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Expression of ferroptosis‑related 
gene correlates with immune 
microenvironment and predicts 
prognosis in gastric cancer
Siyuan Song1,2,3 & Peng Shu1,2,3*

The study is to explore the role of ferroptosis-related genes (FRGs) in the occurrence and development 
of gastric cancer (GC), and to construct a new prognosis signature to predict the prognosis in GC. 
Clinical information and corresponding RNA data of GC patients were downloaded from TCGA and 
GEO databases. Consensus clustering was performed to identify new molecular subgroups. ESTIMATE, 
CIBERSORT, McpCounter and TIMER algorithm were used to analyze the infiltration of immune cells 
in two molecular subgroups. LASSO algorithm and multivariate Cox analysis were used to construct a 
prognostic risk signature. Functional analysis was conducted to elucidate the underlying mechanisms. 
Finally, the FRPGs were verified by Quantitative Real-Time PCR. We obtained 16 FRGs and divided GC 
patients into two subgroups by consistent clustering. Cluster C1 with a higher abundance of immune 
cell infiltration but lower probability in response to immunotherapy, it was reasonable to speculate 
that Cluster C1 was in accordance with the immune rejection type. Functional analysis showed that the 
biological process of DEGs in training cohort mainly included immune globulin, and human immune 
response mediated by circulating immune globulin. GSEA analysis showed that compared with 
Cluster C2, Cluster C1 showed lower expression in lipid metabolism. The nomogram combined with 
risk signature and clinical features can accurately predict the prognosis of GC patients. We identified 
two molecular subtypes, Clusters C1 and C2. In Cluster C1, patients with poor prognosis present with 
a hyperimmune status and low lipid metabolism, and we speculate that Cluster C1 was in accordance 
with the immune rejection type. The risk model based on FRPGs can accurately predict the prognosis 
of GC. These results indicated that ferroptosis is associated with TIME, and deserved considerable 
attention in determining immunotherapy treatment strategy for GC patients.
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KEGG:	� Kyoto Encyclopedia of Genes and Genomes
PPI:	� Protein–protein interaction
OS:	� Overall survival

A preprint has previously been published1.
Gastric cancer (GC) is the fourth leading cause of cancer-related death2. The overall survival of patients with 

GC varies widely in different regions of the world. For example, the 5-year survival rate is 31% in the United 
States, 19% in the United Kingdom, and 26% in Europe3. Because the early stage of GC is usually asymptomatic, 
it is mostly late when it is discovered, resulting in a 5-year overall survival rate (OS) of less than 40%4. Therefore, 
exploring new and more effective treatment methods has become a problem to be solved.

The occurrence and development of tumors are closely related to cell death. Ferroptosis is a form of non-apop-
totic cell death found in recent years5. Triggered by lipid reactive oxygen species (ROS)6. Ferroptosis is related 
to the occurrence of many kinds of tumors, including lung cancer7, breast cancer8, colorectal cancer9, and GC10. 
In recent years, prognosis models of ferroptosis associated with various diseases have been constructed, such 
as adrenocortical carcinoma11, and pancreatic cancer12. Many ferroptosis genes including GPX4, SLC7A11 and 
NRF2 have been found to be promising targets for inducing tumor cell death. For example, an innovative NRF2 
nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment13. 
SLC7A11 promoted the proliferation, migration, and invasion of renal cancer cells by enhancing GPX4 output, 
which in turn inhibits ferroptosis14. Therefore, targeting ferroptosis may be a new strategy for cancer treatment.

Tumor immunotherapy, as a new treatment method based on human immune system, plays an anti-tumor 
role by immune regulation. The use of checkpoint inhibitors has been proved to be of great significance in 
improving the objective remission rate of tumors and prolonging the survival time of patients15,16. In the last dec-
ade, molecular subtype-based classification of GC offers opportunities for personalized treatment. Biomarkers, 
particularly microsatellite instability (MSI), programmed cell death ligand 1 (PD-L1), human epidermal growth 
factor receptor 2 (HER2), tumor mutational burden, and Epstein-Barr virus. The use of for first-line immuno-
therapy for advanced GC, HER2- patients can choose Nivolumab or Sintilimab combined with chemotherapy, 
and HER2 + patients are recommended to be treated with Trastuzumab combined with Pembrolizumab combined 
with chemotherapy. In addition to immune checkpoint inhibitors, cellular immunotherapy may become another 
effective weapon for the treatment of advanced GC17. Tumor infiltrating immune cells (TIIC) are related to many 
kinds of tumor prognosis and immunotherapy response18–20. For example, M2 macrophages are enriched in blad-
der cancer tissue, which can be used as a potential immunotherapy target for bladder cancer21. Many kinds of 
tumor immunotherapy related to natural killer cells (NK) have also entered the clinical trial stage22. It has been 
proved that TIME is closely related to the pathogenesis of GC23. Therefore, mining immune-related ferroptosis 
targets is an effective way to optimize tumor immunotherapy24.

