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Association of protein 
function‑altering variants 
with cardiometabolic traits: 
the strong heart study
Yue Shan1, Shelley A. Cole2, Karin Haack2, Phillip E. Melton3,4,5, Lyle G. Best6, 
Christopher Bizon7, Sayuko Kobes8, Çiğdem Köroğlu8, Leslie J. Baier8, Robert L. Hanson8, 
Serena Sanna9,10, Yun Li1,11 & Nora Franceschini12,13*

Clinical and biomarker phenotypic associations for carriers of protein function‑altering variants 
may help to elucidate gene function and health effects in populations. We genotyped 1127 Strong 
Heart Family Study participants for protein function‑altering single nucleotide variants (SNV) and 
indels selected from a low coverage whole exome sequencing of American Indians. We tested the 
association of each SNV/indel with 35 cardiometabolic traits. Among 1206 variants (average minor 
allele count = 20, range of 1 to 1064), ~ 43% were not present in publicly available repositories. We 
identified seven SNV‑trait significant associations including a missense SNV at ABCA10 (rs779392624, 
p = 8 ×  10–9) associated with fasting triglycerides, which gene product is involved in macrophage lipid 
homeostasis. Among non‑diabetic individuals, missense SNVs at four genes were associated with 
fasting insulin adjusted for BMI (PHIL, chr6:79,650,711, p = 2.1 ×  10–6; TRPM3, rs760461668, p = 5 ×  10–8; 
SPTY2D1, rs756851199, p = 1.6 ×  10–8; and TSPO, rs566547284, p = 2.4 ×  10–6). PHIL encoded protein is 
involved in pancreatic β‑cell proliferation and survival, and TRPM3 protein mediates calcium signaling 
in pancreatic β‑cells in response to glucose. A genetic risk score combining increasing insulin risk 
alleles of these four genes was associated with 53% (95% confidence interval 1.09, 2.15) increased 
odds of incident diabetes and 83% (95% confidence interval 1.35, 2.48) increased odds of  impaired 
fasting glucose at follow‑up. Our study uncovered novel gene‑trait associations through the study of 
protein‑coding variants and demonstrates the advantages of association screenings targeting diverse 
and high‑risk populations to study variants absent in publicly available repositories.

Recent large-scale whole exome sequencing (WES) studies have identified loss of function (LOF) mutations 
(frameshift, splice donor, splice acceptor, and stop-gain variants) occurring at low allele frequency (< 1%) in 
 populations1,2. These LOF mutations are predicted to inactivate or severely attenuate protein function and, 
therefore, provide a unique opportunity to assess their effects in humans. It is estimated that 3.5% of individuals 
harbor pathogenic or likely pathogenic variants that meet criteria for clinical  action3. In addition, several of the 
genes considered LOF intolerant have no known human disease  phenotype2.

There has been a great interest in phenotyping individuals with predicted protein-altering function altering 
variants (rare LOF and missense variants) to understand their health effects in populations. By linking WES data 
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to electronic medical records of patients from a large health care organization, the DiscovEHR study identified 
novel associations of heterozygous LOF variants in CSF2RB with blood cell counts (basophil and eosinophil), 
LOF variants in EGLN1 associated with hematocrit and hemoglobin, and deleterious missense variants in G6PC 
associated with triglyceride  levels4. Studies in ancestrally distinct populations have also shown that a 2-step 
strategy that combines sequencing data of a subset of samples with subsequent genotyping in a large cohort can 
be an optimal way to maximize power while retaining experimental  costs5,6. Low coverage sequencing has been 
shown to uncover novel variants in less studied  populations7.

American Indians have a high burden of cardiometabolic diseases and may harbor rare coding variants 
that contribute to this risk. Building upon our ongoing investigation of exonic variation in American Indians 
using WES, we recently genotyped WES-identified single nucleotide variants (SNV) and small insertions/dele-
tions (indels) with predicted protein-altering function in 1,127 Strong Heart Family Study (SHFS) participants. 
Approximately 43% of these genotyped variants are currently not present in publicly available repositories and 
are likely specific to American Indians. The goal of this study is to assess the clinical and biomarker phenotypic 
associations for carriers of these SNVs in American Indians. The identification of genes for specific phenotypes 
may provide insights into disease mechanisms and this knowledge could be applied to overall human popula-
tions including American Indians.

