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MRA Toolbox v. 1.0: a web‑based 
toolbox for predicting mixture 
toxicity of chemical substances 
in chemical products
Jongwoon Kim1,2*, Myungwon Seo1,2, Jiwon Choi1 & Minju Na1

The chemical risk assessment paradigm is shifting from “substance‑based” to “product/mixture‑
based” and from “animal testing” to “alternative testing” under chemical regulations. Organisms 
and the environment may be exposed to mixtures rather than a single substance. Conducting toxicity 
tests for all possible combinations is impractical due to the enormous combinatorial complexity. 
This study highlights the development and application case studies of Mixture Risk Assessment 
Toolbox, a novel web‑based platform that supports mixture risk assessment through the use of 
different prediction models and public databases. This integrated framework provides new functional 
values for assessors to easily screen and compare the toxicity of mixture products using different 
computational techniques and find strategic solutions to reduce the mixture toxicity in the product 
development process. The toolbox (https:// www. mrato olbox. org) includes four additive toxicity 
models: two conventional (Concentration Addition; and Independent Action) and two advanced 
(Generalized Concentration Addition; and Quantitative Structure–Activity Relationship‑based Two‑
Stage Prediction) models. We demonstrated the multiple functions of the toolbox using three cases: 
(i) how it can be used to calculate the mixture toxicity, (ii) those for which safety data sheet (SDS) only 
indicating representative toxicity values  (EC50; and  LC50), and (iii) those comprising chemicals with low 
toxic effects.

Abbreviations
BPR  Biocidal products
CA  Concentration addition
CI  Confidence interval
CLP  Classification, labelling, and packing of substances and mixtures
DRC  Dose–response curve
ECFP  Extended connectivity fingerprint
ECHA  European chemicals agency
EC50  Half-maximal effective concentration
FFA  Food and feed additives
GCA   Generalized concentration addition
GHS  Globally harmonized system
GUI  Graphical user interface
IA  Independent action
IPPC  Integrated pollution and prevention control
LC50  Median lethal concentration
MCRA   Monte Carlo risk assessment toolbox
MoA  Mode of action
MRA  Mixture risk assessment
MSDS  Material safety data sheet
NOEC  No observed effect concentration
OECD  Organisation for Economic Co-operation and Development
PCA  Principal component analysis
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PPP  Placing of plant protection, products
PPARα  Peroxisome proliferation activated receptor alpha
QSAR-TSP  Quantitative structure–activity relationship-based two-stage prediction
REACH  Registration, Evaluation, Authorization, and Restriction of Chemicals
SDS  Safety data sheet
WFD  Water Framework Directive