In this study, we comprehensively analyzed the FRGs to explore the influence of ferroptosis on the TIME and 
survival of patients with GC. In addition, we constructed a FRGs-risk signature to evaluate the prognostic value 
in GC, which will provide a new strategy for targeted and individualized treatment of GC. The protocol of our 
study procedures is shown in Fig. 1.

Method
Data collection and analysis.  The FPKAPLAN-MEIER ANALYSIS gene expression profile of GC (TCGA-
STAD) was obtained from TCGA database (https://​portal.​gdc.​cancer.​gov/). As a training cohort, we obtained 
443 clinical samples, including 375 samples of cancer tissues and 68 samples of adjacent tissues. We extracted the 
mapping information of GeneSymbol and ENSG_ID, mapped the ENSG_ID to GeneSymbol, and when there 
were multiple matches, took the median, and finally obtained the transformed expression spectrum. Finally, 
the data was further standardized by log2(X + 1) transformation and we used samples with complete clinical 
information for subsequent analysis. The microarray data GSE84426 and GSE84437 were downloaded from 
GEO database (http://​www.​ncbi.​nlm.​http://​nih.​gov/​geo/) through GPL6947 application platform. As validation 
cohorts, we obtained 509 GC tissue samples. Clinical information of the above patient is shown in Table 1. 259 
genes related to ferroptosis were collected from FerrDB (http://​www.​zhoun​an.​org/​ferrdb/) database25, including 
driver, suppressor, and marker, Species was defined as Human.

Identification of molecular subtype.  The genes related to the prognosis of GC were screened out by 
univariate Cox analysis. We intersected the prognosis-related genes of GC with ferroptosis genes by Venn dia-
gram to obtain ferroptosis-related prognosis genes (FRPGs). Cluster analysis was performed using Consensus-
ClusterPlus, using agglomerative pam clustering with a 1-pearson correlation distances and resampling 80% of 
the samples for 10 repetitions. The optimal number of clusters was determined using the empirical cumulative 
distribution function plot.

Immune analysis.  Immunological analysis was used to explore the immune differences between the two 
subgroups. Estimate algorithm (estimation of violent and immune cells in malignant tumor organization using 
expression) is used to evaluate the proportion of immune-matrix components in TIME, include Stromal Score 
(reflecting the presence of matrix), Immune Score (reflecting the level of immune cell infiltration) and ESTI-
MAT Score (comprehensive score of immunity and matrix)26. The higher the corresponding score, the larger the 
proportion of corresponding components in TIME. Using MCP Counter and TIMER databases27 to calculate the 
abundance of immune infiltrating cells. CIBERSORT algorithm was used to estimate the data of tumor infiltrat-
ing immune cells 28.

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.http://nih.gov/geo/
http://www.zhounan.org/ferrdb/
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Figure 1.   The protocol of our study procedures.

Table 1.   Clinical characteristic of the GC patient used in this study. NA not available.

TCGA​ GEO

No. of patients 443 509

Age (%)

≤ 65 246 (55.5) 325 (63.8)

> 65 197 (44.5) 184 (36.2)

Gender (%)

Female 158 (35.6) 159 (31.2)

Male 285 (64.4) 350 (68.8)

Grade (%)

G1 12 (2.7) NA

G2 159 (35.9) NA

G3 263 (59.4) NA

GX 9 (2) NA

Stage (%)

I 59 (13.3) NA

II 97 (21.9) NA

III 183 (41.3) NA

IV 44 (23.5) NA

Survival status

OS day(median) 413 172

Ending (%)

Survival 270 (60.9) 265 (52.1)

Death 173 (39.1) 244 (47.9)
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Establishment of prognostic risk signature based on FRPGs.  The “glmnet” R package29 was used 
for LASSO analysis to further select hub prognostic markers, and the minimum lambda was defined as the 
optimal value. According to the risk score of the prognosis signature, GC patients were divided into high and 
low risk groups. Kaplan–Meier survival curve and time-dependent ROC curve were used to analyze and com-
pare the survival situation between the two groups. Immunohistochemical (IHC) staining of hub FRPGs were 
examined by human protein atlas (HPA) (https://​www.​prote​inatl​as.​org/​about/​downl​oad). Maftools was used to 
calculate the mutation of hub FRPGs, and “ggplot2” package30 was used to draw the mutation distribution map.

