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Predicting the quality of soybean 
seeds stored in different 
environments and packaging using 
machine learning
Geovane da Silva André1, Paulo Carteri Coradi1,2,3*, Larissa Pereira Ribeiro Teodoro1 & 
Paulo Eduardo Teodoro1

The monitoring and evaluating the physical and physiological quality of seeds throughout storage 
requires technical and financial resources and is subject to sampling and laboratory errors. Therefore, 
machine learning (ML) techniques could help optimize the processes and obtain accurate results for 
decision-making in the seed storage process. This study aimed to analyze the performance of ML 
algorithms from variables monitored during seed conditioning (temperature and packaging) and 
storage time to predict the physical and physiological quality of stored soybean seeds. Data analysis 
was performed using the Artificial Neural Networks, decision tree algorithms REPTree and M5P, 
Random Forest, and Linear Regression. In predicting seed quality, the combination of the input 
variables temperature and storage time for REPTree and Random Forest algorithms outperformed 
the linear regression, providing higher accuracy indices. Among the most important results, it was 
observed for apparent specific mass that T + P + ST, T + ST, P + ST, and ST had the highest r means 
and the lowest MAE means, however, Person’s r coefficient for these inputs was 0.63 and the MAE 
between 9.59 to 10.47. The germination results for inputs T + P + ST and T + ST had the best results 
(r = 0.65 and r = 0.67, respectively) in the ANN, REPTree, M5P and RF models. Using computational 
intelligence algorithms is an excellent alternative to predict the quality of soybean seeds from the 
information of easy-to-measure variables.

In post-harvest, the storage stage is intended to preserve the quality of the  seeds1,2. However, variations in seed 
moisture content, shape, environment, and storage time can influence the metabolic activity and physiological 
quality of  seeds3,4. The increase in the respiratory rate of the grain mass cause continuous transformations in the 
grains, since organic matter, when in contact with oxygen, is transformed into  CO2 and  H2O, releasing energy 
in the form of heat, resulting in a more favorable environment for the infestation of insect pests, mites, fungal 
infection, physical–chemical and physiological  variations4,5.

To reduce the metabolic activity of the seeds, it is suggested to control the temperature and relative humidity 
of the storage environment so that the seeds remain in hygroscopic equilibrium with moisture contents close 
to 12% (w.b.), which is considered a safe storage  humidity5–7. For this, artificial cooling technology has been 
 used8,9. Maintaining the seeds at low temperatures, associated with a controlled condition of relative humidity, 
can provide a favorable storage condition. Reducing the temperature on the grain mass can reduce the speed of 
biochemical and metabolic reactions of the grains where the reserves in the support tissue are unfolded, trans-
ported and resynthesized in the embryonic axis, allowing the maintenance of the initial characteristics of the 
stored grains for longer  periods6–9. Besides this, the use of hermetic or semi-hermetic packaging can contribute 
to the reduction of seed respiration and maintenance of  quality10–13.

In order to obtain more accurate information about the quality of stored seeds, especially regarding the appar-
ent specific mass and germination as a function of storage conditions and time, the application of predictive 
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computer algorithms is recommended. In this context, the use of Machine Learning (ML) algorithms can provide 
improve data processing and analysis ability. When adequately modeled, ML techniques can provide answers in 
a shorter time when compared to statistical regression models.

In recent years, ML methods have been used to predict crop  yield14,15, application rate of nitrogen to  soils16 and 
leaf nitrogen  concentration17, classify  seeds18, reduce phosphorus in  wastewater19, and reduce crude protein in 
stored  grain20. Random Forest algorithm, for example, is an ML technique used successfully in crop  prediction21. 
Compared to multiple linear regression models, this technique is effective and easier to use in yield prediction 
analyses for  maize15,  soybean14, and  potatoes22. Another example is Artificial Neural Networks (ANNs), which 
are algorithms that can be  trained23,24 to analyze and interpret complex food safety data, physical and chemical 
 predictions23,25.

To fill gaps where conventional statistics cannot generate satisfactory prediction results, data modeling using 
ML techniques may become a viable alternative for evaluating the quality of stored soybean seeds instead of 
conducting time-consuming and costly tests in laboratories. In seed processing and storage units, the use of 
ML can be an auxiliary tool for decision-making within the seed storage environment, thereby contributing 
to process optimization and loss reduction, impacting socio-economically in the production environment and 
collaborating for the formation of a more sustainable post-harvest system. Thus, this study aimed to analyze the 
performance of ML algorithms from soybean seed conditioning variables (temperature, packaging) and storage 
time to predict physical and physiological quality of stored soybean seeds.