Progress in the chemical industry over the past several decades has culminated in the mass production of a wide 
diversity of products. In Europe, over 100,000 chemicals have been manufactured and marketed, and 200–300 
new chemicals are evaluated  annually1. In response to global chemical regulations, the paradigm of chemical risk 
assessment is shifting from ‘substance-based’ to ‘product/mixture based and from ‘animal testing’ to ‘alternative 
testing’. Living organisms and the environment are exposed to mixtures rather than single substances. Humans 
are exposed to about 100 different chemicals daily. These substances are found in consumer products and  foods2. 
Even at their no observed effect concentrations (NOEC), certain chemicals may contribute to mixture toxic-
ity because of the cocktail  effect3. European chemical regulations regarding mixtures may be substance- and 
product-based such as Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH); Biocidal 
Products (BPR); Food and Feed Additives (FFA); Placing of Plant Protection, Products (PPP); and Classification, 
Labelling, and Packaging of Substances and Mixtures (CLP). They may also be media- and process-based such as 
Integrated Pollution and Prevention Control (IPPC) and the Water Framework Directive (WFD). REACH defines 
mixtures as compositions of at least two different substances that are not chemically bonded. Several previous 
studies revealed that mixture toxicity may be caused by additive or synergistic effects among  chemicals3–9. The 
combined effects of a chemical mixture may be classified as additivity, synergism (i.e., more than additivity), and 
antagonism (i.e., less than additivity)10. Mixture toxicity tests cannot be performed on every possible component 
combination because of the enormous combinatorial complexity involved. For example, twenty chemicals may 
be combined into 190 binary combinations and over one million mixtures of three or more  compounds8,11. In 
addition, the in-depth mechanism of mixture toxicity are complex, and using conventional experimental tests, 
it is significantly expensive and time consuming to clearly understand the effect of the combination and com-
position of chemical mixtures, target species, and environmental stressors on the mixture  toxicity12. Recently, 
various computational toxicology approaches based on machine learning and deep learning techniques have 
been developed and applied to predict the toxicity of chemicals and  mixtures13–16. The advantage of computa-
tional toxicology is that it provides the opportunity to rapidly consider large datasets and effectively calculate 
the toxicity of chemicals, even at low levels of exposure and across  species17. Thus, computational toxicology 
methods are expected to become the core technologies for conducting mixture risk assessment. Mixture toxicity 
prediction was traditionally based on additive toxicity caused by the sum of effects concentration or the responses 
of chemicals in the  mixture18. Conventionally, the concentration addition (CA)19 and independent action (IA, 
also known as the response addition)20 models have been frequently used to estimate the additive toxicity of 
substances with the same modes of action (MoAs) and those with different MoAs, respectively. The CA model has 
been the default for mixture risk assessments under the pertinent chemical regulations because it is easy to use. 
In the CA model, the half-maximal effective concentration  (EC50) of single substances may be used to calculate 
those of mixtures. The CA model usually generates more conservative prediction values than the IA model. The 
latter cannot determine the sum of the responses (%) of mixture components below their NOEC. Cedergreen 
et al.21 reviewed the accuracy of the CA and IA models at estimating the toxicity of binary mixtures. Their study 
had 159 data points for 98 mixtures with different MoAs. About 20% and 10% of these mixtures were correctly 
calculated by the CA and IA models, respectively. About half the data points were improperly predicted by both 
models. MoAs data are required for all mixture components to establish which model is suitable for the analy-
sis. Because of their underlying assumptions, both models consider either similar or dissimilar MoAs. Efforts 
have been made to avoid the conceptual limitations of the conventional CA and IA models. The Generalized 
Concentration Addition (GCA) model was developed to predict additive toxicity for chemical substances with 
low toxicity  effects22. The quantitative structure–activity relationship-based two-stage prediction (QSAR-TSP) 
model was developed to predict the toxicity of mixture components with different MoAs. To this end, a chemical 
clustering method is applied based on machine learning techniques, structural similarities among the substances 
to estimate MOAs of components. Mixture toxicity is predicted by integrating both CA and IA  concepts23.

Although advanced prediction models based on different machine learning algorithms have been developed, 
one of the main challenges in applying them to mixture risk assessment is the lack of accessible tools for those 
who are not proficient at working with programming languages. There have been very few available web tools 
for mixture risk assessments. The Chemical Mixture  Calculator24 (http:// www. chemi calmi xture calcu lator. dk) 
and the Monte Carlo Risk Assessment  Toolbox25 (MCRA, https:// mcra. rivm. nl) are probabilistic models that 
assess the risks of combined dietary and non-dietary exposures to various chemicals. These tools have mainly 
focused on cumulative exposure assessments to evaluate risk characterization. They compare exposure and hazard 
threshold levels of target mixtures under the assumption of dose-additivity in mixture risk assessment rather 
than mixture toxicity assessment of cocktail effects. They require numerous calculations and detailed hazard and 
exposure data for mixture components. More practical, user-friendly, web-based, regulatory-compliant tools 
may be useful for the chemical industry; these tools will facilitate the accessibility of the mixture risk assess-
ment so that the industry can consider and screen potential cocktail effects in chemical mixtures during product 
development. In this aspect, this study highlights the development and application of case studies using Mixture 
Risk Assessment (MRA) Toolbox, a novel web-based platform for supporting mixture risk assessment, includ-
ing different prediction models and public databases. This integrated framework of the toolbox was designed 
to provide new functional values for assessors to easily screen and compare the toxicity of mixture products 

http://www.chemicalmixturecalculator.dk
https://mcra.rivm.nl


3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8880  | https://doi.org/10.1038/s41598-022-13028-0

www.nature.com/scientificreports/

using different computational techniques, and determine strategic solutions to reduce the mixture toxicity in 
the product development process.

Therefore, in this study, MRA Toolbox v. 1.0 was developed by integrating various predictive models with 
related databases on the web platform for computational mixture risk assessment. It rapidly considers and com-
pares the estimated cocktail effects of chemical mixtures using different underlying concepts frequently employed 
in this field. MRA Toolbox is freely available at https:// www. mrato olbox. org, and pursues the safe and sustain-
able-by-design framework of chemical products; it provides a chemical safety technology platform for virtually 
testing the toxicity of chemical mixture products by changing the mixture formulations and finding alternatives 
to hazardous. The present study thus exhibits the current version of MRA Toolbox that predicts the combined 
toxicity of mixture components. It uses conventional CA and IA models as lower-tier approaches and the more 
advanced additive toxicity models GCA and QSAR-TSP as higher-tier approaches. The mixture toxicity values are 
based on available user input data and predicted and automatically compared by all four models in the toolbox. 
Moreover, chemical properties search by interfacing with the chemical name, CAS number, molecular weight, 
molecular structure of PubChem DB (https:// pubch em. ncbi. nlm. nih. gov)  will26 be provided. Dual data saving 
modes are furnished to ensure user data confidentiality and security. The multiple functions of MRA Toolbox 
were demonstrated using three different case studies: (i) how it can be used to calculate the toxicity of mixtures, 
(ii) those for which SDS only indicate  EC50/LC50, and (iii) those comprising chemicals with low toxic  effect27–29.

