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Predicting compressive strength 
of high‑performance concrete 
with high volume ground 
granulated blast‑furnace slag 
replacement using boosting 
machine learning algorithms
Vimal Rathakrishnan1*, Salmia Bt. Beddu1 & Ali Najah Ahmed2

Predicting the compressive strength of concrete is a complicated process due to the heterogeneous 
mixture of concrete and high variable materials. Researchers have predicted the compressive strength 
of concrete for various mixes using machine learning and deep learning models. In this research, 
compressive strength of high-performance concrete with high volume ground granulated blast-
furnace slag replacement is predicted using boosting machine learning (BML) algorithms, namely, 
Light Gradient Boosting Machine, CatBoost Regressor, Gradient Boosting Regressor (GBR), Adaboost 
Regressor, and Extreme Gradient Boosting. In these studies, the BML model’s performance is 
evaluated based on prediction accuracy and prediction error rates, i.e., R2, MSE, RMSE, MAE, RMSLE, 
and MAPE. Additionally, the BML models were further optimised with Random Search algorithms and 
compared to BML models with default hyperparameters. Comparing all 5 BML models, the GBR model 
shows the highest prediction accuracy with R2 of 0.96 and lowest model error with MAE and RMSE of 
2.73 and 3.40, respectively for test dataset. In conclusion, the GBR model are the best performing BML 
for predicting the compressive strength of concrete with the highest prediction accuracy, and lowest 
modelling error.

Literature review and problem statement.  Concrete has been commonly used in construction and 
architecture due to its favourable engineering properties. Concrete has the characteristics of rich raw material, 
low price, and high compressive strength and good durability1. Concrete comprises four primary components: 
coarse aggregate, fine aggregate, cement, and water. Concrete’s economic value allows it to be widely used in 
constructions and the accessibility to the material available in the local market. It also demonstrates excellent 
benefits over other construction materials such as steel, and concrete can be produced with minimum effort. 
In certain instances, supplementary materials like fly ash (PFA)2,3, blast furnace slag (GGBS)4, silica fume5, and 
other industrial waste/by-products are added in concrete to enhance the mechanical properties of the concrete4. 
The introduction of industrial waste/by-product6,7 into concrete offers environmental benefits while increasing 
the longevity and resiliency of concrete structures.

Among the various concrete property indices, compressive strength is the most critical because it is directly 
related to the structural safety and is required for determining the performance of structures throughout their 
life, from new structural design to old structural assessment8.

When dealing with concrete materials, one of the difficulties in selecting the appropriate materials and pre-
dicting the mechanical properties of the concrete, i.e., compressive strength, is due to cost and the availability of 
local material9. It is vital to have robust and reliable predictive models based on existing input and output data 
at the early stage to drive down the cost of making further experiments and reduce the cost associated with the 
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risk of non-compliance concrete during construction5. With the use of suitable models, it can lead to success 
in finding combination inputs that can achieve meaningful outcomes and, at the same time, saves considerable 
time and money. However, empirical, and statistical models, such as linear and nonlinear regression, have been 
widely used. However, these models require laborious experimental work to develop, and can provide inaccurate 
results when the relationships between concrete properties and mixture composition and curing conditions are 
complex10.

ML is a sub-class of AI that self-learning through algorithms and improves its performance based on previ-
ous datasets/experience. The distinction between AI, ML, and DL is illustrated in Fig. 1. With minimal human 
input, ML algorithms will automatically learn and improve over time6. ML has been widely applied in the field 
of engineering to solve a variety of problems i.e., predict outages, estimate angular velocity, components failure 
prognostics and prediction of fatigue life11–14. In civil engineering, AI and ML have been previously employed 
to tackle problems in various structural engineering fields15. ML application is also used in building structural 
design & performance assessment, improving finite element modelling of structures, and enhancing concrete 
properties prediction & assessment9,16–20.