Material and methods
Population and phenotypes. The Strong Heart Study (SHS) is a population-based study of cardiovas-
cular disease in American Indians recruited from tribes in Arizona, Oklahoma, and South and North  Dakota8. 
The SHFS is a family component of the SHS, which examined 3776 members in 94 multigenerational  families9. 
The first SHFS full family exam (2001-5, SHS Phase 4, baseline visit for this study) consisted of a personal 
interview, a physical exam and laboratory tests. A re-exam from 2006 to 2010 (Phase 5) had > 91% retention 
rate and measures were similar to the first exam. During the clinical visits, various categories of phenotypes 
were obtained including standardized physical measures (anthropometrics, blood pressure) and clinical data 
(diabetes, hypertension, medication use). A 12-h fasting serum and a spot urine sample were collected for labo-
ratory biomarkers (complete blood cell count, serum lipids, liver and kidney function serum biomarkers, and 
metabolic biomarkers such glucose, insulin and HbA1c). DNA was extracted for genetic  studies8. Pedigree rela-
tionships and identity-by-descent (IBD) sharing were estimated as previously  described10. One tribe withdrew 
its consent to participate in future investigations and was not included in this analysis. The study was approved 
by the institutional review boards (IRBs) at each field center, and all participants gave written informed consent.

This study used existing data from a case–control study of chronic kidney disease (n = 555) and controls 
(n = 572) which included SHFS participants from two clinical centers (Oklahoma and the Dakotas) selected 
from 24 pedigrees. Cases were defined by a self-reported kidney failure (dialysis or transplant, n = 28), an eGFR 
less than 60 ml/min/1.73  m2 (n = 233) and/or urine albumin to creatinine ratio (UACR) ≥ 30 mg/g in any of the 
two clinical visits (n = 322, including n = 123 with both low eGFR and high UACR). Individuals without chronic 
kidney disease at two clinical visits and age > 40 years were selected as controls based on an eGFR > 80 ml/
min/1.73  m2, and an UACR < 30 mg/g.

Phenotype definitions are shown in Table S1. Briefly, for participants using anti-hypertensive medications, 
we added 15 and 10 mmHg to their measured systolic and diastolic blood pressures, respectively. Estimated 
glomerular filtration rate (eGFR) was calculated using the serum creatinine-based Chronic Kidney Disease Epi-
demiology Consortium equation. LDL cholesterol (LDL-C) was estimated by the Friedewald formula for samples 
with triglycerides < 400 mg/dl and individuals were not taken statins at the time of lipid measures. For analyses of 
fasting glucose and insulin, we excluded individuals with diabetes. HOMA-IR (mmol/L) was calculated among 
non-diabetic individuals using the equation: fasting insulin in mU/L * fasting glucose in mmol/L)/22.511. Incident 
diabetes was defined by a new-onset fasting glucose > 126 mg/dL (7.0 mmol/L) and/or use of diabetic medica-
tions at follow-up. Incident impaired fasting glucose was defined by a new fasting glucose between 100 mg/dL 
(5.6 mmol/L) and 125 mg/dL (6.9 mmol/L) at follow-up. A reference group was selected of participants with 
fasting glucose < 100 mg/dL (5.6 mmol/L) at baseline and follow-up.

Molecular data: low pass WES and Amerindian custom genotyping panel. SNVs/indels tested in 
this study were selected from a low coverage WES data of 94 distantly related SHFS participants, selected to max-
imize the diversity across founders to identify the genetic variability in this population (given lack of publicly 
available reference panels for American Indians). Participants for the WES were selected from pedigrees with 
large number of descendants and were not ascertained for a disease or trait. WES used Illumina TruSeq Cus-
tom Amplicon assay which captured > 200,000 exons in > 20,000 genes, resulting in ~ 62 Mb of targeted genomic 
regions, and high quality and genome coverage (mean call rate = 0.98, mean transition-transversion = 2.5, mean 
coverage at 10x = 80%).