Methods
System architecture of MRA Toolbox v. 1.0. The web application design and implementation of MRA 
Toolbox requires (i) system software (e.g., operating system, web development kit, and database management 
system), (ii) various computational models (e.g., mathematical, and statistical algorithms), (iii) scientific soft-
ware (e.g., molecular modeling software, programming languages and libraries for machine learning), and (iv) 
open data sources.

Figure 1 illustrates the system architecture of MRA Toolbox. System software programs employed in the 
toolbox were the Community Enterprise Operating System (CentOS)30 v. 8.3, Java Server  Pages31 for the web 
development environment of graphical user interfaces (GUIs), and MariaDB v. 10.3.27 (MariaDB Foundation, 
https:// maria db. org/) for the database management system. As computation models for estimating mixture 

Figure 1.  Architecture of MRA Toolbox v. 1.0.

https://www.mratoolbox.org
https://pubchem.ncbi.nlm.nih.gov
https://mariadb.org/
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toxicity, four predictive models were implemented in the toolbox: two conventional models (e.g., CA and IA) as 
lower-tier models, and two advanced models (e.g., GCA and QSAR-TSP) as higher-tier models described in the 
introduction. The predictive model algorithms were implemented via the programming language R v. 4.0.232 in 
the toolbox wherein the CA, IA and GCA were implemented using the modified ‘mixtox’ package v. 1.3.2 in  R33. 
We partly modified the original mixtox package to be fitted for the toolbox purposes to cover a wider range of 
model input data with additional fitting curve equations, unit conversion functions, and automatic determina-
tion of predictable DRC ranges as follows:

 (i) Ten dose–response curve (DRC) equations were added to the mixtox package; in total, 17 DRC regres-
sion models were set up in the toolbox (Supplementary Table S1);

 (ii) Unit conversion features were additionally implemented to enable the inter-conversion of nM, μM, mM, 
ug/L, and mg/L; and

 (iii) Automatic determination of predictable DRC ranges was added as an essential function for the toolbox. 
This was done as the full DRC of a mixture could not be calculated at a certain higher concentration in 
cases where there was a toxic effect of mixture components. This additional function enables the toolbox 
to estimate the mixture toxicity within the available effect range of low toxic components by automati-
cally selecting a concentration section wherein it could be calculated.

The algorithm of the QSAR-TSP model, assuming that similar structures have similar MoAs, was imple-
mented in R. In QSAR-TSP, MoAs of components in the product are divided into groups based on their structural 
similarity calculated by descriptors. When grouping of components for MoA, the calculated descriptors were 
compressed into fewer principal components that address the total data while minimizing information loss by the 
principal component analysis (PCA)34 in R. PCA results were grouped based on the k-means clustering method 
and calculated sequentially by CA and IA models. In cases where mixture products include only two compo-
nents (i.e., binary mixtures), their MoAs were predicted according to structural features calculated to extended 
connectivity fingerprint (ECFP) level 6 based on the RxnSim package v. 1.0.3 in  R35 since the QSAR-TSP and 
the k-means clustering method are applicable to more than three mixture components. For binary mixtures, 
the structural similarity for binary mixtures is thus calculated by using the Tanimoto coefficient as an indicator 
based on the ECFP level 6  results36. If the structural similarity between two components is more than 0.7, both 
chemicals are assumed to have a similar MoA and the CA model is employed to calculate their mixture toxicity. 
In the opposite case, the IA model is applied.

As scientific software programs for the toolbox, two molecular modeling software programs were used for 
calculating chemical structural information: alvaDesc software v. 2.0.037 and Open Babel software v.3.3.138. alva-
Desc is a very powerful commercial software which calculates more than 5000 molecular descriptors representing 
the physicochemical properties of a chemical structure. In cooperation with an alvaDesc development team, the 
software was successfully embedded in the toolbox with the following limitation: users cannot directly access 
results calculated from alvaDesc since its calculation process, based on the user’s input data, is only calculated 
from the back-end server computer. Open Babel software widely used as an open source was applied in optimiz-
ing chemical structures in the toolbox. For users to directly draw and upload their molecular structures into the 
tool,  Ketcher39, as on open software, was also embedded for the molecular modeling process.

