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In vivo multi spectral colonoscopy 
in mice
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Multi‑ and hyperspectral endoscopy are possibilities to improve the endoscopic detection of neoplastic 
lesions in the colon and rectum during colonoscopy. However, most studies in this context are 
performed on histological samples/biopsies or ex vivo. This leads to the question if previous results 
can be transferred to an in vivo setting. Therefore, the current study evaluated the usefulness of 
multispectral endoscopy in identifying neoplastic lesions in the colon. The data set consists of 25 
mice with colonic neoplastic lesions and the data analysis is performed by machine learning. Another 
question addressed was whether adding additional spatial features based on Gauss–Laguerre 
polynomials leads to an improved detection rate. As a result, detection of neoplastic lesions was 
achieved with an MCC of 0.47. Therefore, the classification accuracy of multispectral colonoscopy 
is comparable with hyperspectral colonoscopy in the same spectral range when additional spatial 
features are used. Moreover, this paper strongly supports the current path towards the application 
of multi/hyperspectral endoscopy in clinical settings and shows that the challenges from transferring 
results from ex vivo to in vivo endoscopy can be solved.

In Germany in 2014, more than 25% of the deaths were caused by  cancer1. Even in 2020, cancer accounts for 
23.5% of the deaths despite the pandemic  situation2. From these, more than 25% were caused by cancer in the 
gastro-intestinal tract (GI)1, 2. An important reason for this high death toll of carcinomas in the GI tract lies in 
the difficulty of their detection. The main issue is that patients normally have symptoms only in later stages of the 
tumour development. Thus, the best chance to detect early stage carcinomas is regular screening by endoscopy. 
Currently, the state of the art is using thorough inspection with white light endoscopy with targeted biopsies, or 
random biopsies in inflammatory conditions. However, intraepithelial neoplasias, adenomas, and carcinomas 
are difficult to detect during screening colonoscopy, especially if they are flat and/or small in their macroscopic 
 appearance3–5 or surrounded by inflamed tissue.

To overcome this problem, an approach centred around multi- and hyperspectral imaging (MSI, HSI) is 
proposed. MSI is often defined as having ten or less wavelength bands, while HSI is defined as having more than 
ten wavelength bands. Both MSI and HSI are increasingly used in medical  applications6, 7. MSI and HSI combine 
machine vision with  spectroscopy8, 9. They enable the acquisition of two-dimensional images with the spectral 
information for each pixel. Considerable progress has been made in many application  fields10. So far, HSI has 
already been proven to be a reliable method for many medical  applications6, including carcinoma detection in 
the  oesophagus11, 12. However, most of the studies for endoscopic application have been performed ex vivo8, 13, 14. 
Moreover, there is currently no in vivo study employing MSI/HSI during colonoscopy known to the authors.

As discussed in a review by Swager and  colleagues15 about gastrointestinal endoscopy, there is a need for 
further evaluation of spectroscopic quantitative measurements of tissue to allow a direct optical diagnosis of 
neoplastic lesions during endoscopy. It was already outlined before that such spectroscopic quantitative measure-
ment can be provided by MSI and HSI. For MSI, the benefit could already be demonstrated by our group for the 
diagnosis of carcinomas of the stomach with an accuracy of 64%16 or an AUC of 0.7217 in vivo in patients. In this 
current in vivo study, MSI is applied in murine models of spontaneous and inflammation-driven carcinogenesis.
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Material and methods
Set‑up. The set-up is a modified version from a Coloview high-resolution mouse endoscopy system (KARL 
STORZ SE & Co. KG, Germany). The mouse endoscopy system is a rigid endoscope which uses multiple lenses 
for imaging. Hence, there are no artefacts which occur as it happens from fibre bundles. This system was used 
with a spectral filter as a fluorescence endoscope system for the investigation of the topical application of Chlorin 
e6-PVP for improved endoscopic detection of neoplastic  lesions18. The set-up is shown in Fig. 1.

The overall set-ups consists of the endoscope head (KARL STORZ SE & Co. KG, Germany) connected to a 
multispectral light source (Lumencor spectra 7-LCR-XA, Beaverton, OR, USA) and a custom optical system. 
Both systems are controlled by a personal computer (PC) via a graphical user interface (GUI). The GUI is writ-
ten in Matlab (The MathWorks, Inc., Narick, MA, USA) and controls the data input, the data output and the 
external light source. The light source allows seven wavelength bands shown in Table 1. White light imaging is 
performed by activating all wavelength bands at the same time.