Validation of prognostic risk signature.  Multivariate Cox analysis and subgroup analysis were used 
to evaluate the independence of the prognosis signature and the clinical characteristics (including Gender, 
Age,Grade, and Stage) of patients. The GEO validation cohort was used to verify the accuracy of the established 
prognosis signature. Combining the prognosis signature and clinical features, nomogram was constructed to 
predict the 1,3 and 5-year survival rate of GC patients.

Functional enrichment analysis.  Differentially expressed genes (DEGs) between the two clusters were 
identified using R package ‘‘Limma’’31 in the training cohort, the false discovery rate (FDR) was less than 0.05, 
and the difference multiple was 1.5 times as the screening standard. GSEA enrichment analysis was carried out 
according to DEGs. Metascape software was used to construct PPI network of DEGs32. Moreover, we also per-
formed survival analysis on samples in the GEO validation cohorts, divided the samples into high and low risk 
groups according to risk scores, and screened out DEGs by “limma” R package31. Gene Ontology (GO) analysis 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis33,34 were performed to enrich associated path-
ways.

Cell culture.  GC cell lines HGC-27 and normal human gastric epithelial cell lines GSE-1 were purchased 
from Nanjing KGI Biotechnology Company. All cells were cultured in RPMI-1640 medium supplemented with 
5% fetal bovine serum at 37 °C in a humidified atmosphere with 5% CO2.

Quantitative real‑time PCR.  Total RNA was extracted from cells using the TRIzol kit according to the 
manufacturer’s protocol. Reverse transcription was performed using the PrimeScript RT kit (Takara, China) 
according to the manufacturer’s instructions. SYBR PrimeScript RT-PCR Kit (Takara) is used for quantitative 
reverse transcription polymerase chain reaction (qRT-PCR) analysis. The 2−ΔΔCt statistic was used to calculate 
the expression level of the gene. The specific sequences of the different primers used in this study are included 
in Supplementary Table S1.

Statistical analysis.  All statistical analysis in this paper was carried out by R software and GraphPad Prism. 
Student’s t-test was used for statistical analysis between two groups, and one-way ANOVA analysis was selected 
flexibly when there were three or more groups. P < 0.05 was considered to be statistically significant.

Statement.  All methods were carried out in accordance with relevant guidelines and regulations. Ethical 
approval is not applicable for this study.

Results
Identification of molecular subtypes based on FRGs.  Through univariate Cox analysis, we obtained 
2,381 GC prognosis-related genes, and 16 FRPGs were obtained by intersecting 2,381 GC prognosis-related 
genes with 259 ferroptosis genes (Fig. 2A). The consensus clustering approach was conducted to divide the GC 
patients in the training cohort. The optimal clustering stability was identified when K = 2 (Fig. 2B–E). Cluster C1 
included 210 patients, while Cluster C2 included 197 patients. The two subgroups were visualized by heatmap 
(Fig. 2F). Kaplan–Meier survival curves of two different subgroups showed that Cluster C2 showed significant 
median survival advantage, while Cluster C1 showed poor prognosis (Fig. 2G).

Different TIME and immune status in the two molecular subtypes.  The ESTIMATE algorithm 
showed significantly higher ESTIMATE scores (P < 0.0001), higher Immune score (P < 0.01), and higher Stro-
mal score (P < 0.0001) in Cluster C1 compared with Cluster C2 (Fig. 3A). The MCPCounter algorithm showed 
that the expression levels of B-lineage (P < 0.00), Myoid-Dendritic-cells (P < 0.0001), Neutrophils (P < 0.01), 
Endothelial-cells (P < 0.0001) and Fibroblasts (P < 0.0001) in Cluster C1 were significantly higher than those 
in Cluster C2 (Fig. 3B). The TIMER algorithm showed that fibrolasts (p = 7.80e−12), CD4 + T cells (p = 0.0009), 
and B cells (p = 0.0023) were significantly higher in Cluster C1 than in Cluster C2. Macrophases-M2 and Tregs 
in two Cluster was no significant difference (Fig. 3C,D). The CIBERSORT algorithm indicated Macrophases-
M0 (p = 0.0000052), CD4 Memory Activated-T cells (p = 0.00024), Macrophases-M1 (p = 0.001), Nave-B-cells 
(p = 0.001), NK cells (P = 0.02) were significantly higher in Cluster C1 than in Cluster C2. Macrophases-M2 in 
two Cluster was no significant difference (Fig. 3E,F), suggesting a relatively low immune status in Cluster C2. 
These results demonstrated that the TIME and immune status of the two molecular subtypes differed signifi-
cantly. Cluster C1 with a poor prognosis had a high immune status, so we speculate that Cluster C1 is immune 
rejection type.