As open data sources, MRA Toolbox interfaces with the PubChem DB (NIH, USA) and includes the material 
safety data sheet (MSDS) DB of the Chemical Integrated Management System (KRICT CMS System) of the Korea 
Research Institute of Chemical Technology [http:// krict- cms. krict. re. kr (available in Korean language mode)]. 
The information on the main hazard classification (GHS, Globally Harmonized System) and risk management 
measures are provided from the MSDS DB. Chemical information, including molecular structure, CAS number, 
molecular weight, physicochemical properties, etc., are provided to users by connecting to the PubChem DB.

Work process of MRA Toolbox v. 1.0. MRA Toolbox was designed to have a step-by-step work process 
as shown in Fig. 2:

(i) [Step I for data input] In step I, for mixture risk assessment, a user registers mixture product informa-
tion such as product name and description in the registration area. Data related to mixture components 
(chemical name, CAS number, composition, toxicity information, etc.) are entered by manually inputting 
or uploading the template. User searches chemical properties and downloads structures from the PubChem 
DB based on the chemical name or CAS number. If a chemical is not found, the user can directly upload 
it in MoL or SDF file format or draw and enter a chemical structure in MRA Toolbox using the Ketcher. 
Classification and risk management measures can be searched for in the MSDS DB associated with a chemi-
cal name or CAS number. Toxicological information such as regression models and model parameters are 
required for predicting the mixture toxicity with different prediction models (CA, IA, GCA, and QSAR-
TSP);

(ii) [Step II for predictive model selection/calculation] In step II, predictive models are selected to estimate the 
mixture toxicity of the chemical product. According to the user data input level, a user selects the mixture 
toxicity prediction model. If the MoA information has the same or different mixture components, the user 
can use conventional models. Only the Simple CA model estimating mixture  EC50 can be applied if toxicity 
information is not entered. The user can employ the GCA model in case mixture components include low 
toxicity effects. The QSAR-TSP model can be used for complex mixtures with both similar and dissimilar 
MoA. Calculation of mixture toxicity provides mixture toxicity values such as  EC50 or  LC50 and DRCs of 
mixtures; and

http://krict-cms.krict.re.kr
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iii) [Step III for Result reporting] In step III, a user can confirm the result of the mixture toxicity prediction. The 
result consists of the lowest predicted  EC50 value of the mixture, predicted DRCs and tables of the mixture, 
and the user’s input information. The predicted mixture toxicity is reported on the website, and users can 
download this information in Excel format.

Dual data saving modes for data confidentiality. We designed dual data saving modes for the infor-
mation security of users in the MRA Toolbox as follows: (i) saving on PC only, and (ii) saving on the server. 
The saving on PC only mode allows users to enter and save the input data temporarily during the web browser 
session. The saving on server mode allows the users’ input data to be conserved on the MRA Toolbox server.

Data collections for case studies of MRA Toolbox applications. To demonstrate multiple functions 
of the MRA Toolbox, we collected three datasets for the case studies (e.g., a complex mixture; a mixture includ-
ing only  EC50 or  LC50 and a mixture containing chemicals with low toxic effect) in literature as follows:

 (i) [Dataset 1] a 23-component  mixture27 as a representative complex mixture was selected for Case Study 
1 with considering more than ten components having their detail information on compositions, DRC 
equations, and modes of action (Supplementary Table S2);

Figure 2.  Overview of MRA Toolbox v. 1.0.
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 (ii) [Dataset 2] a SDS of a coating product, a primer for adhesives, having four main  components28 was 
collected for Case Study 2 (Table 2) in which the composition,  EC50s and  LC50s of mixture components 
were described, but additional information on their DRC equations was not included;

 (iii) [Dataset 3] a  mixture29 consisting of three perfluorinated carboxylic acids, partial agonist on peroxisome 
proliferator-activated receptor alpha activity, was selected for Case Study 3 for considering low efficacy 
compared with positive control (Supplementary Table S3).

The dataset 3 of mixtures having low toxic components does not provide the value of parameters for regres-
sion models for DRC, but a DRC graph only. In this case, the data points of DRC were manually extracted from 
the graph with  WebPlotDigitizer40 v 4.4. Thereafter, the parameters of DRC were calculated by fitting according 
to a Hill three-regression model using SigmaPlot v. 14. 0 (Systat Software Inc., San Jose, CA, USA). SigmaPlot 
software was used for in-detail plotting of the results of Case Study 3. WebPlotDigitizer and SigmaPlot are not 
included in the toolbox.