Material and methods
Characterization of the experiments. A completely randomized was used, three-factor (3 × 2 × 5) 
experiment experimental design: three storage temperatures (10, 15, and 25 °C), two packagings (raffia bag and 
polyethylene coated raffia bag), and five evaluation times (0, 3, 6, 9, and 12 months). Every three months, three 
packagings (i.e., three repetitions) of each treatment were sampled to make quality assessments. After this pro-
cedure, the packaging was discarded. Figure 1 represents the experimental setup.

The raffia bags were made of 20 cm (wide) × 30 cm (height) × 0.25 cm polypropylene material. The polyethyl-
ene coating used to store the grains in the raffia bags had dimensions of 20 cm (wide) × 30 cm (height) × 0.1 cm 
(thick of high density) being produced by the company specialized in food packaging (Videplast Company, 
Videira, Santa Catarina, Brazil).

The polyethylene packages were constituted by partially crystalline and flexible thermoplastic resin mate-
rial obtained through the ethylene polymerization, having low density, high tenacity, good impact resistance, 
flexibility, easy processability, electrical properties and stability, and low permeability to water. It is formed by 
polar organic compounds and can be changed by the temperature environment. To assess the effects of the stor-
age environments on the physical quality of the soybean grains, the three conditions (packaging, temperatures 
conditions, and storage time) were grouped to define the storage environments (Table 1).

Sampling and quality analysis of soybean seeds. The soybean grains were obtained from the produc-
tion fields of a rural property in the municipality of Chapadão do Céu-GO, Brazil, and were cleaned to remove 
impurities and foreign matter LC 160 machine (Kepler Weber, Panambi, Rio Grande do Sul, Brazil). Then, they 
were dried in drying silos with radial airflow (Rome Silos Company, Cambé, Paraná, Brazil). The dryer is built 
in modulated wooden panels (2.11 m × 0.60 m) with treated boards interspersed with aluminum shutters, fixed 
by galvanized wire and structured with laminated angle arches, mounted overlapping on a self-draining metallic 
background. Radial ventilation through central tube and centrifugal fan. The temperature of the grain drying 
air, up to 12% (w.b.) of moisture content, was 40  °C. Then, the grains were processed using spiral separator 
equipment (Akyurek Technology, Mersin, Turkey) and a dissymmetric table model SDS-80 (Silomax, Rolândia, 
Paraná, Brazil) in order to standardize their size and weight. The grains lots were stored in raffia bags (polypro-
pylene) in air-conditioned warehouses with temperature control. Nine-kilogram grain samples were collected 
from the bags using a sampler (EAGRI Equipments, Panambi, Rio Grande do Sul, Brazil), in, with the aid of a 
manual presser order to be stored experimentally in different storage environments.

During the storage period, the temperature of the grain mass was monitored weekly with the aid of a digital 
thermohygrometer model Logbox-RHT-LCD (Novus Electronic Products Company, Canoas, Rio Grande do Sul, 
Brazil) and every three months, the grain samples were collected for quality assessment. The moisture content 
of the grains was determined in a forced air circulation oven at 220 L (Tecnal Company, Piracicaba, São Paulo, 
Brazil) at 105 °C ± 1 °C, for 24 h, with four repetitions. Then, the samples were removed and placed in a desiccator 
for cooling at 5 L (Tecnal Company, Piracicaba, São Paulo, Brazil) and subsequent weighing at balance model 
B13200H (Shimadzu, São Paulo, Brazil) according to the recommendations of the Rule for Seed  Analysis26. The 
moisture content was determined by the mass difference of the initial and the final sample, and the results were 
expressed as a percentage (w.b.). The apparent specific mass of the grains was determined with the aid of a 150 mL 
beaker and a precision scale, using the mass/volume ratio, with four  repetitions26.