Establishment of prognostic risk signature based on FRPGs.  We signatureed the risk based on 
LASSO analysis, and we set the lambda value to be 0.029411686746793, Built signature RiskScore = [0.1798768

https://www.proteinatlas.org/about/download
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8835102 * ZFP36] − [0.2111220517453 * TUBE1] − [0.1164248611519 * SLC1A4] + [1.958393356095 * NOX5] + 
[0.480740705518259*NOX4] − [0.39552084635819 * NFE2L2] + [2.63582963497227 * MIR9] − [0.083364885016
6638*GCH1] + [0.702888544996765 * GABARAPL2] − [0.117744902736126 * CHAC1] + [0.010366289402305 * 
CAPG] − [0.25896183370357 * ACSL4] − [0.033599913666074 * ACO1], thirteen genes were finally obtained, 
and three of them were risk genes with the risk ratio greater than 1 (Fig. 4A). The established risk signature suc-
cessfully classified the GC patients into high risk and low risk groups (Fig. 4B). Kaplan–Meier analysis showed 
that patients in the low risk group had a better overall survival than those in the high risk group (Fig. 4C). Based 
on the information such as the survival status and survival time of the patients, we drew the forest map for mul-
tivariate survival analysis of FRPGs (Fig. 4D). ROC analysis showed that the risk signature constructed exhibited 

Figure 2.   Molecular subtype identification based on FRGs. (A) Venn diagram, a prognostic gene for GC 
associated with ferroptosis. The pink represents GC-related genes, blue represents ferroptosis-related genes. 
(B–E) K = 2 was identified the optimal value for consensus clustering. (B) Represents Cumulative distribution 
curve. (C) Represents Area under distribution curve. (D) represents Heatmap of consensus clustering. (E) 
Represents Sample clustering consistency. (F) Heatmap of FRPGs in two subgroups. (G) Kaplan–Meier survival 
curves for two subgroups.
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accurate prediction ability within 5 years, with AUC of 0.69, 0.80 and 0.81 for 1, 3 and 5 years (Fig. 4E). Finally, 
the TIME of the two groups was evaluated using the ESTIMATE algorithm, and the results showed that the high 
risk group had a higher ESTIMATE score (P = 1.2e−4), higher Immune score (P = 4.8e−7), and higher Stromal 
score (P = 5.1e−7) (Fig. 4F). The TIMER database was used to predict the relationship between the FRPGs and 
the infiltration level of immune cells, and it was found that the FRPGs were closely related to the infiltration 
of macrophages, B cells, T cells, dendritic cells, and neutrophils (Fig. 4G). The CIBERSORT algorithm indi-
cated that Macrophases-M1 (p < 0.01) and Macrophases-M2 (p < 0.001) were significantly higher in high risk 
groups than in low risk groups, while Dendritic-cells-activated was significantly higher in low risk groups than 
in high risk groups (Fig. 4H), suggesting the TIME and immune status of the two groups differed significantly. 
These results indicated that the risk signature constructed had a strong potential for prognosis prediction of 
GC patients, and it was significantly correlated with TIME in GC. The HPA database examined the immuno-
histochemical (IHC) staining of FRPGs (Fig. 5A–J), and found that the protein expressions of ZFP36, TUBE1, 

Figure 3.   Immune analysis of two molecular subtypes. (A) Stromal score, Immune score, ESTIMATE score 
and calculated by ESTIMATE algorithm (*p < 0.05; **p < 0.01; ***p < 0.001). (B) Abundance of ten immune 
filtrating cells evaluated by MCPcounter algorithm (*p < 0.05; **p < 0.01; ***p < 0.001). (C) Heatmap depicting 
the enriching level of immune related cells evaluated by TIMER. (D) Statistical analysis of immune related 
cells evaluated by TIMER (*p < 0.05; **p < 0.01; ***p < 0.001). (E) Heatmap depicting the enriching level of 25 
immune related cells evaluated by CIBERSORT algorithm. (F) Statistical analysis of 25 immune related cells 
evaluated by CIBERSORT algorithm (*p < 0.05; **p < 0.01; ***p < 0.001).



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8785  | https://doi.org/10.1038/s41598-022-12800-6

www.nature.com/scientificreports/

Figure 4.   Establishment of prognostic risk signature based on FRPGs in the training cohort. (A) LASSO 
analysis with suitable lambda. (B) Distribution of survival status, risk score, and heatmap of GC patients in the 
high and low risk groups. (C) Survival curve of the GC patients in the two groups. (D) Forest map of multi-
factor survival analysis. (E) Time-dependent ROC curve of the risk signature. (F) Stromal score, Immune 
score, and ESTIMATE score in the high and low risk groups (*p < 0.05; **p < 0.01; ***p < 0.001). (G) Correlation 
between the FRPGs and the infiltration level of immune cells in TIMER database. (H) Statistical analysis of 
immune related cells evaluated by CIBERSORT algorithm in the two groups (*p < 0.05; **p < 0.01; ***p < 0.001).
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Figure 4.   (continued)
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NFE2L2, GCH1, GABARAPL2, CHAC1, CAPG, ACSL4, ACO1, and SLC1A4 in GC and normal tissues were 
significantly different, there was no protein expression of NOX5, MIR9-3, and NOX4 in HPA. In addition, we 
observed mutations of FRPGs in the training cohort and found that TUBE1 was a dominant gene and therefore 
better targeted (Fig. 6).