We selected the QSAR-TSP model to predict the mixture toxicity of complex mixtures with both similar 
and dissimilar MoA. The GCA model was selected to predict mixture toxicity, including components of low 
toxic effects. CA and IA models were selected to compare the predicted results with the QSAR-TSP and GCA 
models. We selected a simple CA model to estimate the mixture toxicity in general toxicity data, including  EC50 
or  LC50 only.

Results
We developed the web-based MRA Toolbox for supporting mixture risk assessment and pursuing the safe and 
sustainable-by-design framework of chemical products. It uses various computational techniques to screen the 
potential cocktail effects of chemical mixtures. It can be used to find methods of reducing the mixture toxicity in 
the product development process. We designed a simple and user-friendly GUI based on the system architecture 
to operate the toolbox following the work process. Moreover, we implemented dual data saving modes for data 
confidentiality. The multiple functions of the toolbox were demonstrated through three case studies: (i) toxicity 
prediction of a complex mixture consisting of various MoAs chemicals, (ii) prediction of mixture toxicity using 
only  EC50 or  LC50 in a SDS, and (iii) mixture toxicity prediction including chemicals with low toxic effect.

Development of the MRA Toolbox v. 1.0
Data input and graphical user interface. The MRA Toolbox has a simple GUI to enter data for chemical 
mixtures and their components. Figure 3 shows the product information registration area in Step I. There, the 
input data can be categorized as mandatory or optional. The mandatory and optional data fields (cells) are in red 

Figure 3.  MRA Toolbox graphical user interface (GUI) to enter chemical product, composition, and hazard 
data.
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and blue, respectively. The main data fields consist of (i) chemical name; (ii) CAS number; (iii) KRICT DB; (iv) 
PubChem DB; (v) component type such as substance or sub-mixture; (vi) physical state; (vii) composition (%); 
(viii) molecular weight; (ix) common endpoint such as  EC50 or  LC50; (x) concentration unit; and (xi) toxicity 
information (Fig. 3).

Chemicals containing the letters being entered in the GUI are listed via the auto-complete feature and the 
PubChem DB interface. Hence, CAS numbers are automatically retrieved and may be utilized to search for the 
target chemical. For chemicals not automatically detected, it can manually enter the CAS number. Classification 
and risk management measures described in the MSDS and associated with a chemical name or CAS number 
may appear in the MSDS search if the CAS number or chemical name is present in the KRICT DB.

Chemical structures of input data are automatically downloaded if a chemical structure corresponding to 
a CAS number or chemical name is included in the PubChem DB. If the molecular structure cannot be found 
in the PubChem DB, or the structure is new without a CAS number, it can draw structure using the Ketcher, 
a drawing tool embedded in the toolbox. Also, it can directly upload a structure as a MOL or SDF file format.

The component type and physical state are designed dropdown menu. The substance or sub-mixture can be 
selected in the component type, solid, liquid, or gas can be chosen in the physical state. Mixture composition 
(%), molecular weight, common endpoints, and concentration units can be entered via the GUI. In the data field, 
the common endpoint is the value of  EC50 or the median lethal concentration  (LC50). The concentration unit 
is designed with a dropdown menu containing five units. It must be entered along with the toxicity endpoint 
value. The molecular weight of a chemical substance is automatically retrieved via the PubChem DB interface 
when the CAS number is entered.

The toxicity information includes DRCs such as regression models, model concentration unit, regression 
model parameters such as α, β, and γ, and predicted concentration unit for calculating outputs in a common 
unit. Though the toxicity information is optional, the toxicity information is nonetheless required for predicting 
the DRCs of the mixture toxicity of targets with different prediction models (CA, IA, GCA, and QSAR-TSP). 
All the input data can be entered into the toolbox manually as well as it allows mass data input features using 
an excel template for the user convenience. MRA Toolbox GUI provides both English and Korean languages.

Predictive model selection and calculation. The MRA Toolbox ultimately pursues estimating com-
bined risk for various chemical mixtures using the mixture toxicity prediction, exposure assessment, and mix-
ture risk assessment modules. The toolbox currently focuses on implementing the mixture toxicity prediction 
module. The other two modules will be integrated into later versions of MRA Toolbox. We implemented a model 
selection page as a checkbox to carry out more than two model’s calculations. The user’s selection enables the 
prediction of mixture toxicity by using between one model and a maximum of five models (Fig. 4).