The electrical conductivity evaluation was carried out with four sub-samples, each containing 25 seeds per 
experimental unit, weighed on a precision scale of 0.001 g, and placed in plastic cups with 75 mL of distilled 
water, and was undertaken in a incubator at 25 °C, for 24 h. After imbibition, the electrical conductivity of the 
immersion solution was obtained with the aid of a digital conductivity meter model CD-21 (Digimed, São Paulo, 
Brazil) and the results were expressed in μS  cm−1  g−1 according to the methodology proposed by  Brazil26. For the 
vigor and germination tests, four sub-samples of 50 seeds from each experimental unit were used, distributed 
in paper towel rolls (Germitest), and moistened with distilled water in an amount that was 2.5 times the dry 
paper mass. Then, the rolls with the seeds were placed in a germinator model Mangesdorf (Tecnal, Piracicaba, 
São Paulo, Brazil) set at a temperature of 25 °C ± 2 °C. The evaluations were carried out on the fifth (vigor) and 
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eighth (germination) days after the test was installed, by counting normal and abnormal seedlings as well as dead 
seeds, according to the criteria established in the Rules for Seed  Analysis26.

Machine learning models. The models tested were: Artificial Neural Network (ANN), decision tree algo-
rithms REPTree and M5P, Random Forest (RF), and Linear Regression (LR). The ANN tested consists of a single 
hidden layer formed by a number of neurons that is equal to the number of attributes plus the number of classes, 
all divided by  227. REPTree model is an adaptation of the C4.5 classifier that can be used in regression problems 
with an additional pruning step based on an error reduction  strategy28. M5P model is a reconstruction of Quin-
lan’s M5 algorithm based on the conventional decision tree with the addition of a linear regression function to 
the leaf  nodes29. RF model can produce several prediction trees for the same data set and use a voting scheme 
among all learned trees to predict new  values30. RL model was used as a control model as it serves to predict the 
behaviors between variables that have a good correlation, and is a widely used model in statistics.

The prediction of the variables moisture content (MC), apparent specific mass (ASM), electrical conductivity 
(EC), germination (G), and vigor (V) in soybean seeds was performed by all machine learning (ML) models in 
a tenfold stratified randomized cross-validation with 10 repetitions (100 runs for each model). Different inputs 

Figure 1.  Experimental scheme.
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were considered for each model in predicting these variables: temperature (T), packaging (P), storage time (ST), 
T + P, T + ST, T + P + ST.

The statistics used to verify the quality of fit were Pearson’s correlation coefficient (r) between the observed 
and predicted values by each model and the mean absolute error (MAE) of the predicted values in relation to 
the observed ones. ML analyses were performed with Weka 3.9.4 software using the default configuration for all 
models  tested31 on an Intel® CoreTM i5 CPU with 4 Gb of RAM.

Statistical analysis. After obtaining the correlation coefficient (r) and the mean absolute error (MAE) 
statistics, an analysis of variance considering a two factorial scheme (models versus inputs) with 10 repetitions 
(folds) was performed. The r varies between 0 and 1, and its proximity to 1 indicates that the model is better 
at explaining the variability of the sample data. It is expected an MAE result inverse to those of the correlation 
coefficient since it is used to analyze the error between the values predicted by the model and those expected; the 
lower the values, the closer the model is to the observed outputs. The means were grouped by the Scott-Knott test 
at 5% probability. Bar charts were constructed for each variable (r and MAE) considering the models and inputs 
tested. These analyses were performed on the R  software32 using the ExpDes.pt and ggplot2 packages.

Ethics declarations. The experimental research and field studies on plants and plant material were com-
ply with local and national regulations. The authors had permission to collect grains, attending local, national, 
and international regulations.The study complied with institutional, national, and international guidelines and 
legislation.

Results and discussion
Analysis of variance. Table 2 shows the p-value results (r and MAE) for the prediction of the variables 
evaluated, considering the different ML models (M) and different inputs (I). It was possible to observe that there 
was significant interaction (p < 0.05) between factors for r and MAE for the variables moisture content and ger-
mination, and MAE for electrical conductivity. The r of the apparent specific mass had a significant effect only 

Table 1.  Experimental design and grouping of storage environments.

Packaging Storage temperature (°C) Storage time (months)

With coating 25 0

With coating 25 3

With coating 25 6

With coating 25 9

With coating 25 12

With coating 15 0

With coating 15 3

With coating 15 6

With coating 15 9

With coating 15 12

With coating 10 0

With coating 10 3

With coating 10 6

With coating 10 9

With coating 10 12

Uncoating 25 0

Uncoating 25 3

Uncoating 25 6

Uncoating 25 9

Uncoating 25 12

Uncoating 15 0

Uncoating 15 3

Uncoating 15 6

Uncoating 15 9

Uncoating 15 12

Uncoating 10 0

Uncoating 10 3

Uncoating 10 6

Uncoating 10 9

Uncoating 10 12
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for the inputs, while for MAE there was significant variation for M and I. MAE of the variable ASM and the r of 
the variables EC and V had significant variation for M and I.