We selected 2709 variants (SNVs/indels) for genotyping through an Illumina custom panel. Criteria for 
variant selection were: (1) observed in at least two individuals, (2) not present in publicly available databases 
(dbSNP, Exome Sequencing Project [ESP], 1000 Genomes Project) at the time of variant selection (2015), and (3) 
predictive functionality based on Genome Variant Server (frameshift, splice-3, splice-5, stop-gain of function, 
stop-loss of function, and missense variants). We also included some variants within 3’ or 5’ UTR or introns to 
complete the custom iSelect Illumina panel. Among variants genotyped, 144 failed manufacturing, 1357 were 
homozygous in our samples, and two were excluded due to call rates < 95%. The final sample for this study 
included 1127 individuals and 1206 SNVs/indels, and there was no overlap of participants with WES and those 
genotyped with the custom Illumina panel.
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Annotation of SNVs/indels. We performed extensive annotation of all exonic variants (both SNVs and 
indels) using the Whole Genome Sequencing Annotator (WGSA) based on reference  hg1912. Variants were 
annotated as loss of function (essential splice sites, stop gain, stop lost, start lost, frameshift splice), non-synon-
ymous, synonymous, and protein altering indels. This annotation also includes scores pertaining to functional-
ity (Functional Analysis through Hidden Markov Models [FATHMM-MKL, http:// fathmm. bioco mpute. org. uk/ 
index. html]13,  MetaSMV14, Combined Annotation Dependent Depletion  [CADD]15, M-CAP16, likelihood ratio 
test (LRT)17), conservation (SIFT, Polyphen2), population allele frequencies (1000 Genomes Project, Exome 
Aggregation Consortium [ExAC], gnomAD), and disease-related annotations (ClinVar). This annotation was 
used to assess the potential impact of the variants in protein function and to identify SNVs/indels that are novel, 
i.e., not present in the repositories listed above at the time of the annotation. We assigned variants as deleterious 
if there was an agreement among more than 3 different annotation tools as proposed by the American College 
of Medical Genetics (ACMG) for a supporting level of pathogenic classification by computational prediction for 
nonsynonymous and LOF  variants18.

Statistical analyses. The main goal of analyses was to identify gene-phenotype associations for exonic var-
iants while accounting for the case–control sampling and confounders. Traits were preprocessed through inverse 
normal transformation or outlier removal as needed. For a trait without transformation, observations more than 
5 standard deviations away from the sample mean were set as outliers, with their corresponding values set to 
missing. No outliers were removed for traits that underwent inverse-normal transformation. Large pedigrees 
were split into families with no more than 33 members, by copying a child of a family and his/her genotype but 
not using the phenotype  data19, as required for analyses of large-pedigree data using  Merlin20.

We performed linear mixed model association analyses for each SNV/indel to account for family relatedness, 
which was implemented using the Merlin  software19. We used additive genetic models and adjusted for age, sex, 
case–control status, and the first 10 genetic principal components estimated from a genome-wide genotype 
panel. For analyses of fasting insulin and glucose, we additionally adjusted for body mass index (BMI), reported 
as  insulinadjBMI and  glucoseadjBMI. Only variants with a minimum minor allele count (MAC) of 10 were tested in 
association analyses.

Given the genetic correlation among SNVs/indels due to linkage disequilibrium, we used a p-value threshold 
for significance of < 5.5 ×  10–6, which accounts for 9,122 effective independent tests. The number of tests was 
calculated based on the extended Simes  method21, part of the GATES method to calculate the effective number 
of independent  tests22.

In secondary analyses, we combined genotypes of four  insulinadjBMI-related SNVs using an unweighted genetic 
risk score that sums the fasting  insulinadjBMI increasing risk alleles for each participant and tested their association 
with incident diabetes and impaired fasting glucose at follow-up visit (Phase 5).

Validation of associations. Replication was assessed in two cohorts of American Indians living in Arizona 
who had undergone WES performed by Regeneron Genetics Center (Tarrytown, New York). One cohort with 
WES data is part of a community-based study of Pima Indians (N = 6809) and the other cohort represents Urban 
Indians living in Phoenix Arizona (N = 850). Some variants were either not identified or had < 10 copies of the 
alternative allele in replication studies. Serum creatinine was not available in the replication cohorts. Therefore, 
two variants were tested for replication: rs779392624 for triglycerides and rs760461668 for fasting  insulinadjBMI.