Result report and graphical output. The MRA Toolbox provides summary information including mix-
ture composition, lowest predicted  EC50 value, predicted DRCs, and tabulated predicted mixture toxicity effects 
and input data (Fig. 5). Mixture composition is displayed in the form of a donut graph wherein the top five 
chemical substances are illustrated along with their CAS numbers. The lowest predicted  EC50 or  LC50 values 
for mixtures reflect the highest toxicity values forecasted by the selected model(s). Predicted mixture DRCs are 
calculated by user-selected models and plotted as sigmoid graphs. If only the simple CA model is selected, either 
 EC50 or  LC50 is provided and no DRC is plotted for the mixture (Fig. 5A). The predicted mixture toxicity effects 
values are tabulated (Fig. 5B). Here, the mixture toxicity values predicted by each model show in the range of 
10–90%. Mixture component input data are also tabulated (Fig. 5C).

Implementation of dual data saving modes. MRA Toolbox provides dual data saving modes for data 
confidentiality. In saving on PC only, the information entered is temporarily saved and is only available during 
the web browser session. If the web browser session is logged off, information cannot be the after logging back 
on. The mode of saving on the server is information to be conserved on the MRA Toolbox server. After the user 
exits the system, the information will still be visible upon re-entry.

Result of application case studies
Case Study 1: Toxicity prediction for a complex mixture consisting of substances with both 
similar and dissimilar modes of action. Complex mixtures may comprise various chemicals with both 
similar and dissimilar MoAs. Conventional CA and IA models theoretically require that the MoAs of all chemi-
cals in the mixture are specified. The CA and IA make binary assumptions that the MoAs of all chemicals in a 
mixture is either similar or dissimilar, respectively. Hence, both models can be limited to predicting the mix-
ture toxicity of complex mixtures composed of similar and dissimilar MoAs chemicals, basically. MRA Toolbox 
includes the QSAR-TSP model as an integrated addition model that can consider such complex mixtures with 
combining the CA and IA concepts. In Case Study 1, MRA Toolbox was used to demonstrate how the toxicity of 
a complex mixture could be calculated via the CA, IA, and QSAR-TSP models and using data on DRCs of mix-
ture components from a previously published  study27 (Supplementary Table S2). This study examined the effects 
of a mixture of 23 pesticides with different MoA groups on the reproduction of the green alga Scenedesmus vacu-
olatus strain 211-1527. The QSAR-TSP model performed the  best23. MRA Toolbox plotted DRCs and predictive 
toxicity effect concentrations for the target mixture in graph and table form, respectively (Fig. 6A; Table 1). For 
the predicted DRCs, users may compare toxic effects in the range of 10–90%. For the predicted DRCs, users may 
apply the QSAR-TSP model to predict mixture toxicity with a higher degree of accuracy. The QSAR-TSP model 
is optimized to predict the toxicity of mixtures comprising at least three components with similar or dissimilar 
MoAs. For binary mixtures, the QSAR-TSP model assumes their MoAs by calculating their structural similarity 
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(for detailed information of the structural similarity calculation, refer to the Methods section and Kim et al.23). 
On this basis, the mixture toxicity is then predicted by the CA or IA model.

Case Study 2: Toxicity prediction for a complex mixture based on safety data sheet (SDS) 
information. General toxicity data for mixture components can be provided in SDS. However, DRCs and 
certain other toxicity data are not specifically included in the SDS. For components omitted from the DRCs, the 
DRC of mixture toxicity cannot be estimated using CA, IA, GCA, and QSAR-TSP. Nevertheless, MRA Toolbox 
provides a simple CA model that predicts mixture toxicity even when DRCs are unavailable for certain chemical 
components. Half-maximal effective concentrations  (EC50) and half-maximal lethal concentrations  (LC50) for 
mixtures may be predicted by the simple CA model when  EC50s or  LC50s of the mixture components are known 
for the components. For the MRA Toolbox case study, a coating product consisting of four components served 

Figure 4.  MRA Toolbox graphical user interface (GUI) to select mixture toxicity predictive models.
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Figure 5.  MRA Toolbox GUI for reporting prediction results. (A) Graphical information for mixture 
composition; representative  EC50 as lowest value and DRCs of target mixture predicted by selected models; (B) 
toxicity effects (%) vs. effective concentrations computed by models; and (C) user input data for all mixture 
components.
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as the  mixture28. The mixture toxicity of the coating product was predicted based on the simple CA model and 
using its composition ranges and ecotoxicity data (e.g.,  EC50 for Daphnia magna) publically described in SDS 
(Table 2). In the worst-case scenario, maximum composition values of mixture components were selected to 
estimate the  EC50 of their mixture using the simple CA model. As MRA Toolbox furnishes a simple CA model, 
users may still estimate mixture toxicity even when DRCs of components are missing.