The modified endoscope was already described in our previous  publication18: “The custom optics unit incor-
porates two achromatic lenses with an apochromatic objective in between. The signal initially travels from the 
endoscopy telescope unit via an adaptor to the first lens with a focal length of 35 mm. This lens then conveys the 
real image to a 10× infinity corrected plan apochromat objective (Mitutoyo, Japan). The objective has a numerical 
aperture (NA) of 0.28 and a working distance of 34 mm. It images the received data to infinity. Using a 100 mm 
achromatic second lens, the image is finally transmitted from infinity to the camera unit (Basler ace ac2000-165ac 
USB3 color, Basler AG).” Out of the full resolution of 1280 × 1024 pixels, 520 × 496 pixels are acquired to speed 
up the imaging process of the whole multispectral image below 0.5 s. The boost of the sensor is set to 50% while 
the gain boost is turned off. In total, the optical set-up shows only small distortions. A small, nearly neglectable 
barrel distortion is present. Moreover, there is a small chromatic aberration at the outer parts of the image. The 
typical imaging errors of MSI and especially HSI devices (smile and keystone) are not present in this set-up. Due 
to the low amount of imaging errors, no image correction is performed.

Mouse models and endoscopy procedure. Ethical guidelines Animal studies are approved by the Institu-
tional Animal Care and Use Committee of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (AZ 
55.2-2532-2-365, AZ 54-2532.1-12/14) and the government of Lower Franconia. All methods were performed 
in accordance with the relevant guidelines and regulations. The study was carried out in compliance with the 
ARRIVE guidelines.

Mouse models In general, two models were used: inflammation-based carcinogenesis and spontaneous tumour 
models. The AOM/DSS model was employed to induce inflammatory carcinogenesis in 11 mice of C57BL/6 
background as described  previously19. The spontaneous model was based on the genetic APCmin or TP53 
tumour model. The use of both models allowed to look for differences in the detection rate in neoplastic lesions 
of different disease mechanism.

Endoscopy procedure The endoscopy procedure is performed as described  previously20, 21. In brief, isoflurane 
is used to establish anesthesia. Then, the bowel is carefully flushed with tap water to remove stool. Afterwards, 
the bowel is distended by means of careful air insufflation via the working channel. The colon is investigated 
with white light imaging and lesions that are deemed “definitive” neoplasms based on the assessment of their 

Figure 1.  Schematics of the set-up (modified as described in our previous  study18). The top schematic 
shows the overall set-up and the bottom schematic shows the optical set-up which images the light from the 
endoscope.

Table 1.  Centre wavelength for the MSI device.

Wavelength in nm: 396 438 475 512 542 575 628

Colour UV Blue Cyan Teal Green Yellow Red
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macroscopic appearance by the experienced endoscopists, were additionally evaluated with MSI. A biopsy for 
neoplasm assessment could not be done, as the mice were required for other purposes later on.

In total, 25 mice were investigated by this procedure. Each mouse had at least one neoplastic lesion. Lesions 
for spectral analysis were identified by two medical experts by classification as a “definitively neoplastic lesion” 
based on macroscopic appearance. To increase accuracy, assessment was performed by two medical experts. 
Only one of them drew the lesion margin.

For the MSI in this study, nine images were taken in the following order: one image for � = 542 nm, then 
the complete MSI series consisting of the seven wavelength bands as described in Table 1 and finally again one 
image for � = 542 nm. Before any further analysis, the first and the last image were compared. If both of them 
change significantly, the image was not used for further analysis due to movement-artefacts from the mouse. 
The margin of the lesion was drawn on the first and on the last image. Both margins were drawn in comparison 
with a video from a second endoscopic procedure of each mouse.

Potential safety risks for human studies The current imaging procedure imposes no major risks to potential 
patients compared to white light endoscopy as the required light intensities are similar. There are two potential 
minor risks: First, light with a wavelength of 397 nm is used. Long term exposure of blue light is known to 
increase the risk of skin carcinomas. However, the exposure time in this study is orders of magnitude lower 
than it is required for increased risks of carcinomas. Second, the usage of the MSI might increase the time of the 
endoscopic procedure in comparison to the white light endoscopic procedure.

Data analysis. The analysis is done with a pixel-per-pixel classification process. All data analysis is done 
with a leave-one-out strategy (LOOS) in which 24 mice are used for training and one for testing. No mouse was 
excluded from the analysis. In general, the data analysis is a modified version of that presented in two previous 
 studies16, 17 with very detailed descriptions in the latter  one17. In general, the data analysis consists out of the fol-
lowing steps shown in Fig. 2:

The classification process is described in detail later in this section. In the pre-processing step, noise is mini-
mized and specular reflections are removed. Then, spatial and spectral-spatial features are generated. The number 
of features is reduced significantly by the principal component analysis (PCA) to use 99% of the variance in the 
next step. With the reduced feature set, the classification is done for support vector machine (SVM) and boosting 
classifiers. In the end, the results are evaluated.