We also performed look ups for variants using publicly available data from the Type 2 Diabetes Knowledge 
Portal (https:// t2d. hugea mp. org/), which included two pre-print whole genome sequencing (WGS) publications 
from the Trans-Omics for Precision Medicine (TOPMed) project on fasting  insulinadjBMI and Type 2 diabetes, 
 respectively23,24, and the Metabolic Diseases Knowledge Portal (https:// hugea mp. org/) for variants and genes 
related to our lipids and creatinine findings. Additional evidence for plausibility was obtained through experi-
mental studies including genetic knockout animal studies.

Ethnic statement. The study has been carried out in accordance with Declaration of Helsinki. The study 
was approved by the Institutional Review Boards of the participating Institutions (MedStar Research Institute, 
University of Oklahoma Health Science Center, Aberdeen Area IRB), and by the participating American Indian 
 tribes8,9. All participants gave informed consent for genetic studies.

Results
The study design is shown in Fig. 1, clinical and biomarker phenotypes in Table S1, and participant character-
istics in Table S2.

Functional annotation of variants and Amerindian‑specific (novel) variants. Among 1206 geno-
typed variants that passed quality control (1125 SNVs and 81 indels within 1079 genes), 1162 were exonic SNVs/
indels, and 44 were located in introns, 3’ or 5’ UTR (Table S3). Among exonic SNVs/indels 1024 were mis-
sense variants, 97 were frameshift substitutions, 20 were stop-gain or stop-loss variants, 20 were splice donor/
acceptor and 1 was a synonymous variant. Most of the indels were frameshifts (n = 67, 83%) or splice donor/
acceptors (n = 5,  6%). Of missense SNVs/indels, 114 (11%) were predicted damaging by MetaSVM and 641 
(63%) by FATHMM-MKL annotations. Most variants were low frequency or rare (n = 85 singleton, n = 579 had 
a MAC < 10). The mean MAC was 20 (range of 1–1064).

By querying the genotyped SNVs/indels in publicly available databases, 518 SNVs/indels were not present 
in dbSNP, including 339 variants also not present in gnomAD exome as per June/2019. These variants were 
considered novel. Most of the SNVs present in gnomAD had higher allele frequency in our sample compared 

http://fathmm.biocompute.org.uk/index.html
http://fathmm.biocompute.org.uk/index.html
https://t2d.hugeamp.org/
https://hugeamp.org/
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to other populations (Figure S1). The annotation of novel SNVs was missense SNVs/indels (n = 228), frameshift 
substitutions (n = 73), stop-gain or stop-loss variants (n = 8), and splice acceptor/donor (n = 11). All genotyped 
indels were novel. Of novel missense SNVs/indels, 44 (12%) were predicted deleterious by MetaSVM and 252 
(66%) by FATHMM-MKL. All variants predicted deleterious by MetaSVM were also predicted deleterious by 
FATHMM-MKL (Table S3). In summary, our genotyped exome variants are composed of mostly low frequency 
and rare variants, likely American Indian-specific and enriched for predicted functionality.

Association results with 35 phenotypes. Table 1 summarizes the main findings for variants reaching 
the significance threshold for at least one trait for adjusted models. Results for all variants (with a MAC ≥ 10, 
n = 627 variants) are shown in Table S4. Two novel SNVs at EXTL2 (chr1:101,342,412, MAC = 33, p = 8.7 ×  10–9) 
and ACACA  (chr17:35,518,712, MAC 26, p = 2.9 ×  10–7) were associated with low serum creatinine. The EXTL2 
SNV explained 2.42% of serum creatinine variance. This variant was associated with higher eGFR (p = 4.2 ×  10–4) 
and lower uric acid (p = 0.03) among overall participants, although findings did not reach the multiple-testing 
significance threshold. The SNV at ACACA  explained 1.87% of serum creatinine variance and was nominally 
associated with increased eGFR (p = 0.02).