Case Study 3: Toxicity prediction of a mixture containing low‑toxicity chemicals. Original pro-
gramming codes for the CA, IA, and GCA calculations in the ‘mixtox’ R package included in MRA Toolbox basi-
cally generate mixture toxicity values for toxic effects in the range of 10–90%. Thus, the CA and IA algorithms in 
the original ‘mixtox’ package can display error message (e.g., not available) in the calculation when some chemi-
cals may have low toxic effect ranges that maximal toxic effect is lower than 50%. All model algorithms were 

Figure 6.  Comparisons of CA, IA, GCA, and QSAR-TSP predictions. (A) Case Study 1; and (B) Case Study 3.
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coded in MRA Toolbox to solve this limitation by automatically selecting a concentration section which could 
be calculated for low toxic effect chemicals. In Case Study 3 having low-toxicity chemicals, MRA Toolbox was 
used to predict mixture toxicity via the CA, IA, and GCA models using data from an earlier case study on low 
toxic effects (Supplementary Table S3). That study predicted the effects of activating peroxisome proliferation 
activated receptor alpha (PPARα) with mixtures of three perfluorinated carboxylic acids and three sulfonic acids, 
 respectively29. MRA Toolbox plotted DRCs for mixture toxicity and toxic effect concentrations in the range of 
10–60% based on the predictive models (Fig. 6B; Table 3). Case Study 3 shows the toxicity of mixtures including 
low-toxicity chemicals can be appropriately estimated and compared by the CA, IA, and GCA models in MRA 
Toolbox within the available DRC ranges of mixture components.

Discussion
Toxicity experiments have been conducted using in vitro and animal models to understand the combined toxic 
effects of individual chemicals in mixtures. However, the number of possible combinations is virtually extremely 
large. Hence, not every mixture can be evaluated by these approaches. Non-testing methods have been widely 
applied in the attempt to overcome experimental limitations and predict chemical and mixture toxicity. In the 
non-testing methods, the chemical mixture calculator and the MCRA Toolbox were developed for mixture risk 
 assessment24,25. The chemical mixture calculator is a web-based tool that considers similar chemical classes and 
exposure routes in specific target organs and performs mixture risk assessments based on dose-additive effects. 
The MCRA toolbox considers combined exposure of multiple chemicals and assesses the risks of mixtures based 
on probabilistic methods. Since both tools mainly focus on conducting the cumulative exposure assessment in 
mixture risk assessment, they may have a limitation to predict cocktail effects using predictive models such as 

Table 1.  Summary of predicted effective concentrations of mixture for Case Study 1.

Toxic effect (%)

Predicted effective concentrations of mixture (μM) [CI]

CA IA QSAR-TSP

10 0.083 [0.057; 0.144] 0.077 [0.038; 0.160] 0.106 [0.078; 0.175]

20 0.166 [0.132; 0.193] 0.180 [0.135; 0.225] 0.180 [0.141; 0.212]

30 0.246 [0.208; 0.258] 0.293 [0.242; 0.314] 0.251 [0.208; 0.265]

40 0.327 [0.287; 0.339] 0.416 [0.359; 0.431] 0.324 [0.279; 0.336]

50 0.409 [0.373; 0.430] 0.552 [0.496; 0.578] 0.403 [0.360; 0.425]

60 0.497 [0.472; 0.529] 0.707 [0.662; 0.751] 0.491 [0.458; 0.527]

70 0.594 [0.583; 0.636] 0.890 [0.867; 0.955] 0.596 [0.579; 0.646]

80 0.711 [0.698; 0.758] 1.125 [1.112; 1.201] 0.732 [0.720; 0.788]

90 0.876 [0.809; 0.904] 1.478 [1.373; 1.528] 0.943 [0.864; 0.981]

Table 2.  Composition and toxicity data of mixture components in SDS, and  EC50 of mixture predicted by the 
simple CA model for Case Study 2.

Substance CAS RN MW (g/mol) Composition range (%) EC50 (mg/L-48 h, D. magna)

Toluene 108-88-3 92.140 70–75 11.500

n-Butanol 71-36-3 74.120 1–5 1983

2-Butoxyethanol 111-76-2 118.170 1–5 1000

Ethyl alcohol 64-17-5 46.070 1–5 9268

Mixture – – 73–90 15.314

Table 3.  Summary of predicted effective concentrations of mixture for Case Study 3.