Pre-processing The pre-processing consists out of four steps: 

1. First, specular reflection and too dark areas are removed. If the intensity of a pixel in the red or yellow region 
is less than 5% of the maximal intensity, the pixel is excluded. Moreover, the surrounding with a distance of 
five pixels is also excluded. In total, about 1% of the data is excluded this way. Afterwards, Gaussian filtering 
is done with a filter size of seven by seven pixels with a standard deviation of one pixel to ensure that the 
minimum noise fraction (MNF) does not transmit some noise-caused artefacts from one wavelength band 
to others. As a last step, at the boundary between healthy tissue and neoplastic lesion a margin of five pixels 
is excluded due to the fact that there is a definite error in finding the tumour margin. In the next step, the 
data is normalized for every image separately. 

 In Eq. 1, I(x, y, �) is the intensity of the multispectral image as the function of position and wavelength, 
maxx,y describes the function to take the maximum over each x and y and Inorm(x, y, �) is the normalized 
multispectral image. The normalization values ( maxx,y I(x, y, �) ) are saved for the de-normalization.

2. In this step,  MNF22 is used for de-noising and enhancement of spatial features. Spectral bands with lower 
maximal intensity show a weaker influence while calculation of the MNF. Therefore, they were normalized 
before. In this study, the modified method from Regeling et al.23 is used. They altered it according to Gao 
et al.24. Furthermore, the MNF is not calculated by multi linear  regression22, 23. It is changed to a regressive 
support vector machine (rSVM) as this significantly reduced artefacts from the MNF. The sub-image size 
for the MNF is 20 times 20 pixels and the last three MNF components are removed for noise filtering.

3. Afterwards, the data is de-normalized again as shown in Eq. 2: 

(1)Inorm(x, y, �) =
I(x, y, �)

max
x,y

I(x, y, �)

Figure 2.  Flowchart of the data analysis. It groups in the five steps: pre-processing, feature generation, feature 
reduction, classification and evaluation of the classifiers.
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 where I(x, y, �) are the stored values used in Eq. 1.
4. As final step for pre-processing, a second Gaussian filter is used for further noise reduction with a size of 11 

times 11 pixels and a standard deviation of two pixels.

Feature generation In general, a high number of features increases the classification accuracy. However in many 
cases, the amount of memory or the computational power limits the number of features. The limits are especially 
high for HSI, as there are already a high amount of spectral features. As MSI has often considerably fewer features, 
spatial features can be added without restriction due to limited memory or computational power. Therefore, four 
kinds of features are used: First, the intensity of the local multispectral image is used as a feature. Second, the 
derivative is used as a feature by the convolution with the Sobel operators. Third, the spectral-spatial variation 
is derived as shown  before17. Forth, the spatial features based on Gauss–Laguerre polynomials (LGs) with l and 
p smaller 3 are used in the same way as described in a previous  publication17.

The LGs are calculated as follows:

where q and s are constants, ρ and � are the cylindrical coordinates and r is a parameter, describing image rota-
tion with ({r ∈ R | 0 ≤ r ≤ 1} ). Thereby, r = 0 means no rotation and r = 1 means the maximal rotation. The 
maximal rotation is half of the rotation which would be needed for an identity projection of the LGs. This is 
done due to the fact that 0LGp

l (x) = −1LG
p
l (x) and the fact that only the absolute value of the feature is used for 

further considerations. The constant q is set to 2 to generate amplitude images. In this study, s is set to 18, p is used 
from 0 to 3, r is varied from 0 to 1 in steps of 0.25 and l is used from 0 to 4. The constant s is selected so that the 
structure of the LGs is visible in a good way as shown in Fig. 3. The size of the LG features is 40 times 40 pixels.

Combined with the fact that just the absolute values are used, the amount of rotation can be halved with 
this ansatz and therefore speed up the calculation time. Moreover to measure the surrounding, only the high-
est absolute value is of importance due to the fact that different images might be rotated towards each other. 
Furthermore, one point of tissue under investigation might be imaged from different angles and, thus, only the 
feature with the best matching direction will be the one used as a feature. The best matching direction is found 
by selecting the highest value of the convolution for each set of l and p for all possible r. Therefore, the features 
generated with LGs are rotation invariant. This ansatz also reduced the number of features significantly and, 
thus, speeds up the analysis process.