A missense SNV at ABCA10 (rs779392624, MAC = 17, p = 7.5 ×  10–9) was associated with lower fasting triglyc-
erides levels, and it explained 2.15% of triglyceride variability in our data (Table 1). The SNV was not associated 
with HDL cholesterol (HDL-C, p = 0.32) or LDL-C (p = 1.00) (Table S4).

Four SNVs were associated with fasting  insulinadjBMI among non-diabetic individuals. A novel missense 
variant at PHIP (chr6:79,650,711, MAC = 28, p = 2.1 ×  10–6) was associated with decreased fasting insulin and 
explained 1.30% of insulin variance. It was also nominally associated with reduced eGFR (p = 0.01) but not 
with fasting glucose. A missense SNV of TRPM3 (rs760461668, MAC = 185, p = 4.8 ×  10–8) was associated with 
increased fasting serum insulin and explained 1.70% of insulin variance. This SNV was nominally associated 
with lower serum albumin (p = 0.03), fibrin (p = 0.03), UACR (p = 0.03) and LDL-C (p = 0.02) and higher triglyc-
erides (p = 3.4 ×  10–4). A missense SNV at SPTY2D1 (rs756851199, MAC = 109, p = 1.6 ×  10–8) was associated 
with increased fasting insulin and 1.75% variance in serum insulin. A SNV at TSPO (rs566547284, MAC = 26, 
p = 2.4 ×  10–6) was associated with increased fasting insulin and it explained 1.45% of the variance of serum 
insulin.

6,809 Pima Indians & 
680 Urban Indians from Arizona 

94 distantly related American Indians with whole exome sequencing 

Variant selection 
Alternative allele present 2 or more individuals 
Not available in public databases 
Predictive function (Genome Variant Server)

2,709 SNVs/Indels genotyped in 1,127 American Indians (custom iSelect Illumina panel) 

Variant filtering 
144 failed manufacturing 
1,501 variants without alternative allele 
2 variants with call rates <0.95 

1,206 variants (1,125 SNVs & 81 Indels) 

Functional annotation 
Variant filtering: MAC 10 or more 

35 cardiometabolic phenotypes & 627 SNVs/indels 

Association analyses 

7 gene-trait significant associations 

Genetic risk score  Replication

Incident diabetes & 
impaired fasting glucose 

SNV  
Indel 

PheWAS

Figure 1.  Study design for discovery, replication and follow-up analyses.
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SNV and gene validation. Two variants which had ≥ 10 carriers in each of two cohorts of southwestern 
American Indians were analyzed for replication (rs779392624 for triglycerides and rs760461668 for fasting insu-
lin), but the associations for these rare variants were not significant (Table S5). Two SNVs were available in the 
Trans-Omics for Precision Medicine (TOPMed) WGS summary statistics for fasting  insulinadjBMI (n = 23,211) 
and type 2 diabetes (n = 29,794). rs756851199 (SPTY2D1) was significantly associated with fasting  insulinadjBMI 
(p = 0.001) but rs760461668 (TRPM3) was not associated with  insulinadjBMI (p = 0.10).

Given these SNVs were rare or not available in published studies, we examined the evidence for association 
of any SNV within the identified genes for our traits. A gene-level analysis reported in the Metabolic Diseases 
Knowledge Portal showed associations at ABCA10 with triglycerides, PHIP with fasting  insulinadjBMI and type 2 
diabetes, and SPTY2D1 with type 2 diabetes (Table S6). The lowest p-value associations for SNVs in the TOPMed 
WGS studies of fasting  insulinadjBMI and type 2 diabetes for SNVs for our gene-traits were SPTY2D1 (p = 2 ×  10–6), 
PHIP (p = 2 ×  10–4), TSPO (p = 8 ×  10–4) and TRPM3 (p = 8 ×  10–7) for fasting  insulinadjBMI, and TRMP3 (p = 2 ×  10–3) 
for type 2 diabetes (Table S6).