Toxic effect (%)

Predicted effective concentrations of mixture (μM) [CI]

CA IA GCA 

10 3.031 [− 3.700; 12.397] 3.660 [2.209; 5.538] 3.001 [− 3.024; 11.626]

20 6.084 [0.303; 10.812] 7.112 [5.965; 7.775] 6.033 [0.321; 10.706]

30 9.736 [3.565; 13.236] 10.759 [9.393; 11.743] 9.836 [3.722; 13.112]

40 14.582 [6.361; 21.749] 14.825 [13.706; 16.167] 14.611 [7.533; 20.860]

50 22.030 [16.745; 30.916] 19.599 [18.970; 20.840] 22.216 [17.722; 30.432]

60 39.549 [29.062; 48.642] 25.566 [23.671; 27.071] 39.756 [29.935; 47.993]
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CA and IA. However, the MRA Toolbox regards the cocktail effect of the chemical mixture and uses it to estimate 
mixture toxicity.

In the aspect of application, the MRA Toolbox provides benefits that risk assessors can apply various methods, 
covering different situations shown in the case studies, to the prediction of mixture toxicity easily, and promptly 
compare their results in mixture risk assessment. The toolbox has the conventional CA and IA models which 
have been frequently considered under chemical regulations. In addition, it also contains the QSAR-TSP and 
GCA models as advanced methods for calculating additive toxicity in cases where targets are complex mixtures 
including both similarly and dissimilarly acting compounds, or they are combinations of components with low 
toxic effects which may be critical limitations of the CA and IA models basically. In the aspect of the usability, the 
MRA Toolbox as a web-based platform provides a convenient user interface for predicting mixture toxicity, and 
offers systematic outputs in a report form including summary figures and tables. The toolbox provides predic-
tion results such as DRCs in the overall effect range of 10–90% when appropriate input data sets are provided. 
It displays them in table and graph formats rather than single data points such as  EC50.

Nevertheless, MRA Toolbox v.1.0 has several limitations. First, the user must enter DRC model parameters 
of all mixture components to obtain a DRC of their mixture toxicity using different models. If such data is 
insufficient, the predictive models in the toolbox may not effectively predict mixture toxicity for entire effective 
ranges. Second, only aquatic species as target organisms can be selected for estimating mixture toxicity in the 
toolbox. Toxicity data on aquatic species are allowed to be input in the predictive models. To expand the target 
species list, more lists of taxonomic groups should be added to the species database of the toolbox. Third, the 
ultimate goal of the MRA Toolbox should be prediction of risks which can be occurred by different chemical 
combinations. Mixture risk assessment requires not only the toxicity of mixture components but also their human 
and environmental exposures. However, the current version of MRA Toolbox focuses mainly on the toxicity of 
chemical mixtures. Thus, MRA Toolbox must be expanded by integrating exposure assessment models and risk 
characterization methods for combined exposures to chemical mixtures.

Conclusion and outlook
In the present study, we developed and introduced the web-based MRA Toolbox v. 1.0 supporting the mixture 
risk assessment. The freely available MRA Toolbox assesses mixture toxicity based on different prediction models 
(e.g., CA, IA, GCA, and QSAR-TSP) and includes a user-friendly GUI. We demonstrated the multiple functions 
of the toolbox and showed how it can be used to calculate the toxicity of complex mixtures, those for which SDS 
only indicate  EC50/LC50, and those comprising chemicals with low toxic effect. For further studies to expand the 
applicability and increase the user-friendliness of the toolbox, it will be upgraded by adding other prediction 
models and linking it to available databases and toolkits providing experimental and predicted data, e.g., Euro-
pean Chemicals Agency (ECHA) DB (https:// echa. europa. eu) and Organisation for Economic Co-operation and 
Development (OECD) QSAR Toolbox Web API (https:// qsart oolbox. org), to fill in data gaps users have. This is 
to overcome the application limit of the toolbox mainly caused by lack of data. In addition, the risk characteri-
zation methods for combined exposures will be added to the toolbox for assessors to finally carry out the risk 
assessment of mixture products. The list of taxonomic groups in the toolbox will be also updated to consider 
more toxicity data on different species.

In the future, MRA Toolbox will pursue a safe and sustainable-by-design framework of chemical products 
to find a strategic solution to effectively reduce the risk of mixture toxicity of chemicals by changing mixture 
composition or substituting components with alternatives. It can contribute to public health and sustainable 
chemistry as a chemical safety technology platform. A variety of case studies are necessary to support mixture 
risk assessment continuously and maintain the reliability of the toolbox.

Data availability
MRA Toolbox v. 1.0 is freely available at https:// www. mrato olbox. org. All data generated or analyzed in this study 
is publicly available and is included in this article (and its supplementary information files).
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