

Risk factors for MAKE30 and 90‑day adverse outcomes. Multivariable logistic regression analysis 
showed that the risk factors for MAKE30 were hospital-acquired AKI, AKI stage, glomerulonephritis, respiratory 
failure, hypoalbuminemia (serum albumin < 30 g/L), hyperbilirubinemia (serum total bilirubin > 34.2 mmol/L), 
and hyperkalemia (serum potassium > 5.5 mmol/L) (Table 3). Of these, AKI stage was the major risk factor of 
MAKE30, with an odds ratio (OR) of 9.42 (95% confidence interval [CI], 6.58–13.49) for stage 2 and 16.86 (95% 
CI, 11.31–25.12) for stage 3. The risk factors for 90-day adverse outcomes included age, AKI stage, CKD, shock, 
respiratory failure, thrombocytopenia (platelets < 100 ×  109/L), hypoalbuminemia, hyperkalemia and mechani-
cal ventilation (Table 4). The ORs for the top 3 major risk factors were 14.86 (95% CI, 4.71–46.90) for CKD, 3.96 
(95% CI, 1.78–8.80) for shock and 3.19 (95% CI, 1.71–5.95) for respiratory failure.

Prediction models for MAKE30 and 90‑day adverse outcomes. Of 1394 pediatric AKI patients, 
975 were randomly assigned to the training set and 419 to the test set. There was no significant difference in 
baseline characteristics and outcomes between the training and the test sets (Supplementary Tables S4 and S5). 
In the test set, the AUC of the XGBoost model was 0.810 (95% CI 0.763–0.857) for MAKE30 and 0.851 (95% CI 
0.785–0.916) for 90-day adverse outcomes. The AUC of the logistic regression model was 0.786 (95% CI 0.731–
0.841) for MAKE30 and 0.759 (95% CI 0.654–0.864) for 90-day adverse outcomes. (Fig. 2 and Supplementary 
Fig. S3). Table 5 describes the performance of the prediction models for MAKE30 and 90-day adverse outcomes. 
At the optimal cutoff points, XGBoost achieved a sensitivity of 72.0% and a specificity of 77.4% for MAKE30 and 
a sensitivity of 73.0% and a specificity of 84.0% for 90-day adverse outcomes in the test set. The precision-recall 
curves of the models are provided in Fig. 3 and Supplementary Fig. S4. In the test set, the AUPRC of the XGBoost 
model was 0.521 for MAKE30 and 0.409 for 90-day adverse outcomes. The Brier score and calibration plots of 
the models are provided in Fig. 4 and Supplementary Fig. S5. The Brier scores of the two models were lower than 
that of the null model. The results of the 5 random splits are shown in Supplementary Table S6.

Table 2.  Outcomes of the study cohort. MAKE30, Major Adverse Kidney Events within 30 days. Continuous 
variables are presented as median (interquartile range) and categorical variables are presented as n (%). RRT  
renal replacement therapy, PRD persistent renal dysfunction.

Outcomes Cohort (n = 1394)

Hospital length of stay (d) 13 (6–26)

MAKE 30, n (%)

Death 66 (4.7)

Receipt of new RRT 124 (8.9)

PRD 233 (16.7)

Total 336 (24.1)

90-day adverse outcomes, n (%)

Death 99 (7.1)

Chronic dialysis 14 (1.0)

Total 113 (8.1)

Table 3.  Multivariable logistic regression analysis of risk factors associated with MAKE30. OR odds ratio, CI 
confidence interval, AKI acute kidney injury.

Characteristics OR 95% CI p value

Hospital-acquired AKI 1.49 1.02–2.17 0.039

AKI stage

Stage 1 1.00 – –

Stage 2 9.42 6.58–13.49 < 0.001

Stage 3 16.86 11.31–25.12 < 0.001

Glomerulonephritis 1.97 1.02–3.81 0.044

Shock 1.98 0.99–3.96 0.05

Respiratory failure 2.67 1.61–4.43 < 0.001

Nephrotoxic drugs 0.76 0.54–1.06 0.10

Platelets < 100 ×  109/L 1.42 0.98–2.06 0.07

Serum albumin < 30 g/L 1.54 1.10–2.17 0.012

Serum total bilirubin > 34.2 mmol/L 1.95 1.26–3.00 0.003

Serum potassium > 5.5 mmol/L 2.02 1.14–3.58 0.015
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Table 4.  Multivariable logistic regression analysis of risk factors associated with 90-day adverse outcomes. OR 
odds ratio, CI confidence interval, AKI acute kidney injury, CKD chronic kidney disease.