Given the popularity of machine learning, especially in concrete technology, various studies have been con-
ducted using ML/DL approaches10. Table 1 below shows the summary of concrete compressive strength pre-
diction for various types of concrete using various ML and DL models. Many empirical and statistical models, 
i.e., linear and nonlinear regression algorithms, were employed to predict the properties of concrete10. Multiple 
Linear Regression (MLR)21, Support Vector Machine (SVR)22,23, Multilayer Perceptron (MLP)24, and Gradient 
Boosting25,26 are most used ML algorithms to predict the mechanical and chemical properties of concrete. In gen-
eral, the compressive strength prediction was undertaken for several type of concrete i.e., ordinary concrete8,10, 
high-performance concrete25,27–30, ultra-high-performance concrete 20, and green concrete with supplementary 
cementitious material i.e., fly ash16,31,32, blast furnace slag4 and recycled aggregates6. ML/DL is also used to predict 
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Figure 1.   Artificial Intelligence sub-classes.

Table 1.   Summary of previous studies on concrete strength prediction.

No Type of Concrete Model Dataset Year Reference

1 Fly-ash based concrete Decision tree, ensemble bagging, Gene expression programming 270 2021 32

2 High-performance concrete from industrial wastes Decision tree, random forest, support vector, artificial neural network, multiple linear 
regression, ensemble bagging & boosting 1030 2021 43

3 Self-compacting concrete with fly-ash Data Envelopment Analysis 114 2021 44

4 Steel fibre-reinforced concrete Boosting- and tree-based models, K-nearest neighbour, linear, ridge, lasso regressor, 
support vector regressor, multilayer perceptron models 220 2021 5

5 Self-compacting concrete with high-volume fly ash Support vector machine 337 2020 23

6 High-performance concrete Multivariate adaptive regression splines, kernel ridge regression, gradient boosting 
machines, gaussian process regression 1030 2020 25

7 High-strength concrete Gene expression programming 357 2020 27

8 Ultra-high-performance concrete Artificial neural network: Sequential Feature Selection (SFS) and Neural Interpretation 
Diagram (NID) 110 2020 20

9 Alkali-activated concrete Random Forest 180 2020 3

10 Ordinary concrete Extreme gradient boosting 1030 2020 45

11 Self-compacting concrete Artificial neural network 205 2019 46

12 Self-compacting concrete with fly ash Enhanced multiclass support vector machine and fuzzy rule 114 2019 16

13 Lightweight self-compacting concrete Random forest regression 131 2019 47

14 High-performance concrete Artificial neural network: modified firefly algorithm 1133 2018 33

15 High-performance concrete Support vector machine, enhanced cat swarm optimisation 2200 2018 48

16 Lightweight Aggregate Concretes Extreme learning machine regressor, particle swarm optimization 75 2018 49

17 Self-compacting concrete containing fly ash Decision tree algorithms: M5′ and multivariate adaptive regression splines 114 2018 31
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other mechanical and chemical properties of concrete, i.e., prediction of concrete shear strength15,24, 30], tensile 
strength33, flexural strength5, the thermal conductivity of concrete34, and chloride concentration of concrete35.

For the DL model, Artificial Neural Network (ANN)4,7,29,36–38 was widely used in most previously reported 
studies. The use of boosting algorithms is not extensively reported in any previous studies except the GBR mod-
els. The proposed boosting algorithms were chosen based on their popularity and frequency in other research 
areas such as biomedical and construction hazard analysis, which reports that the BML models have higher 
prediction accuracy than other ML and DL models39–42. We implemented and analysed the accuracy and error 
of compressive strength prediction for five different boosting algorithms, namely LBGM, CATB, GBR, ADAB, 
and XGB. Additionally, the BML models are enhanced using the Random Search (RS) optimization process, 
which involves tuning the hyper-parameters of the BML algorithms.

Objectives.  The study’s objective is to identify the best performing BML models, i.e., LBGM, CATB, GBR, 
ADAB, and XGB to predict the HPC with high volume GGBS using BML algorithms, i.e., LBGM, CATB, GBR, 
ADAB, and XGB. The BML models were then optimised using the Random Search (RS) optimisation process 
by tuning the hyper-parameters of each BML model function. Additionally, comparison studies were also con-
ducted using commonly used ML models, i.e., linear regression, decision tree, random forest, etc., to evaluate the 
performance of the BML model in predicting the concrete strength.