Moisture content. During storage, biological processes in the products continue to occur with greater 
or lesser intensity, depending on storage conditions and the moisture content of the  products33. Thus, it was 
observed that the inputs T + P + ST and the combination T + ST were the ones that had the best performance in 
predicting seed quality. Juvino et al.34 observed a higher range of moisture content in uncontrolled temperature 
environments than the acclimatized one at 18 °C. When the seeds were subjected to lower storage temperatures, 
they remained in hygroscopic equilibrium with moisture contents close to the initial storage  conditions35.

The reduction in grain temperature slows down the biochemical and metabolic reactions of the seeds, which 
reserves stored in the support tissue are unfolded, transported and resynthesized in the embryonic axis and 
allow the maintenance of the initial characteristics of seed storage for longer periods. The combination of input 
variables temperature and storage time was the best moisture content predictor of soybean seed indices during 
the storage period. The moisture content of soybean seeds for safe storage is 12% (w.b.), which must remain in 
equilibrium moisture content with intergranular air at 65–67%35. The prediction of seed moisture content dur-
ing storage is of paramount importance, since the increase or reduction of moisture content can influence the 
metabolic activity of the seeds, in the cellular tissues and, consequently, in the physiological quality.

For inputs T, T + P, P, P + ST, and ST, there was no difference between the models tested (Tables 3 and 4). How-
ever, for inputs T + P + ST and T + ST, the ANN, REPTree, M5P, and RF models had the highest means compared 
to LR. When analyzing the inputs within each model, it can be seen that, regardless of the model, the T + P + ST 
configuration provided the highest r means. The MAE results for the ML algorithms with T + ST + P and T + ST 
as inputs ranged from 0.30 to 0.41, while LR scored 0.73. For the T + P + ST configuration, all ML models had r 
values above or equal to 0.94, while for the LR the observed r was 0.72.

Table 2.  The P-value from the analysis of variance for Pearson’s correlation coefficient (r) between observed 
and estimated values of moisture content (MC), apparent specific mass (ASM), electrical conductivity (EC), 
germination (G), and vigor (V) of soybean seeds by different machine learning models and inputs.

Sources of variation

MC ASM EC G V

r MAE r MAE R MAE r MAE r MAE

Models (M)  < 0.00  < 0.00 0.99 0.00 0.03  < 0.00  < 0.00  < 0.00 0.02 0.00

Inputs (I)  < 0.00  < 0.00 0.00 0.00 0.00  < 0.00  < 0.00  < 0.00 0.00 0.00

MxI  < 0.00  < 0.00 1.00 1.00 0.43  < 0.00  < 0.00  < 0.00 0.40 0.64

Table 3.  Unfolding the significant interaction between model x input for Pearson’s correlation coefficient (r) 
between the observed and estimated values of moisture content in soybean seeds by different machine learning 
models and inputs. Means followed by equal lowercase letters in the same column and equal uppercase letters 
in the same row do not differ by the Scott-Knott test at 5% probability. T temperature, P packaging, ST storage 
time.

Models T P + T ST + P + T ST + T P ST + P ST

ANN 0.36 aE 0.43 aD 0.94 aA 0.86 aB 0.10 aF 0.63 aC 0.63 aC

REPTree 0.36 aE 0.43 aD 0.95 aA 0.87 aB 0.10 aF 0.63 aC 0.63 aC

LR 0.36 aC 0.37 aC 0.72 bA 0.72 bA 0.10 aD 0.63 aB 0.63 aB

M5P 0.36 aE 0.43 aD 0.94 aA 0.87 aB 0.10 aF 0.63 aC 0.63 aC

RF 0.36 aE 0.43 aD 0.95 aA 0.87 aB 0.10 aF 0.63 aC 0.63 aC

Table 4.  Unfolding the significant interaction between model x input for mean absolute error (MAE) between 
the observed and estimated values of moisture content in soybean seeds by different machine learning models 
and inputs. Means followed by equal lowercase letters in the same column and equal uppercase letters in the 
same row do not differ by the Scott-Knott test at 5% probability. T temperature, P packaging, ST storage time.