Characteristics OR 95% CI p value

Age 1.08 1.04–1.12 < 0.001

AKI stage

Stage 1 1.00 – –

Stage 2 1.75 1.01–3.04 0.046

Stage 3 2.38 1.36–4.16 0.002

Sepsis 0.59 0.28–1.22 0.15

CKD 14.86 4.71–46.90 < 0.001

Shock 3.96 1.78–8.80 < 0.001

Respiratory failure 3.19 1.71–5.95 < 0.001

Platelets < 100 ×  109/L 2.73 1.67–4.48 < 0.001

Serum albumin < 30 g/L 1.71 1.06–2.78 0.029

Serum total bilirubin > 34.2 mmol/L 1.80 0.98–3.32 0.06

Serum potassium > 5.5 mmol/L 2.69 1.23–5.86 0.013

Mechanical ventilation 2.72 1.61–4.61 < 0.001

Figure 2.  Receiver operating characteristic curves of the logistic regression and the XGBoost models for 
MAKE30 (A) and 90-day adverse outcomes (B) in the test set (B). AUC, area under the receiver operating 
characteristic curve. The figure was created using R 4.1.2 (https:// cran.r- proje ct. org).

Table 5.  Performance of the XGBoost models for MAKE30 and 90-day adverse outcomes in the training 
and test sets. MAKE30, Major Adverse Kidney Events within 30 days. AUC  area under the receiver operating 
characteristic curve, CI confidence interval, PPV positive predictive value, NPV negative predictive value.

MAKE30 90-day adverse outcomes

Training set Test set Training set Test set

AUC (95% CI) 0.907 (0.887–0.927) 0.810 (0.763–0.857) 0.964 (0.946–0.983) 0.851 (0.785–0.916)

Cutoff points 0.2958 0.2958 0.0948 0.0948

Sensitivity (%) 85.2 72.0 96.1 73.0

Specificity (%) 81.2 77.4 86.7 84.0

PPV (%) 59.1 50.0 37.8 30.7

NPV (%) 94.5 89.8 99.6 97.0

https://cran.r-project.org
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Figures 5 and 6 show the top 15 most important features derived from the XGBoost model. Feature impor-
tance reflects the contribution of each variable to the results during the learning process. AKI stage 3 was the 
most important variable for the prediction of MAKE30, followed by AKI stage 2, serum albumin, platelet count, 
and serum potassium. For 90-day adverse outcomes, the top 5 most important predictors were serum albumin, 
platelet count, shock, age, and serum potassium. The partial dependence plots and individual conditional expec-
tation plots of the XGBoost models were provided in Supplementary Figs. S6 and S7.

In sensitivity analysis, we examined the models’ performance in pediatric AKI patients stratified by age 
groups. We also evaluated the models’ performance in AKI children in ICU and those in other units. The results 
are shown in Supplementary Figs. S8–S11. The XGBoost models were superior to the logistic models for predict-
ing MAKE30 and 90-days adverse outcomes in the subgroups of pediatric AKI patients.

We further developed a web-based risk calculator (http:// xydsb AKIte am. xyeyy. com) to promote the applica-
tion of the XGBoost models, which can automatically calculate the risk of MAKE30 and 90-day adverse outcomes 
in hospitalized AKI children.

Discussion
The present study found that the incidence of MKAE30 and 90-day adverse outcomes was 24.1% and 8.1% among 
hospitalized AKI children, respectively. AKI stage was the major risk factor for MAKE30. CKD was the major risk 
factor for 90-day adverse outcomes. Additionally, we established and validated machine learning-based models 
using the XGBoost algorithm for predicting MAKE30 and 90-day adverse outcomes. A web-based calculator 
was established to apply the XGBoost models in daily clinical practice.

Several recent studies have examined the incidence and outcomes of AKI among hospitalized  children3–5,13,25,26. 
The incidence of AKI varies with clinical settings and age. A large multicenter study reported a 20% overall 

Figure 3.  Precision-recall curves of the logistic regression and XGBoost models for MAKE30 (A) and 90-day 
adverse outcomes (B) in the test set. The figure was created using Python 3.6 (https:// www. python. org/).

Figure 4.  Calibration curves of the logistic regression and XGBoost models for MAKE30 (A) and 90-day 
adverse outcomes (B) in the test set. The Brier scores of the null model, logistic regression model, and XGBoost 
model for MAKE30 were 0.239, 0.144, and 0.141, respectively. The Brier scores of the null model, logistic 
regression model, and XGBoost model for 90-day adverse outcomes were 0.088, 0.074, and 0.065, respectively.

http://xydsbAKIteam.xyeyy.com
https://www.python.org/
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incidence of AKI among 101,836 pediatric inpatients in  China5. In the study, AKI occurred in 28% of infants, 
higher than 17% of childhood patients and 12% of adolescents. Additionally, one study showed that the occur-
rence of AKI increased in parallel with age and was greatest in patients aged 15 to 18 years  old25. Our study 
found that AKI occurred in 7.7% of all hospitalized children. The incidence of AKI in infants was approximately 
twice that in childhood patients and three times that in adolescents (4.8%). Differences may depend on the 
diverse causes of AKI and the distribution of comorbidities. Although the incidence of AKI differs between 
patient populations, it is consistently related to poorer prognosis in hospitalized  children3. Previous studies have 
reported that the incidence of MAKE30 was 9.6% in children with  sepsis11 and 5.2% in critically ill  children12. 
Our study showed that MKAE30 and 90-day outcomes occurred in 24.1% and 8.1% of hospitalized AKI children, 

Figure 5.  The top 15 important features derived from the XGBoost model for MAKE30. AKI, acute kidney 
injury; WBC, white blood cell. The figure was created using R 4.1.2 (https:// cran.r- proje ct. org).

https://cran.r-project.org
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respectively. The results suggested that continuous monitoring during hospitalization and frequent follow-up 
after discharge are essential for pediatric AKI patients.