The fundamentals behind BML algorithms models are defined in Sect. 2, followed by the statistical proper-
ties analysis of the dataset & modelling approach, findings from the optimised BML model, comparison studies 
between other ML models, and model validation results are provided in Sect. 3. The findings of each model’s 
prediction accuracy and modelling errors are concluded in Sect. 4.

Methodology
BML algorithms.  Light gradient boosting machine (LBGM).  LGBM is a gradient boosting framework that 
uses tree-based learning algorithms developed by Microsoft50. LBGM uses two innovative sampling techniques: 
Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). GOSS excludes a substantial 
fraction of data instances with small gradients and uses the remainder to estimate the information gain. Since 
data instances with large gradients contribute more to the computation of information gain, GOSS can generate 
a highly accurate estimate of information gain with a significantly smaller data set.

EFB allows for the grouping of mutually exclusive features, hence reducing the number of features. It also 
demonstrates that while determining the optimal bundling of exclusive features, a greedy approach can reach an 
approximation ratio of relatively high. It was reported that LGBM speeds up the training process of conventional 
GBDT by up to over 20 times while achieving almost the same accuracy, and it is six times faster than XGBoost50.

CAT boost regressor (CATB).  CATB is an open-sourced machine learning algorithm developed by Yandex in 
2017. CATB is a decision tree algorithm based on gradient boosted decision trees. The algorithms in CATB 
models are a series of decision trees constructed sequentially, with each new tree having a lower loss than the 
prior trees. The starting parameters determine the number of trees generated, and overfitting is avoided using an 
overfitting detector. The processes of tree construction for a single tree in CATB algorithms include computing 
splits in advance, converting categorical features to numerical features, selecting the tree structure, and calculat-
ing values in leaves.

Generally, CATB employed greedy algorithms in optimising the prediction accuracy. The features of CATB 
models are ordered according to their splits and are then substituted in each leaf. The depth of the tree and other 
constraints for structure selection is specified with pre-modeling parameters, and a random permutation of clas-
sification/regression objects is conducted before the construction of each new tree. CATB models validate the 
model performance with a metric that indicates the direction in which the function should be improved further 
when deciding the construction of the next tree. CATB model surpasses leading GBR packages and achieves 
new state-of-the-art performance on common benchmarks51,52.

Gradient boosting regressor (GBR).  Friedman presented the GBR model as an ensemble method for regression 
and classification in 1999. The gradient boosting approach compares each iteration of the randomly chosen 
training set to the base model. In the GBR model, the lower the training data fraction, the faster the regression, 
as the model fits smaller data each iteration. GBR model requires the following tuning parameters: ntrees and 
shrinkage rate, where ntrees is the number of trees to be grown, and the shrinkage parameter, often referred to 
as the learning rate applied to each tree in the expansion25,53.

This algorithm’s fundamental foundation is ’boosting.’ The boosting process aids in transitioning prediction 
from a ’weak’ learner via the additive training process. The essential advantage of GBR algorithms is that it avoids 
overfitting and makes efficient use of computational resources by using an objective function. Besides improving 
output performance, GBR algorithms reduce the selected error function further54.

Adaboost regressor (ADAB).  ADAB, an acronym for Adaptive Boosting, is a meta-algorithm for statistical cat-
egorization developed in 2003 by Yoav Freund and Robert Schapire. It can be combined with a variety of other 
types of learning algorithms to enhance performance. The output of the other learning algorithms, i.e., ’weak 
learners,’ is combined into a weighted sum representing the boosted classifier’s final output. ADAB is adaptive 
because it adjusts succeeding weak learners favoring instances misclassified by previous classifiers/regressors. It 
is less prone to overfitting than other learning algorithms in some cases29.