Insulin‑based genetic risk score and incident diabetes and impaired fasting glucose. Using an 
unweighted genetic risk score, we examined patterns of associations for the four insulin-related SNVs in relation 
to development of type 2 diabetes and impaired fasting glucose at follow-up. Individuals carried 0 to 4 insulin-
increasing risk alleles from PHIL, TRPM3, SPTY2D1 and TSPO. Incident diabetes and impaired fasting glucose 
were obtained from a mean 5.3 years (standard deviation 1.1) from SHFS baseline visit. Among participants with 
normal fasting glucose at baseline, each added risk allele was associated with 53% odds of developing diabetes 
(p = 0.015) and 83% odds of developing impaired fasting glucose (p < 0.0001) at follow-up in models adjusted for 
age, sex, center, case-control status and principal components (Table 2). The association with incident diabetes 
was attenuated with further adjustment for BMI (p = 0.05), but the association with incident impaired fasting 
glucose was unchanged by BMI adjustments (p = 0.0001). The genetic risk score was strongly associated with 
increased log-transformed HOMA-IR at baseline visit among participants without diabetes in models adjusted 
for age, sex and case-control status (N = 793, p < 0.001).

Table 1.  Main association results for variant-trait significant findings. For nonsynonymous rare variants and 
LOF variants, functional prediction algorithms were used to classify a SNV as deleterious based on agreement 
for at least three algorithms of prediction methods (see methods and Table S3). All SNVs listed in Table 1 had 
a CADD Phred score > 10–20, which is considered deleterious, except for rs756851199. Models adjusted for 
age, sex, center, and the first 10 principal components of ancestry. Fasting insulin was tested among non-
diabetic individuals in models additionally adjusted for BMI. Amino acid change provided by the Variant 
Effect Predictor tool. N total number of participants. N/A, not available. Note three SNVs are not present in a 
publicly available database and lack rs#. Significance threshold p = 4.9 ×  10–6 is based on number of SNVs and 
phenotypes tested.

Trait
Chr:position 
(hg19) Gene

Marker exonic 
function

Amino acid 
change

Coded/Other 
allele

Minor Allele 
Count N Effect

Variance 
explained (%) p-value

Functional 
prediction of 
SNV*

Serum creati-
nine 1:101,342,412 EXTL2 Missense p.M148V G/A 33 1125  − 0.527 2.42 8.7 ×  10–9 Deleterious

Serum creati-
nine 17:35,518,712 ACACA Missense p.P1683S A/G 26 1125  − 0.506 1.87 2.9 ×  10–7 Deleterious

Fasting triglyc-
erides 17:67,149,477 ABCA10 rs779392624 

missense p.G1369W A/C 17 1124  − 0.696 2.15 7.5 ×  10–9 Deleterious

Fasting insulin 6:79,650,711 PHIP Missense p.T1722I A/G 28 790  − 0.369 1.30 2.1 ×  10–6 Deleterious

Fasting insulin 9:73,152,248 TRPM3 rs760461668 
missense p.V1086M A/G 185 792 0.166 1.70 4.8 ×  10–8 Deleterious

Fasting insulin 11:18,637,366 SPTY2D1 rs756851199 
missense p.V152A G/A 109 793 0.220 1.75 1.6 ×  10–8 Neutral/tol-

erant

Fasting insulin 22:43,557,062 TSPO rs566547284 
missense p.G63S A/G 26 793 0.396 1.45 2.4 ×  10–6 Deleterious

Table 2.  Association of insulin-related SNV genetic risk score with incident diabetes and impaired fasting 
glucose. All analyses are adjusted for age, sex, center, case-control status, principal components (Model 1) and 
additional adjustments for BMI (Model 2). C.I. confidence interval, N number. All outcomes were obtained at 
follow-up visit. Genetic risk score was calculated by the unweighted sum of increasing insulin risk alleles of the 
SNVs (chr6:79,650,711, rs760461668, rs756851199, rs566547284).