The study identified risk factors associated with MAKE30 and 90-day adverse outcomes. As expected, AKI 
stage and CKD were the major risk factors of MAKE30 and 90-day adverse outcomes, respectively. A higher AKI 
stage reflects more severe renal dysfunction, while a history of CKD suggests decreased glomerular reserve at 
 baseline27. Another important finding is that the risk of 90-day adverse outcomes increased with age. The reasons 
may be distinct developmental status and repairability in hospitalized AKI children of different ages. In addition, 
hospital-acquired AKI was independently associated with MAKE30. Although differences in outcomes between 
hospital- and community-acquired AKI have been investigated in  adults28, studies focusing on pediatric patients 

Figure 6.  The top 15 important features derived from the XGBoost model for 90-day adverse outcomes. RRT, 
renal replacement therapy; AKI, acute kidney injury; WBC, white blood cell; CKD, chronic kidney disease. The 
figure was created using R 4.1.2 (https:// cran.r- proje ct. org).

https://cran.r-project.org
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are still limited. Finally, baseline variables associated with systemic diseases and multiorgan dysfunction were 
also risk factors for poor prognosis in hospitalized AKI  children3,5.

Our study used machine learning methods to predict adverse outcomes in hospitalized AKI children. The 
results showed that the XGBoost models achieved good performance in predicting MAKE30 and 90-day adverse 
outcomes. Previous studies have also shown the applicability of the XGBoost algorithm in predicting complica-
tions after pediatric cardiac  surgery29, multiple organ dysfunction in pediatric  ICU30, and volume responsive-
ness in oliguric AKI  patients15. Compared with traditional logistic regression, there are several strengths of the 
XGBoost algorithm. Firstly, XGBoost has a strong non-linear fitting capability. In the logistic regression model, a 
linear relationship between the continuous independent variables and the logit conversion values of the depend-
ent variables is needed. Instead, XGBoost makes flexible assumptions and has the ability to learn the complex 
relationship between the input variables. Secondly, XGBoost is robust to outliers and multicollinearity among 
the predictors. By contrast, logistic regression requires that there is no multicollinearity between the independent 
variables. Thirdly, XGBoost can achieve better predictive performance by applying ensemble learning, which 
integrates the results of multiple weak learners to obtain the strong learner. Fourthly, the XGBoost algorithm 
can identify important predictors of the outcome by calculating the contribution of each feature to each tree in 
the learning  process20, which clinicians may ignore in clinical practice.

Early prediction of adverse outcomes is critical for risk stratification and clinical decision-making in hospi-
talized AKI children. To promote the clinical application of the XGBoost models, we further established a web-
page risk calculator for prognostic assessment of pediatric AKI patients. The risk calculator can help clinicians 
identify high-risk patients at an early stage for individualized management, such as discussions of goal-of-care, 
decisions about resource allocation, evaluations of the quality of care, and suggestions of follow-up frequency, 
and may improve the prognosis of hospitalized AKI children.

Our study has several limitations. Firstly, because it was a single-center retrospective study conducted in an 
academic hospital, the results may not be generalizable to patients in other medical centers. Secondly, the sample 
size was relatively small, resulting in a limited number of positive individuals of some baseline variables. An 
essential variable was CKD, which was determined based on admission or discharge diagnosis codes. Because 
of the lack of body height data, we were unable to identify it according to the estimated glomerular filtration 
rate. Thirdly, urine output criteria were not used for AKI diagnosis because hourly urine output rate was not 
routinely measured in hospitalized AKI patients outside the ICU. Future multi-center prospective studies are 
required to externally validate the robustness and clinical effectiveness of the prediction models in a larger cohort 
of hospitalized AKI children.

Conclusions
In conclusion, we determined the incidence and outcomes of AKI among hospitalized children and devel-
oped machine learning-based prediction models for MAKE30 and 90-day adverse outcomes using the XGBoost 
algorithm. The XGBoost models showed good predictive performance in all hospitalized AKI children and in 
different subgroups. We further established a web-based risk calculator to promote the clinical application of 
the XGBoost models, which provided clinicians with useful tools for prognostic assessment in hospitalized 
AKI children. Future multi-center prospective studies are required to demonstrate the robustness and clinical 
effectiveness of the prediction models.

Data availability
The datasets used during the current study are available from the corresponding author on request.
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