The individual learners in ADAB algorithms may be ineffective. Still, if their performance is marginally better 
than random guessing, the final model can be demonstrated to converge to a powerful learner. This technique 
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benefits from a single best-fit decision model formed from the outcomes of several decision trees, each of which 
is constructed using a random selection of base features, i.e., decision factors from a training dataset55,56.

Extreme gradient boosting (XGB).  Extreme Gradient Boosting (XGB) or XGBoost is a decision tree-based 
ensemble ML algorithm that uses gradient boosting to make predictions for unstructured data. Tianqi Chen 
and Guestrin developed XGBoost, and the method uses the conventional tree gradient boosting algorithm45 
to create state-of-the-art algorithms, the ‘extreme gradient boosting’23. The multiple Kaggle competition win-
ner ‘XGBoost’ is a highly effective ML algorithm due to its scalable tree boosting system and sparsity-aware 
algorithm in modelling structured datasets. The algorithm has been the source of countless cutting-edge appli-
cations, and it has been the driving force behind many of these recent advances. It’s been widely used as indus-
trial solutions such as customer churn prediction57, applicant risk assessment58, malware detection59, stock mar-
ket selection60, classification of traffic accidents61, diseases identification40, and even in predicting the death of 
patience during SARS-COV-2(Covid-19) treatment42. The most significant benefit of XGBoost is its scalability 
across any condition62. In general, the XGBoost algorithms are the evolution of decision tree algorithms that 
were improved over time. Figure 2 below shows the development of decision tree-based algorithms to XGBoost.

Model structure.  For the most part, we utilised the Python programming language on Google’s Colab plat-
form to analyse the data and create the models. An open-source, low-code machine learning library ‘PyCaret’ 
was used in research63. Figure 3 illustrates the step-by-step procedure for training, optimising, and validating the 
BML models in predicting the concrete compressive strength. Seven key processes are involved in the develop-
ment of the optimised BML model, and each stage is described in detail below, with brief explanations:

	 i.	 Data Collection – This entails collecting data from the laboratory and compiling it appropriately.
	 ii.	 Data Pre-Processing – To correctly identify and arrange the acquired data, it is necessary to sort out the 

missing values and then normalise the dataset in preparation for model building.
	 iii.	 Model Selection—For prediction and evaluation in this research, BML algorithms, i.e., LBGM, CATB, 

GBR, ADAB, and XGB, were utilised.
	 iv.	 Hyper-parameter Optimisation – The RS approach was employed in each of the five proposed BML 

algorithms, and the results are compared to the original models.
	 v.	 Model Validation—Validation and testing of the models were performed using the k-fold cross-validation 

approach, which randomly splits the dataset and minimises overfitting.
	 vi.	 Model Evaluation – All the models are compared, and the best performing algorithms are selected based 

on evaluation metrics, i.e., R2, RMSE, MAE, MSE, RMSLE, MAPE.
	 vii.	 Analysis and Reporting – The findings in the case study are reported based on comparing various ML 

models, optimisation parameters, and evaluation metrics.

Data collection and pre‑processing.  Overview.  A total of 152 data of HPC compressive strength data 
were gathered from concrete trial mix conducted at a laboratory in Selangor, Malaysia. In general, the dataset 
is composed of seven concrete components: fine aggregate, coarse aggregate, ordinary Portland cement (OPC), 
ground granulated blast-furnace slag (GGBS), silica fume (SF), water, admixture, and moisture content (MC). 
The dataset also contains concrete compressive strength of a Grade 80 HPC, and the compressive strength results 
are available for 7, 28, 56, and 91 days. On average, each batch of concrete contains around 246 kg of GGBS and 
OPC, respectively.

The proportion of cementitious content in each batch is around 45% of GGBS, 45% of OPC, and 10% of SF. 
Similarly, the ratio of fine to coarse aggregate is 1:1, equating to 70% of total concrete volume with a 0.25 water-
to-cement ratio, or 138 kg of water in each batch of concrete. Additionally, the moisture content of fine and 
coarse aggregate was included as input parameters since the water content in each concrete batches was adjusted 
according to the moisture content in the aggregates. Details of statistical metrics are listed in Table 2 below.