Validation of prognostic risk signature.  We assessed the differences in risk scores among the subgroups 
by age (Fig. 7A), gender (Fig. 7B), T (Fig. 7C), N (Fig. 7D), Stage (Fig. 7E), and Grade (Fig. 7F) and found no 
significant differences between the subgroups, indicating that the risk scores were not correlated with the clini-
cal characteristics of the patient. Besides, when the patients were regrouped according to age (Fig. 7G,H), and 
gender (Fig. 7I,J), the risk signature still exhibited potent predictive performance and those patients with lower 
risk score enjoyed better prognosis. This indicated that the prognosis signature we constructed can be used to 
independently predict the prognosis of GC patients.

Figure 4.   (continued)
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To verify the stability of the prognostic signature developed in the training cohort, we calculated the risk score 
for each patient in the validation cohort using the same formula as in the build training cohort. Patients in the 
validation cohort were grouped into high (n = 216) and low risk (n = 293) groups (Fig. 8A), and ROC analysis 
revealed AUC values of 0.63, 0.65, and 0.69 at 1, 3, and 5 years, respectively (Fig. 8B). The Survival curve showed 
that the low risk group had a better prognosis than the high risk group (Fig. 8C). In addition, the ESTIMATE 
algorithm was performed on high risk and low risk group in the validation cohort, and the results showed that 
the high risk group had higher Stromal score (p < 0.001), higher ESTIMATE score (p < 0.001), and lower Tumor 
Purity (p < 0.001) (Fig. 8D–G). These results demonstrated that the established risk signature was correlated with 
TIME and prognosis in GC in the validation cohort.

Figure 5.   Immunohistochemical staining of FRPGs in HPA. The expression of (A) ZFP36, (B) TUBE1, (C) 
NFE2L2, (D) GCH1, (E) GABARAPL2, (F) CHAC1, (G) CAPG, (H) ACSL4, (I) ACO1, and (J) SLC1A4 in the 
HPA.
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Finally, a nomogram integrating the risk signature and clinical features were constructed to predict the prog-
nosis of the GC patients more precisely (Fig. 8H). The 3 years survival rates observed with the nomogram were 
matched well to the actual survival rates (Fig. 8I), and similar result was also observed in the validation cohort 
(Fig. 8J), demonstrating that the nomogram could predict the prognosis of GC patients accurately.

Functional enrichment analysis.  A total of 570 DEGs were detected compared to Cluster C2, of which 
465 genes were up regulated and 105 genes were down regulated in Cluster C1 (Fig. 9A,B). GO enrichment 
analysis showed that the biological process (BP) of DEGs mainly included cell migration, immune globulin, 
human immune response mediated by circulating immune globulin. Cellular component (CC) was mainly 
enriched in the extracellular matrix, and extracellular region part. Molecular function (MF) mainly included 
immunoglobulin receptor binding, fibronectin binding, and growth factor binding (Fig.  9C–G). The KEGG 
enrichment analysis showed that DEGs was mainly enriched in the Cell cycle, p53 signaling pathway, IL-17 
signaling pathway, MAPK signaling pathway, and PI3K-Akt signaling pathway (Fig. 9H–I). To further explore 
the relationship between enrichment pathways and prognosis of GC patients, we performed GSEA analysis, and 
the results showed that compared with Cluster C2, Cluster C1 showed lower expression in lipid metabolism and 
glutathione metabolism, which might be related to the poor prognosis of GC patients (Fig. 9J). All these results 
demonstrated that expression of FRPGs were correlated with immunity and ferroptosis, which may be involved 
in the poor prognosis of GC patients.

Compared with the DEGs in training cohort, a total of 71 DEGs were detected, of which 7 genes were up 
regulated and 64 genes were down regulated in validation cohort (Fig. 10A,B). KEGG enrichment analysis 
showed that DEGs was mainly enriched in the Cell cycle, p53 signaling pathway, and MAPK signaling pathway, 
which consistent with the results in training cohort. In addition, DEGs in validation cohort was also enriched 
in the Jak-STAT signaling pathway, TNF signaling pathway (Fig. 10C–F).