Models T P + T ST + P + T ST + T P ST + P ST

ANN 1.26 aA 1.22 aA 0.41 bD 0.67 aC 1.33 aA 0.92 aB 0.92 aB

REPTree 1.07 bA 1.09 bA 0.30 bD 0.53 bC 1.11 bA 0.80 aB 0.81 aB

LR 1.07 bA 1.09 bA 0.73 aB 0.73 aB 1.11 bA 0.81 aB 0.81 aB

M5P 1.07 bA 1.09 bA 0.32 bC 0.53 bD 1.11 bA 0.81 aB 0.81 aB

RF 1.07 bA 1.09 bA 0.30 bC 0.53 bD 1.11 bA 0.81 aB 0.81 aB
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Inputs T, T + P, and P from the ANN model had the highest means (Table 4), while for input T + P + ST the 
LR model had the highest mean. For the T + ST input, the ANN and LR models showed the highest means, 
while for the P + ST and ST inputs there were no statistical differences among the models tested. It is important 
to highlight that MAE behaved contrary to r. The low MAE values represented a higher proximity between the 
observed and estimated values. When analyzing the inputs within each model, it was possible to observe that 
the T + P + ST configuration provided the lowest MAE means regardless of the model. In Fig. 2, it was observed 
that the ANN, REPTree, M5P, and RF models when associated with inputs T + P + ST and T + ST provided the 
highest r and lowest MAE values. Therefore, Random Forest algorithm is recommended to predict the moisture 
content of the seeds during the storage period because used a smaller amount of data, making it possible to bet-
ter conduct overfitting problems.

Apparent specific mass. The ASM did not differ for r in the tested models. However, the ANN model 
presented the highest average MAE in relation to the others, which indicates that this model overestimated 
the apparent specific mass values. Regarding the inputs tested, it was possible to observe in Tables 5 and 6 that 
T + P + ST, T + ST, P + ST, and ST showed the highest r means and the lowest MAE means. Person’s r coefficient 
for these inputs was 0.63 and the MAE between 9.59 to 10.47.

In the ASM prediction, storage time was the condition present in all input combinations that best predicted 
the variable levels. A study carried out by Alencar et al.36 verified that the ASM was changed according to tem-
perature and storage time conditions. According to the findings reported by the Alencar et al36, the decrease in 
apparent specific mass occurred after 180 days of storage due to the increased metabolic activity of the grains 
influenced by variations in moisture content and temperature of the stored seed mass.

Figure 3 shows that the REPTree, M5P, and RF models when associated with inputs T + P + ST, T + ST, P + ST 
and ST provided the highest r values and lowest MAE values. Importantly, while the ANN model had the best r 

Figure 2.  Mean values and scatter plot for the Pearson’s correlation coefficient (r) and mean absolute error 
(MAE) between observed and estimated values of moisture content in soybean seeds by different machine 
learning models and inputs.

Table 5.  Clustering of means for the Pearson’s correlation coefficient (r) and mean absolute error (MAE) 
between observed and estimated values of apparent specific mass in soybean seeds by different learning 
models. Means followed by the same letters in the same column do not differ by the Scott-Knott test at 5% 
probability.

Models r MAE

ANN 0.35 a 17.12 a

REPTree 0.35 a 10.45 b

LR 0.35 a 10.45 b

M5P 0.36 a 10.45 b

RF 0.35 a 10.44 b
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results with the aforementioned inputs, this model also had high ANN values (17.12) for all inputs. Furthermore, 
no model had statistically different results from the LR model.

The results obtained indicated that the storage time had a greater influence in the ASM, that is, it reduced 
the seed mass in relation to their volume. This loss occurs due to the chemical reactions of oxidation during the 
respiratory process of the seeds, which consume accumulated energy in the form of organic compounds such as 
sugars, starches and others, effectively reducing the mass and, therefore, the weight of the  seeds5,8,9. This result 
indicates that the seeds suffered deterioration and losses in physiological quality. The ANN model can be used 
to predict the ASN variation.

Electrical conductivity. No significant difference was observed for EC considering the models analyzed 
(Table 7). However, even so, the r value for the LR model was lower when compared to the other models tested. 
Regarding the different inputs for EC (Table 8), the combination T + P + ST and T + ST had the highest r means 
(0.65 and 0.63, respectively), while the input T had the lowest r mean. For inputs T, T + P, P, P + ST and ST, the 
MAE values did not differ among the models tested. The lowest means were verified for inputs T + P + ST and 
T + ST for the models REPTree, M5P, and RF (Table 9).