Data distribution analysis.  The distribution correlations between the input parameters and the compressive 
strength are shown in Fig. 4. It illustrates the correlation between the data points by including the relative fre-
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Figure 2.   The evolution of XGBoost.
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quency distribution of each input parameter. Generally, the distribution of input parameters suggests that the 
dataset is appropriately distributed and fit for machine learning modelling.

Correlation coefficient analysis.  Along with statistical and distribution analysis, a correlation coefficient study 
was performed to analyse the dataset and prepare for modelling. Pearson’s correlation coefficient approach indi-
cated in Eq. 1 was used to calculate the correlation coefficient64. Pearson’s correlation coefficient is a test statistic 
that shows the statistical link between two continuous variables. It is based on the covariance approach, in which 
the best method is considered for determining the relationship between two variables of interest. It reveals both 
the size of the association or correlation and the direction of the relationship. The correlation between all param-
eters was analysed for this research and visualized in Fig. 5 as a Pearson’s correlation heatmap.

where;

(1)PearsonCorrelation Coefficeint, r =

∑
(xi − x)

(
yi − y

)
√∑

(xi − x)2
∑(

yi − y
)2

Figure 3.   Step by step BML modelling approach.

Table 2.   Summary of statistical analysis of the concrete material composition.

Fine
Agg

Coarse
Agg GGBS OPC SF Water Admixture Fine MC Coarse MC Days Strength

count 152 152 152 152 152 152 152 152 152 152 152

mean 871.7 874.3 246.6 246.3 54.4 138.7 12.2 4.4 0.5 45.5 105.2

std 11.7 10.2 1.4 0.9 0.6 2.9 0.5 0.7 0.2 31.6 14.6

min 842.0 857.0 244.0 244.0 53.0 135.0 11.5 3.2 0.2 7.0 70.3

max 900.0 904.0 250.0 248.0 56.0 149.0 12.7 6.0 1.0 91.0 131.4
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r = correlation coefficient.
xi  = values of the x-variable in a sample.
x = mean of the values of the x-variable.
yi = values of the y-variable in a sample.
y = mean of the values of the y-variable.
As shown in Fig. 5 above, it can be observed that the correlation between input and output parameters is 

relatively low and generally in the range of -0.62 to 0.64. The range of the correlation coefficients indicates that 
the input variables can be considered low to moderately correlated to the compressive strength.

Figure 4.   Distribution correlation of input parameters and strength.

Figure 5.   Pearson’s correlation heatmap.
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Data split and normalisation.  The dataset’s modelling proportion was randomly partitioned into two sets, i.e., 
training and testing dataset. Around 70% of the dataset was utilized for training the BML models, whereas 30% 
were used to test the models65, 65 Before training BML models, pre-processing data is required. To prevent train-
ing from being dominated by one or a few features with large magnitude, features should be normalised so that 
their range is consistent. The Z-score normalisation method was used in this study to normalise all values in a 
dataset so that the mean of all values is 0 and the standard deviation is 1. Equation 2 below shows the formula to 
perform a z-score normalization on every value in a dataset:

where:
x: Original value.
μ: Mean of data.
σ: Standard deviation of dataset.

Model validation using K‑Fold cross‑validation.  Validation and testing of the models were performed using 
the k-fold cross-validation method illustrated in Fig. 6. In this study, a total of ten folds or k value of 10 were 
used. The dataset is randomly separated into test and training data and divided into k groups, using this cross-
validation procedure. Validation of the model is performed on one of the groups, and training is performed on 
the remaining groups. The process is performed k times more until each distinct group is used as the validation 
set. The ultimate performance of the model is determined using test data that the model ‘not seen’ during train-
ing.

K-fold cross-validation enables the model to be trained and verified several times, resulting in a more accurate 
model with less overfitting. With the more traditional hold-out strategy, the dataset is partitioned into train-
ing, validation, and test sets, which reduces number of samples for model training. The model’s performance is 
contingent upon a random selection of samples for the training, validation, and test sets.