Quantitative Real‑Time PCR.  We found that the protein expressions of ZFP36, TUBE1, NFE2L2, GCH1, 
GABARAPL2, CHAC1, CAPG, ACSL4, ACO1, and SLC1A4 in GC and normal tissues were significantly dif-
ferent. Their expression levels were evaluated in GES-1 and HGC-27 by qRT-PCR. Consistently, compared with 
GES-1, GCH1 (p < 0.01), CAPG (p < 0.05), and TUBE1 (p < 0.05) were significantly upregulated in HGC-27, 
while ZFP36 (p < 0.05), GABARAPL2 (p < 0.05), NFE2L2 (p < 0.01), and ACSL4 (p < 0.05) were downregulated, 
but CHAC1, ACO1, and SLC1A4 were no significant difference (Fig. 11A–J). In summary, the potential roles of 
the FRPGs could also be verified in cell line experiment.

Discussion
In recent years, various prognostic signatures have been proposed to predict the prognosis and immune infil-
tration of malignant tumors35. Including predicting the immune status and prognosis of malignant tumors by 
screening immune-related genes or FRGs. Few studies have elucidated the effects of the FRGs on TIME and 
prognosis. Therefore, in order to further verify the effect of ferroptosis on TIME in GC and explore the prognostic 
value of FRPGs in patients with GC, we constructed a prognostic risk signature based on FRPGs and validated 
it in the validation cohort.

Firstly, we divided GC patients into two subgroups by consistent clustering. Cluster C2 showed a signifi-
cant median survival advantage, while Cluster C1 showed a poor prognosis. Subsequently, we performed an 
immune analysis to explore the role of ferroptosis in TIME. TIME plays a vital role in the prognosis of patients 
because tumor progression is associated with changes in the surrounding matrix, of which immune cells are 
a key component36. Therefore, we applied ESTIMATE, MCPCounter, TIMER, and CIBERSORT algorithms to 
determinate the TIME of the two subgroups. Compared with Cluster C1, GC patients in Cluster C1 had signifi-
cantly higher ESTIMATE scores, higher Immune score, and higher Stromal score. Our results indicated that 
Macrophases-M1, CD4 Memory Activated-T cells, NK cells, fibrolasts, CD4 + T cells, B cells were significantly 
higher in Cluster C1 than in Cluster C2. Macrophases-M2 and Tregs in two Cluster was no significant differ-
ence, suggesting a relatively high immune status in Cluster C1. M1 macrophages are linked to antitumor activity, 

Figure 6.   Mutations of FRPGs in the training cohort. The green represents Missense Mutation, blue represents 
Frame Shift Del, red represents Nonsense Mutation, and orange represents Splice Site.



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8785  | https://doi.org/10.1038/s41598-022-12800-6

www.nature.com/scientificreports/

whereas M2 macrophages are associated with cancer progression and metastasis37. These results demonstrated 
that the TIME and immune status of the two molecular subtypes differed significantly. TIME is generally divided 
into three categories: immune inflammation, immune rejection and immune desert38. In this study, according 
to the exhibitions that the TIME of the patients in the Cluster C1 with a higher abundance of immune cell 
infiltration but lower probability in response to immunotherapy, it was reasonable to speculate that Cluster C1 
was in accordance with the immune rejection type. As a successful immunotherapy depends on the ability of 
innate and adaptive immune cells to penetrate into the tumor parenchyma and eradicate cancer cells. In addi-
tion, we also found that the high infiltration of immune cells was accompanied by the activation of the stroma, 
which could exclude the entry of CD8 + T cells from the tumor parenchyma to the peritumoral stroma rich in 

Figure 7.   Association of risk score and clinical characteristics. Differences in risk scores among (A) Age, (B) 
Gender, (C) T, (D) N, (E) Stage, and (F) Grade. (G,H) Survival curve of GC patients regrouped according to age. 
(I,J) Survival curve of GC patients regrouped according to gender.
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Figure 8.   Validation of prognostic risk signature in validation cohort. (A) Distribution of survival status and risk score in the high 
and low risk groups. (B) ROC curve of the risk signature in validation cohort. (C) Survival curve of the patients in the high and low 
risk groups. (D–G) Stromal score, Immune score, Tumor Purity, and ESTIMATE score calculated by ESTIMATE algorithm (*p < 0.05; 
**p < 0.01; ***p < 0.001). (H) Nomogram integrating risk score and clinical features. (I) Calibration of the nomogram at 1,3, and 5 years 
in the training cohort (*p < 0.05; **p < 0.01; ***p < 0.001). (J) Calibration of the nomogram at 1,3, and 5 years in the validation cohort 
(*p < 0.05; **p < 0.01; ***p < 0.001).
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Figure 9.   Identification of DEGs and Functional Enrichment Analysis. (A) Volcanic map of DEGs in training 
cohort. (B) Heatmap of DEGs in training cohort. (C–F) BP, CC, MF, and the whole gene ontology (GO) 
Analysis of DEGs in training cohort. (G) PPI analysis of GO Analysis in training cohort. (H) Circle diagram of 
KEGG in training cohort. (I) PPI analysis of KEGG enrichment analysis. (J) Heatmap of GSEA analysis results.
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fibroblasts and collagen39. We speculated that the activation of the stroma might be one of the reasons for the 
poor prognosis of Cluster C1, which had high infiltration of immune cells. Therefore, the prognosis of high risk 
group was often poor.