Considering that conditions (packaging, temperature, and relative humidity) and storage time can influence 
seed moisture contents by causing seed drying or rewetting, it is expected that the prediction of electrical con-
ductivity as a function of the input conditions tested indicates deterioration of cellular tissues and seed quality. 
Alencar et al.36, when evaluating the soybean quality by the electrical conductivity test, observed that the interac-
tion between moisture content, temperature, and storage time were significant and influenced the quality of the 

Table 6.  Clustering of means for the Pearson’s correlation coefficient (r) and mean absolute error (MAE) 
between observed and estimated values of apparent specific mass in soybean seeds by different inputs. Means 
followed by the same letters in the same column do not differ by the Scott-Knott test at 5% probability. T 
temperature, P packaging, ST storage time.

Input r MAE

T 0.00 b 13.86 a

P + T − 0.02 b 13.88 a

ST + P + T 0.63 a 10.47 b

ST + T 0.63 a 10.31b

P − 0.02 b 13.88 a

ST + P 0.63 a 10.47 b

ST 0.63 a 9.59 b

Figure 3.  Mean values and scatter plot for the variables Pearson’s correlation coefficient (r) and mean absolute 
error (MAE) between observed and estimated values of apparent specific mass in soybean seeds by different 
machine learning models and inputs.
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seeds. Carvalho et al.37 and Coradi et al.38 observed that the most significant increase in conductivity of soybean 
seeds occurred after 180 days of storage, indicating changes in the cellular tissues of the seeds.

In Fig. 4, it can be seen that the T + P + ST inputs obtained the best MAE results (21.67) for REPTree, M5P, 
and RF models. Similar results were observed for the T + ST inputs, where the MAE ranged from 21.95 to 22.01. 
Although the ANN model showed satisfactory r results, the MAE values did not differ from the LR model.

Therfore, the effect of temperature associated with storage time had a greater influence on the deterioration 
of cell membranes determined by the electrical conductivity test. Random Forest was the algorithm that better 
predicted electrical conductivity results, for the same reasons described for the variable water contents, smaller 
amount of data, making it possible to better conduct overfitting problems.

Germination. The obtained and estimated values for soybean seed germination are presented in Tables 10 
and 11. The inputs T, T + P, P, and ST did not show significant variation. The highest means for inputs T + P + ST 
and T + ST were obtained in the ANN, REPTree, M5P, and RF models, while for the REPTree model the best 
results were obtained at input P + ST.

In Table 10 are the unfoldings of the significant interactions between the models and inputs, considering 
the observed and estimated seed germination values for MAE. The LR model obtained the highest MAE value 
(11.26) for the input combination T + P + ST. The REPTree and RF models had the lowest MAE (8.95) for the 
T + P + ST and T + ST combination. For inputs T, T + P, P, and ST, the means were higher and input P + ST, where 
only the REPTree model showed a low mean (Fig. 5).

Table 7.  Clustering of means for the Pearson’s correlation coefficient (r) and mean absolute error (MAE) 
between observed and estimated values of electrical conductivity in soybean seeds by different learning 
models. Means followed by the same letters in the same column do not differ by the Scott-Knott test at 5% 
probability.

Models r

ANN 0.41 a

REPTree 0.42 a

LR 0.38 b

M5P 0.42 a

RF 0.42 a

Table 8.  Clustering of means for the Pearson’s correlation coefficient (r) between observed and estimated 
values of electrical conductivity in soybean seeds by different inputs. Means followed by the same letters in the 
same column do not differ by the Scott-Knott test at 5% probability. T temperature, P packaging, ST storage 
time.

Input r

T 0.32 c

P + T 0.34 c

ST + P + T 0.65 a

ST + T 0.63 a

P 0.03 d

ST + P 0.45 b

ST 0.44 b

Table 9.  Unfolding the significant interaction between model x input for mean absolute error (MAE) between 
the observed and estimated values of electrical conductivity in soybean seeds by different machine learning 
models and inputs. Means followed by equal lowercase letters in the same column and equal uppercase letters 
in the same row do not differ by the Scott-Knott test at 5% probability. T temperature, P packaging, ST storage 
time.