Model evaluation.  In this paper, six separate statistical measurement parameters were used to calculate the 
prediction efficiency of the BML models. In simpler terms, the evaluation parameters estimate the accumulated 
error in predictions concerning actual observations. The statistical parameters are: coefficient of determination 
(R2), mean absolute error (MAE), root mean squared error (RMSE), mean squared error (MSE), root mean 
squared logarithmic error (RMSLE), and mean absolute percentage error (MAPE). These mathematical formu-
lations are defined in Eqs. 3–8; in this case, n is the total number of test dataset records while y′ and y are the 
predicted and measured values, respectively. The values of R2 would range from 0 to 1 – the closer the value is to 
1, the higher fitting optimisation of the model is. The values MAE, RMSE, MSE, RMSLE, and MAPE are used to 
evaluate modelling error—the smaller the value, the lesser the difference between the predicted and measured 
values.

(2)Z− Score = (x−µ)/σ

(3)R2
= 1−

∑n
i=1(ŷi − yi)

2

∑n
i=1

(
yi − yi

)2

(4)MAE =
1

n

n∑

i=1

∣∣y − y′
∣∣

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

Split 1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

Split 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

Split 3 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

Split 4 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
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Split 6 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Parameters
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Figure 6.   K-fold cross validation method.
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Results and discussion
Initial modelling.  The LBGM, CATB, GBR, ADAB, and XGB algorithms were initially modelled using their 
default hyper-parameter settings. Each model’s performance is measured in terms of prediction accuracy and 
error rates, i.e., R2, MSE, RMSE, MAE, RMSLE, and MAPE. The findings of the initial modelling are summarised 
in Table 3 below.

LBGM predicted the compressive strength of concrete with the highest prediction accuracy and the least 
prediction errors of all five BML models. The initial modelling of LBMG reached 0.86 and 0.94 for the training 
and testing prediction scores, respectively. GBR and XGB models also performed well, with prediction accuracy 
of 0.93 and 0.92 on the test dataset. The evaluation metrics in the LGBM model was the lowest in comparison 
to other BML models, with an MAE of 3.29, an RMSE of 4.10, and an RMSLE of 0.03 for test dataset. The GBR 
model was the second-best model in prediction errors with MAE and RMSE values of 3.24 and 4.22, respectively. 
The distribution of predicted results against actual results for all BML models are visualized in Fig. 7, along with 
the best fit line for the prediction distribution. The initial modelling suggests a reasonable prediction result; 
however, it is further improved by using the RS algorithm, which is discussed in detail in the following section.

In terms of prediction distribution, the LBGM and CATB models have the highest training scores of 0.86 and 
0.85, respectively. In contrast, their prediction scores for the test dataset are significantly higher at 0.94 and 0.93. 
It suggests that both models concentrated on optimising the test score to get the maximum possible prediction 
accuracy. The prediction distribution indicates that the LBGM, GBR, and XBG results are closely spaced along 
the best fit lines compared to the CATB and ADAB models.

Model optimisation with RS algorithm.  The RS algorithm focuses on the use of random combinations 
to optimise the hyperparameters of a model. It measures random combinations of a set of values to optimise 
decent outcomes, with the function tested at any number of random combinations in the parameter space. The 
chances of discovering the optimal parameter are relatively higher in RS algorithms compared to Grid Search 
algorithm due to various search patterns in the model being trained on the optimised parameters without alias-
ing. RS algorithms are best for lower dimensional data as this method takes less time and iterations to find the 
right parameter combination67. Numerous hyperparameters were optimised in this study, including n_estimator, 
learning_rate, max_depth, and subsample and min_sample_split. A total of 1000 iteration was performed to 
identify the performing model and the optimum hyperparameters for each BML models. Table 4 below shows 
the hyperparameters and values used for all the model, before and after optimisation process.