In order to further verify the effect of ferroptosis on TIME in GC and explore the prognostic value of FRPGs 
in patients with GC, we constructed a prognostic risk signature based on FRPGs and validated it in the validation 
cohort. The genes used to establish the risk signature in this study have been shown to be closely related to tumor 
development and progression. A study had shown that autophagy promotes ferroptosis by degrading anti-ferrop-
tosis factors40, and ZFP36 was a key protein for autophagy and considered to be related to ferroptosis41. NFE2L2, a 
known transcription factor involved in the encoding of GC development, is overexpressed as a prognostic marker 
of GC42. OS rate in GC patients with NRF2 positive expression was significantly reduced43. The experiment 
conducted by Wei44 proved that GCH1 induced immunosuppression through a 5-HTP-AHR-ID01-dependent 
mechanism, and that the combination of metabolic intervention and immunotherapy of this pathway might be a 
promising strategy for the treatment of triple-negative breast cancer (TNBC), and the GCH1 inhibitor could be 
used as an analgesic45. Members of the GABARAP family (GABARAP, GABARAPL1/GEC1 and GABARAPL2/
GATE-16) are one of the subfamilies of the ATG8 protein family, which are related to the receptor and autophagy 
pathway46. The high-expression of GABARAP is related to the good prognosis of tumors47. CHAC1 is an enzyme 
related to the activity of γ-glutamyl cyclotransferase that can degrade intracellular GSH and promote ferropto-
sis of tumor cells48, which has been proved to be related to glioma49 and breast cancer50. CAPG is particularly 
abundant in macrophage expression51, and CAPG had been proved to be related to tumor cell invasion and 
tumorigenic52. SLC1A4 is one of the members of solute carrier family 1(SLC1), and SLC1A4 is one of the impor-
tant roles of amino acid transporter53. SLC1A4 is highly expressed in pancreatic ductal adenocarcinoma and liver 
cancer cells, and some studies have suggested that SLC1A4 may promote the process of ferroptosis54. ACSL4, a 
long-chain fatty acyl coenzyme, is closely related to the proliferation and migration of tumor cells55. ACSL4 had 
been shown to be overexpressed in breast cancer56, GC57, and liver cancer58. ACO1(Cytoplasmic aconitic acid 
hydratase) is a protein that participates in cytoplasmic and mitochondrial metabolism and, when down regulated, 
leads to cell death59. NOX is a family of encoded oxidases, NOX4 is a catalytic subunit of nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase complex, and NOX5 mainly encodes calcium-dependent NADPH 
oxidase, produces superoxide, and acts as a calcium-dependent proton channel. The ROS produced by NOX4 
is involved in a variety of biological functions, including signal transduction, cell differentiation and tumor cell 
growth60,61, and NOX4 plays an important role in the process of ferroptosis62. Inhibition of NOX4 can significantly 
block ferroptosis63. MiRNA plays an important role in tumors. MiR-9 is overexpressed in lung cancer tissues64, 
and MiR-9 acts as a biomarker for poor prognosis in lung cancer and thyroid papillary carcinoma65. There is no 
report about the relationship between TUBE1 and tumor in the literature.

Figure 9.   (continued)
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Figure 10.   Identification of DEGs and functional enrichment analysis in GEO cohorts (www.​kegg.​jp/​kegg/​
kegg1.​html). (A) The volcanic map of DEGs. (B) The heatmap of DEGs. (C–F) The BP, CC, MF, and the whole 
GO of DEGs.

http://www.kegg.jp/kegg/kegg1.html
http://www.kegg.jp/kegg/kegg1.html
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Survival analysis indicated that whether in training cohort or the validation cohort, the established risk 
signature showed effective predictive performance for the survival of GC patients. The ROC curve showed the 
reliability and stability of the risk signature. And the high risk groups were accompanied with higher Stromal 
score, higher ESTIMATE score, and lower Tumor Purity. The HPA database examined the IHC staining of 
FRPGs, and found that the protein expressions of ZFP36, TUBE1, NFE2L2, GCH1, GABARAPL2, CHAC1, 
CAPG, ACSL4, ACO1, and SLC1A4 in GC and normal tissues were significantly different. Finally, a nomogram 
integrating the risk score and clinical features was also established and calibrated, and it showed considerable 
property for predicting the survival. All these results confirmed the prognostic prediction role of FRPGs in GC 
and correlation between FRPGs and TIME.