Incident outcomes N cases/N total Odds ratio (95% C.I.) Model 1 Odds ratio (95% C.I.) Model 2

Diabetes 103/571 1.53 (1.09, 2.15) 1.45 (0.997, 2.10)

Impaired fasting glucose 161/609 1.83 (1.35, 2.48) 1.84 (1.35, 2.49)
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Discussion
This study identified associations of several predicted deleterious rare and low frequency exonic variants with 
cardiometabolic biomarkers and clinical traits in American Indians. These findings include seven gene-trait 
significant associations for lipids, glucose/insulin  and kidney traits. Several genes identified have not been pre-
viously reported in genome-wide association studies for these traits, although the evidence for their biological 
function is supported by experimental studies (Table 3). For example, the ABCA10 gene identified in association 
with lower fasting triglycerides is a cholesterol-responsive gene and encoded protein is involved in macrophage 
lipid homeostasis. Two recent studies have reported association of variants at the ABCA10 loci with lipid traits 
including an intergenic variant (rs12453914) associated with triglycerides (p = 1.67 ×  10–6) although findings 
were not genome-wide  significant23,24. Genes identified in this study could be prioritized to uncover functional 
rare variants for these cardiometabolic traits.

Among the four genes identified for fasting insulin among non-diabetic individuals, TRPM3 is expressed 
in insulinoma and pancreatic β-cells, and the protein is involved in calcium signaling in pancreatic β-cells in 
response to glucose  stimuli25–28. TRPM3 channel activation has been shown to be inhibited by thiazolidinediones 
antidiabetic drugs such as pioglitazone and troglitazone, which are peroxisome proliferator-activated receptor 
(PPAR)gamma  agonists29,30. PHIP encodes a protein that interacts with insulin receptor substrate 1 (IRS-1) and 
is involved in β-cell proliferation and  survival31. Mice lacking PHIP develop  hypoglycemia32. TSPO is involved 
in mitochondrial cellular metabolism and conditional tspo knockout mice manifest chronic  hyperglycemia33. 
We were able to replicate the SPTY2D1 SNV for fasting  insulinadjBMI in the TOPMed data, but not the other 
SNVs which were rare or not present in datasets. However, we identified some evidence to support associations 
for our gene-traits through look-ups of gene-based findings and low p-value SNVs for our traits within the 
identified genes.

Among the four genes (PHIP, TRPM3, SPTY2D1 and TSPO) associated with fasting insulin and combined 
into a genetic risk score, we showed that carriers of insulin increasing risk alleles had higher odds of developing 
diabetes and impaired fasting glucose at follow-up. These findings and the association of the genetic risk score 
with the HOMA-IR support insulin resistance as a mechanism for development of diabetes and impaired fast-
ing glucose in our population. The attenuation of the association of the genetic risk score with incident diabetes 
when adjusting for BMI suggests mediation by obesity. In a randomized clinical trial, the PPARgamma agonist 
pioglitazone has shown to reduce the risk of diabetes among individuals with impaired glucose  tolerance34. 
American Indians have a high prevalence of both type 2 diabetes and impaired glucose tolerance, and one could 
speculate that carriers of the TRPM3 SNV may benefit from using preferentially these medications for diabetes 
prevention. Therefore, the study of exonic variants can uncover not only biological relationships for gene-traits 
not previously reported in genome-wide association studies but also provide potential clinical applications for 
gene findings in high-risk populations such as ours.

An important aspect of this project is the study of American Indian-specific variants. We have shown that 
1/3 of the variants assessed in this study are still not available in repositories. This includes all identified indels. 
The remaining variants are found in low frequency in Hispanics in the gnomAD exome variant database, given 
some Hispanics have Amerindian  admixture35. These variants are not included in commercial GWAS genotyp-
ing panels. Therefore, they have not been previously queried for disease risk in large consortia of complex traits. 
The low coverage WES used to identify Amerindian SNVs has the advantage of low cost and capturing most 
of low frequency/common variants in our data, given variant reference panels are not available for our popula-
tion. Studies have shown that low coverage WES identified variants perform well in association studies without 
an excess of false positive, although this strategy may have missed some  variants36,37. This study exemplifies a 

Table 3.  Supporting evidence for genes and associated traits. For replication of gene-trait associations, see 
Table S6.