(5)RMSE =

√√√√ 1

n

n∑

i=1

∣∣y − y′
∣∣2

(6)MSE =
1

n

n∑

i=1

∣∣y − y′
∣∣2

(7)RMSLE =

√√√√ 1

n

n∑

i=1

(log
(
y1 + 1

)
− log

(
y′ + 1

)2

(8)MAPE =
1

n

n∑

i=1

∣∣∣∣
y − y′

y

∣∣∣∣

Table 3.   Summary of initial modelling.

Model R2 MAE MSE RMSE RMSLE MAPE

Training Dataset

LBGM 0.86 3.60 14.92 3.86 0.03 0.03

CATB 0.85 3.61 21.80 4.67 0.05 0.04

GBR 0.83 4.02 22.32 4.72 0.05 0.04

ADAB 0.81 4.20 26.59 5.16 0.05 0.04

XGB 0.81 3.95 26.87 5.18 0.05 0.04

Test Dataset

LBGM 0.94 3.29 16.80 4.10 0.04 0.03

CATB 0.89 3.97 29.10 5.39 0.06 0.04

GBR 0.93 3.24 17.82 4.22 0.05 0.03

ADAB 0.89 4.17 28.46 5.33 0.06 0.04

XGB 0.92 3.64 21.86 4.68 0.05 0.04
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Based on the optimised BML models, the GBR model achieved the highest prediction accuracy of 0.96 for the 
test dataset followed with LBGM and CATB model with R2 of 0.95. In comparison, the optimised GBR model 
had the lowest prediction errors for test errors, with an MAE of 2.73, an RMSE of 3.40, respectively. For training 
dataset, the CATB model recorded lowest prediction error and highest prediction accuracy of 0.89. Table 5 shows 
the summary of prediction accuracy and evaluation metrics for the optimised BML models.

The comparison of the training and test datasets for both the initial and optimised BML models is shown in 
Fig. 8. In general, the RS algorithm improves prediction accuracy and reduces the modelling error for the train-
ing dataset of all BML models. However, the optimised ADAB model show a minor deficiency compared to the 
training results. The overall performance of BML models with RS optimisation shows that the GBR model is the 

Figure 7.   Best fit line for prediction distribution (RS model).
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Table 4.   Summary of hyperparameter tuned values.

Model LGBM CATB GBR ADAB XGB

Default Value

n_estimator 100 100 1000 50 100

learning_rate 0.10 0.10 0.03 1.00 0.03

max_depth −1 3 6 – 6

subsample 1.00 1.00 0.80 – 1.00

Optimised Value

n_estimator 270 90 210 290 100

learning_rate 0.20 0.30 0.15 0.40 0.30

max_depth −1 2 2 – 6

subsample 1.00 0.80 0.65 – 1.00

Table 5.   Summary of RS optimised models.

Model R2 MAE MSE RMSE RMSLE MAPE

Training Dataset

LBGM 0.88 3.27 16.22 4.03 0.04 0.03

CATB 0.89 3.15 14.85 3.85 0.04 0.03

GBR 0.88 3.26 16.75 4.09 0.04 0.03

ADAB 0.83 4.00 24.50 4.95 0.05 0.04

XGB 0.88 3.23 16.50 4.06 0.04 0.03

Test Dataset

LBGM 0.95 2.88 12.79 3.58 0.04 0.03

CATB 0.95 2.98 13.30 3.65 0.04 0.03

GBR 0.96 2.73 11.53 3.40 0.03 0.03

ADAB 0.90 3.98 26.11 5.11 0.05 0.04

XGB 0.94 3.14 15.20 3.90 0.04 0.03

Figure 8.   Comparison between BML and RS optimised models.
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best performing model with highest prediction accuracy and lowest modelling errors while the LGBM model 
are the best model without any optimisations with highest prediction accuracy and lowest modelling errors.