Finally, functional analysis was performed to explore potential biological mechanisms. GO enrichment analy-
sis showed that the biological process of DEGs in training cohort mainly included immune globulin, and human 
immune response mediated by circulating immune globulin. However, the detailed relationship between ferrop-
tosis and immunity is still unclear. Therefore, we performed GSEA analysis to further elucidate the underlying 
mechanisms, and the results showed that compared with Cluster C2, Cluster C1 showed lower expression in 
lipid metabolism, which might be related to the poor prognosis of GC patients. These results suggested that the 
down regulated lipid metabolism resulted in the impairment of TIME, thereby leading to the poor prognosis 
in GC. Ferroptosis is a regulated oxidative form of cell death associated with the accumulation of lipid ROS 
due to enhanced lipid peroxidation66. Since Cluster C1 was associated with relatively low levels of ROS, a small 
proportion of cells die from ferroptosis. Therefore, Cluster C1 had a poor prognosis. Researchers identified that 
ferroptosis was related to the immune response process67. It is unclear whether and how ferroptosis is involved 
in T cell immunity and cancer immunotherapy. Studies have shown that immunotherapy-activated CD8 + T cells 
enhance the specific lipid peroxidation of ferroptosis in tumor cells and that increased ferroptosis contributes 
to the anti-tumor efficacy of immunotherapy68. CD8 + T cells and fatty acids orchestrate tumor ferroptosis and 
immunity via ACSL4. Clinically, tumor ACSL4 correlates with T cell signatures and improved survival in ICB-
treated cancer patients69.

KEGG enrichment analysis showed that DEGs in training cohort were mainly enriched in the p53 signaling 
pathway, IL-17 signaling pathway, MAPK signaling pathway, and PI3K-Akt signaling pathway. Studies have 
found that these pathways are associated with immune response70–73. p53 is a tumor suppressor gene, and p53 
mutations have been reported in many cancers74. When p53 mutations occur, cells proliferate abnormally and 
transform into cancer cells. GC patients with p53 mutation have worse prognosis than those without mutation75. 
More and more evidences support the pathogenic role of IL-17 in cancer formation, including colon cancer76 
and lung cancer77. Wu78 found that IL-17 could promote tumor angiogenesis by mediating the up-regulation of 
VEGF in GC through STAT3 pathway. It has been confirmed that MAPK and PI3K-Akt pathways are involved 
in many processes of the occurrence and development of GC79–81.

Although multiple studies have established relevant prognostic models for ferroptosis in GC82,83, our study 
shows unique advantages compared with previous studies. Firstly, the number of patients was significantly differ-
ent from that of published article. Secondly, our work focused on ferroptosis in patients with GC and identified 
two significantly different molecular subtypes of prognosis and immune status by consensus clustering. Thirdly, 
genes were obtained in different ways, we have selected differential genes based on molecular subtypes and 
partially elucidated the underlying mechanisms. Fourthly, we used the GEO data set to validate the prognosis 

Figure 11.   mRNA expression level of FRPGs. mRNA expression level of (A) GCH1, (B) CHAC1, (C) CAPG, 
(D) TUBE1, (E) ZFP36, (F) GABARAPL2, (G) NFE2L2, (H) ACSL4, (I) ACO1, and (J) SLC1A4 by qRT-PCR 
(*p < 0.05; **p < 0.01; ***p < 0.001).
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model. Fifthly, we elucidated the effects of ferroptosis on TIME and prognosis. Sixthly, we verified the mRNA 
expression of FRPGs by qRT-PCR. Seventhly, the prognostic model based on FRPGs we constructed different 
from the previous articles. Finally, we speculated that the down regulated lipid metabolism may result in the 
impairment of TIME, thereby leading to the poor prognosis in GC. The establishment of prognostic risk signa-
ture based on FRPGs provided new possibilities for us to predict the efficacy of immunotherapy, and promotes 
personalized treatment for GC patients in the future. However, this study has certain limitations. Our signature 
was constructed and validated based on retrospective data, without relevant clinical experimental verification.

Conclusion
In summary, in this study, we identified two molecular subtypes, Clusters C1 and C2. In Cluster C1, patients with 
poor prognosis present with a hyperimmune state and low lipid metabolism, and we speculated that Cluster C1 
was in accordance with the immune rejection type. The risk model based on FRPGs can accurately predict the 
prognosis of GC. These results indicated that ferroptosis is associated with TIME, and the down regulated lipid 
metabolism may result in the impairment of TIME, thereby leading to the poor prognosis in GC.

Data availability
The data used to support the findings of this study are included within the article.
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