Models T P + T ST + P + T ST + T P ST + P ST

ANN 29.91 aA 30.43 aA 25.13 aB 25.24 aB 31.12 aA 30.23 aA 30.35 aA

REPTree 28.25 aA 28.33 aA 21.67 bB 21.94 bB 29.93 aA 26.61 aA 26.80 aA

LR 28.25 aA 28.37 aA 25.47 aB 25.39 aB 29.95 aA 26.81 aB 26.77 aB

M5P 28.25 aA 1.03 bC 21.60 bB 22.01 bB 29.95 aA 26.78 aA 26.77 aA

RF 28.26 aA 28.34 aA 21.67 bB 21.95 bB 29.94 aA 26.61 aA 26.81 aA
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High percentages of seed germination are obtained over storage time when seeds are stored in proper tem-
peratures and  packaging39. Coradi et al.40 verified that the artificially cooled soybean seeds maintained their 
physiological quality for 140 days of storage. Coradi et al.41 observed that seeds stored in uncontrolled envi-
ronments obtained increased respiration rate and accelerated deterioration. It was found in Table 11 that the 
germination results for inputs T + P + ST and T + ST had the best results (r = 0.65 and r = 0.67, respectively) in the 

Figure 4.  Mean values and scatter plot for the variables Pearson’s correlation coefficient (r) and mean absolute 
error (MAE) between observed and estimated values of electrical conductivity in soybean seeds by different 
machine learning models and inputs.

Table 10.  Unfolding the significant interaction between model x input for Pearson’s correlation coefficient 
(r) between the observed and estimated values of germination in soybean seeds by different machine learning 
models and inputs. Means followed by equal lowercase letters in the same column and equal uppercase letters 
in the same row do not differ by the Scott-Knott test at 5% probability. T temperature, P packaging, ST storage 
time.

Models T P + T ST + P + T ST + T P ST + P ST

ANN 0.33 aB 0.33 Ab 0.67 aA 0.65 aA 0.03 aC 0.36 bB 0.35 aB

REPTree 0.33 aB 0.33 aB 0.67 aA 0.65 aA 0.03 aC 0.65 aA 0.35 aB

LR 0.33 aB 0.33 aB 0.48 bA 0.48 bA -0.02 aC 0.35 bB 0.35 aB

M5P 0.33 aB 0.32 aB 0.66 aA 0.65 aA -0.02 aC 0.36 bB 0.35 aB

RF 0.33 aB 0.33 aB 0.67 aA 0.65 aA 0.03 aC 0.36 bB 0.35 aB

Table 11.  Unfolding the significant interaction between model x input for mean absolute error (MAE) 
between the observed and estimated values of germination in soybean seeds by different machine learning 
models and inputs. Means followed by equal lowercase letters in the same column and equal uppercase letters 
in the same row do not differ by the Scott-Knott test at 5% probability. T temperature, P packaging, ST storage 
time.

Models T P + T ST + P + T ST + T P ST + P ST

ANN 13.33 Aa 13.65 bA 9.77 aC 11.61B 13.70 aA 14.71 aA 12.16 aB

REPTree 11.75 aA 11.76 bA 8.95 aB 9.10 bB 12.67 aA 9.10 cB 11.89 aA

LR 11.77 aA 11.79 bA 11.26 aA 11.25 aA 12.67 aA 11.89 bA 11.87 aA

M5P 11.77 aA 11.84 bA 9.05 aB 9.21 bB 12.67 aA 11.89 bA 11.87 aA

RF 11.76 aB 17.01 aA 8.95 aC 9.10 bC 12.68aB 11.92 bB 11.89 aB
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ANN, REPTree, M5P and RF models. The LR model had a low performance (r = 0.48) for the inputs T + P + ST 
and T + ST, as did the ANN model for the input T + ST.

The germination results followed the results obtained with the moisture contents, apparent specific mass 
and electrical conductivity. However, in addition to the temperature and storage time factors, the relationship 
between storage time and packaging had a very significant influence on the physiological quality of the seeds. 
Among the models tested, REPTree model stood out among the others.

Vigor. The statistics obtained for the vigor variable (r and MAE) showed no significant interaction between 
models and inputs. However, the ANN model presented the highest mean MAE in relation to the others 
(Table 12), indicating that the ANN model overestimated the vigor values. Regarding the inputs tested, it was 
possible to observe (Table 13) that T + P + ST, T + ST, P + ST, and ST presented the highest mean r and the lowest 
mean MAE.