The prediction distributions of the optimised BML models appear to have a similar pattern for both the 
training and test datasets, with only a minor difference in prediction scores. The RS algorithms optimise the 
BML models to obtain a high prediction accuracy and a low error rate by tuning the hyperparameters for both 
the training and test datasets while simultaneously improving model performance. As presented in Fig. 9, the 
LBGM, CATB, and GBR all suggest a closed space between best fit and the identity line, demonstrating that the 
model’s predictions are highly accurate.

Features importance analysis.  The explainability and interpretability of ML models are active areas of 
research that seek to understand why and how an ML model predicts output values. Numerous techniques, 
including feature importance analysis (FIA), are frequently used to explain and interpret ML models68. The per-

Figure 9.   Best fit line for prediction distribution (RS model).
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mutation FIA techniques are model-dependent, which means they evaluate model predictions rather than the 
actual data. The explainability and interpretability metrics reveal how well ML model predictions correspond to 
physical knowledge. Additionally, it enables the discovery of hidden correlations between targets and features 
that are not readily visible in the data by allowing ML models to make correct predictions.

The original dataset is updated for each feature by randomly shuffling the feature values. The model’s evalu-
ation metric for the updated dataset is computed and compared to the original dataset’s evaluation metric. This 
procedure is repeated numerous times for each feature to get the mean and standard deviation of the permuta-
tion importance score.

In this research, the permutation FIA was performed in all BML models to understand the influence of each 
feature/component of concrete in predicting the compressive strength of concrete. Figure 10 below displays 
all the features used in the compressive strength prediction model and their relative importance. ‘Days’ are an 
essential feature for all BML models, and SF is the least important feature in GBR, ADAB, and XGB models. It 
demonstrates that changes to the day’s value in the dataset substantially affect the concrete compressive strength 
results. In contrast, changes in SF value have a considerably low impact on the strength prediction.

Figure 10.   Feature importance analysis of BML models.
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Comparison between various ML algorithms.  Subsequently, the initial BML models without opti-
misation was compared to 14 commonly used ML algorithms, including linear regression (LR), decision trees 
(DT), random forests (RF), and extra trees (ET), etc. Table 6 shows the summary of prediction accuracy and 
the evaluation metrics for 14 comparison ML models. For Table 6, only test dataset values were provided as the 
purpose of this section is to make comparison between BML model and other conventional models. Generally, 
all comparison models exhibit much lower prediction scores and more significant prediction errors than BML 
models. The comparison models show that the ET and RF models were the best performing model with an R2 
of 0.78. Similarly, both models produced prediction errors, i.e., MAE and RMSE of 4.17 and 5.0, respectively. 
Overall, the comparison models demonstrate that the initial BML model outperforms all other machine learn-
ing models.

Conclusion and recommendation
Comparing all 5 BML models, the GBR model has outperformed the LBGM, CATB, ADAB, and XGB models. 
The GBR model optimised with RS algorithms achieved the highest prediction accuracy of 0.96 and the least 
prediction errors, with an MAE of 2.73, an RMSE of 3.40, and an RMSLE of 0.03. Notably, the RS algorithms 
optimisation technique improved the model prediction accuracy and reduced the modelling errors in all 5 BML 
models. Simultaneously, the evaluation of 14 commonly used ML models also suggests that the BML models 
have superior prediction accuracy and minimum prediction errors. These studies conclude that the optimised 
BML models, i.e., the GBR model are the best choice to predict the compressive strength of concrete, mainly for 
HPC and concrete with high volume GGBS replacements. For future research, a comparison study between ANN 
models with BML models or hyperparameter tuning with different optimisation algorithms, i.e., Grid Search, 
can be evaluated and compared with the proposed BML model’s performance.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files]. GitHub: https://​github.​com/​vilin​i007/​HPC-​GGBS-​Concr​ete/​blob/​bae42​e3d9f​59743​96117​
6e43a​4a504​c5110​9e9c7/​HPC_​GGBS.​ipynb. Google Colab: https://​colab.​resea​rch.​google.​com/​drive/​1fZzZ​fuTKI​
9MvD4​enxCG​iEVB0_​d8p62​Jk?​usp=​shari​ng.
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