Gene Trait Known function Relation to associated trait

EXTL2 Serum creatinine
The gene activity relates to regulation of heparan sulfate 
 biosynthesis39. Heparan sulphate proteoglycans interact with 
proteins and influence a variety of cellular and developmental 
 processes40

Heparan sulfate are major components of the glomerular filtra-
tion barrier in kidneys

ABCA10 Triglycerides
Member of ABCA6-like transporters. ABCA10 protein is 
involved in macrophage lipid homeostasis and its expression is 
suppressed by cholesterol import into  macrophages41

Other ABCA transporters have known physiological function 
in transmembrane transport of endogenous lipid substrates. For 
example, ABCA1 regulates high-density lipoprotein metabolism

PHIP Fasting insulin (adjusted for BMI)
The encoded protein selectively interacts with the IRS-1, and 
IRS-1 has a central role in the downstream effects of insulin and 
insulin-like growth factor-142

PHIP controls β-cell proliferation and  survival31. Phip mutant 
mice have postnatal growth deficit and develop  hypoglycemia32. 
PHIP rare SNVs associated with childhood obesity, insulin 
resistance and repression of pro-opio  melanocortin38

TRPM3 Fasting insulin (adjusted for BMI)

Transient receptor potential melastatin 3 (TRPM3) channels are 
non-selective cation channels that are expressed in insulinoma 
cells and pancreatic β-cells, and are important for cellular 
calcium signaling and homeostasis. TRPM3 mediates calcium 
signaling in pancreatic β-cells in response to glucose stimuli, 
supporting its role in pancreatic β-cells  function25,28

Trpm3-deficient mice do not show alterations in resting blood 
glucose levels in agreement with our  findings43. TRPM3 is a 
target for the PPARgamma agonist anti-diabetic drugs

TSPO Fasting insulin (adjusted for BMI) Translocator protein (TSPO) is a high-affinity cholesterol- and 
drug-binding mitochondrial protein

Tspo gene conditional knockout mice have shown a lack of 
response to adrenocorticotropic hormone and sustained hyper-
glycemia, which suggest a pre-diabetes  phenotype33
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major advantage of leveraging WES findings to select predicted functional variants for association screenings 
in genetically less well-characterized populations.

Our strategy for variant selection was driven by the current lack of reference panels for American Indians. 
We selected predicted functional variants from a WES performed in a subset of American Indian participants 
of the SHFS. We focused on variants that were not present in public repositories at the time of genotyping and 
then built a customized panel to genotype them in a larger sample of American Indians. This strategy offered 
some challenges including a large number of variants without an alternative allele (40%) at genotyping due 
to their low frequency in the studied population, and limitations for replication of variants. The genetic risk 
score results likely overestimated the effect as they were applied to the discovery sample. American Indians are 
characterized by distinct cultural and linguistic features, and separated by large geographic distances allowing 
for genetic variation between groups to have occurred. Our study included American Indians from tribes in the 
Dakotas and Oklahoma, but not Southwestern tribes who were used for replication. Given these challenges, we 
believe that the best approach to validate our findings will be the functional characterization of our variants in 
experimental models, and future target search for LOF exonic variants in the genes that we identified in this study.

In support to this strategy and a potential role of PHIP in insulin resistance, a recent study identified an 
excess of very rare predicted deleterious variants at PHIP in childhood severe obese individuals compared to 
controls, with some PHIP carriers showing insulin resistance and early type 2  diabetes38. Functional in vitro 
experiments supported a role of PHIP in human energy homeostasis through transcriptional regulation of 
central melanocortin signaling  pathways38. Our participants carrying the PHIP SNV A allele had similar BMI 
than non-carriers (29.2 [standard deviation 5.5] and 31.4 [6.7] kg/m2 for genotypes AG and GG, respectively, 
p = 0.18) and all analyses were adjusted for BMI.

In summary, this study of predicted functional Amerindian-specific exome variants identified seven gene-trait 
associations and uncovered potential new biological mechanisms and clinical implications for genes not previ-
ously reported to be associated with cardiometabolic traits. Our results add to the literature of exonic variants 
associated with cardiometabolic traits in American Indians.

Data availability
The Strong Heart Study and the  SHFS9 data is available through dbGaP Study Accession: phs000580.v1.p1 and 
upon request from the https:// stron ghear tstudy. org/. The summary data are included in the online supplemental 
files.
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