The results shown in Fig. 6 indicate that the REPTree, M5P and RF models, when associated with the inputs 
T + P + ST, T + ST, P + ST and ST provided the highest r values (0.68 to 0.47) and the lowest MAE values. Ferreira 
et al9 found that seed storage at low temperatures (T + ST) reduced metabolic activity and maintained physiologi-
cal quality. However, the choice of the combinations T + P + ST, T + ST was justified when analyzing the values of 
the mean absolute errors. The MAE for T + P + ST was 13.09, and for T + ST the values were 13.24. Importantly, 
although the ANN obtained good r results with the aforementioned inputs, the model showed high MAE values 
for all inputs compared to the LR model.

Seed vigor was mainly influenced by temperature and storage time, as was the case for the other variables 
evaluated. RF was the model that best predicted the vigor indices of the seeds using a smaller amount of data. 
The superior performance of RF possibly occurred due to the internal structure of the algorithm, which is based 
on multiple decision tree sets.

Figure 5.  Mean values and scatter plot for the variables Pearson’s correlation coefficient (r) and mean absolute 
error (MAE) between observed and estimated values of germination in soybean seeds by different machine 
learning models and inputs.

Table 12.  Clustering of means for the Pearson’s correlation coefficient (r) and mean absolute error (MAE) 
between observed and estimated values of vigor in soybean seeds by different learning models. Means followed 
by the same letters in the same column do not differ by the Scott-Knott test at 5% probability.

Models r MAE

ANN 0.44 a 17.33 a

REPTree 0.44 a 15.46 c

LR 0.39 b 16.20 b

M5P 0.44 a 15.51 c

RF 0.43 a 15.46 c
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RF regression has advantages when predictor or explanatory variables are highly correlated, which is especially 
true for the variables temperature and storage time evaluated here. Variable collinearity can be a critical problem 
in traditional prediction models that are derived from linear  regression21,42,43. Moreover, RF has been considered 
superior to other machine learning algorithms because it can easily handle many model parameters, reduce esti-
mate bias, and has no problems with  overfitting18. Recent studies have classified RF as an effective and versatile 
machine learning method for crop yield  predictions19. To date, there are no studies for predicting storage seed 
quality from conditioning variables using ML models. Our study shows that it is possible to obtain satisfactory 
accuracy in predicting quality variables of stored soybean seeds using computational intelligence techniques, 
especially by employing the RF model. Furthermore, our findings provide support for decision-making about 
which conditioning variables should be evaluated and included in such prediction models, contributing to a 
more efficient soybean seed processing.

Conclusion
The preservation of seed quality involves controlling the storage environment and the use of technology, such 
as packaging, that allow reducing the metabolic activity of the seeds over time. In this study, evaluating the pre-
dicting the quality of soybean seeds stored in different environments and packaging using Machine Learning, 
it was concluded that:

a. The combination of input variables temperature and storage time was the best predictor of soybean seed 
quality indices during the storage period. The input variable packaging did not influence predicting the physi-

Table 13.  Clustering of means for the Pearson’s correlation coefficient (r) and mean absolute error (MAE) 
between observed and estimated values of vigor in soybean seeds by different inputs. Means followed by 
the same letters in the same column do not differ by the Scott-Knott test at 5% probability. T temperature, P 
packaging, ST storage time.

Input r MAE

T 0.34 c 17.23 b

P + T 0.33 c 17.27 b

ST + P + T 0.68 a 13.09 d

ST + T 0.68 a 13.24 d

P 0.01 d 18.56 a

ST + P 0.47 a 16.29 c

ST 0.47 a 26.28 c

Figure 6.  Mean values and scatter plot for the variables Pearson’s correlation coefficient (r) and mean absolute 
error (MAE) between observed and estimated values of vigor in soybean seeds by different machine learning 
models and inputs.
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ological quality of soybean. The packaging effect was suppressed by the low storage temperatures, allowing 
the same results to be achieved, but using a smaller number of input variables.

b. The ML techniques outperformed the proposed control model (linear regression). Random Forest algorithm 
was the one that best predicted the physiological quality indices of the seeds during the storage period with 
a smaller amount of data, making it possible to better conduct overfitting problems. On the other hand, the 
Artificial Neural Network had the highest errors (MAE).

The proposed approach stood out in terms of speed compared to the analysis methods routinely used, mak-
ing the processes more robust and with low operational costs compared to the laboratory analysis strategies 
traditionally used. Using ML can be an auxiliary tool for decision-making within the seed storage environment, 
thereby contributing to loss reduction.

Data availability
All research data and materials are available in the article.
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