Feature reduction While it is beneficial to have a large number of features, it is often the case that many fea-
tures are redundant. There are many ways for feature reduction. However, generating combined features is often 
preferred as this also acts as noise reduction tool. For this, the PCA provides great results. In many cases, the 

(2)I(x, y, �) = max
x,y

I(x, y, �) · Inorm(x, y, �)

(3)

rLG
p
l (x) = exp

(

(ρ · s)
2
q

)

· (ρ · s)
l
q ·

[

cos

(

l ·
[

�+
2rπ

max(2l, 1)

])

· Lpl (ρ · s · arctan[ρ · s)])
]3−q

Figure 3.  Example of the Laguerre–Gaussian polynomials.
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results improve even in comparison to the usage of all features. Hence, the PCA is used for feature reduction. The 
features accounting for 99% of the variance are used for classification. This leads to approximately 30 features 
which are used for classification.

Classification As in the previous publications, RobustBoost (RB), AdaBoost (AB), SVM with linear and 
Gaussian kernel as well as random forest (RF) from the implemented Matlab functions are used for classifica-
tion. The following commands are used: fitensemble for AB, RB; fitcsvm for SVM; treebagger for RF. Predictions 
were conducted using predict in all cases.

For RB, 100 stump trees are used with an error goal of 0.2. Replacing of the variables is not allowed, but 
resampling. Hence, it is the classical boosting approach with re-weighting the single trees. For AB, the learn rate 
is set to 0.1 and 400 stump trees are trained. Again, the classical boosting approach is chosen. For RF, 400 trees 
are trained and the minimal leaf size is set to 3. For both SVMs, standardization is used, the kernel scale is set to 
auto and outlier rate is set to 0.05. All other parameters are kept at standard settings.

To speed up the classification process, a random selection of 1% of the training data is used for training. It 
should be noted that this data reduction is done after the feature generation and reduction. Especially, the results 
would significantly degrade if the PCA would only be done on 1% of the data. The data points are selected ran-
domly. For the test data, the whole data set is used. Furthermore, repetition of the classification process would 
not lead to significantly different classification results due to the random selection of the data points.

Evaluation of the classifiers For the evaluation of the classifiers, the four measures accuracy (ACC), modified 
accuracy (ACC2), area under the curve (AUC) and Matthews correlation coefficient (MCC) are used. They are 
used due to the fact that they are either well established in the medical field (ACC, AUC) or that they are bal-
anced measures for the case that the amount of data from one class is much higher (ACC2, MCC). The ACC, 
ACC2 and MCC are defined as follows:

where TP are the true positives, TN the true negatives, FP the false positives and FN the false negatives. The AUC 
describes the probability that a classifier will rank a randomly chosen positive instance higher than a randomly 
chosen negative one. The final accuracy measures are the mean of all 25 permutations from the LOOS. The data 
analysis is done with and without spatial features. Both are compared with an ANOVA. The ANOVA is done 
as threefold ANOVA with the following parameters: classifier, accuracy metric and usage of spatial features.

Optimization of the parameters There was only a slight optimization process done for this specific data set. 
Thereby, the following parameters were varied: sub-image size for the MNF (20 and 120) and amount of spa-
tial features (P = L = 2 versus P = 3 and L = 4). The sub-image size for the MNF had nearly no effect while the 
increase of spatial features lead to a small improvement of the accuracy measures. The rest of parameters were 
chosen due to the fact that they showed good results of the classification of carcinoma tissue with  MSI17. It is 
also not expected that wide parameter optimization would lead to much better results as the correct margin of 
the tumour is likely the reason which limits the quality of the  results25.

Results
The result section consists out of two parts. In the first section, a typical multispectral image is shown. In the 
second section, the results of the machine learning are shown and discussed.

Example images. Figure 4 shows a multispectral example image of a mouse. It is the same image as shown 
in Fig. 5. It can be seen that in the UV and blue range, the reflection is the lowest. Also the reflection in green is 
a little bit lower than in yellow or red. Moreover in the yellow and red range, the healthy tissue appears relatively 
brighter than the neoplastic lesion in the green range. Therefore, it is feasible to assume that the classification 
might work, as there are differences present. Furthermore, the specular reflection appears as two spots in Fig. 4. 
This happens due to the following two effects. First, the spectral scanning approach is used in this study. Hence 
between different wavelength bands, some movement can occur between different wavelength bands. Thus, the 
position of the specular reflection changes. By using the MNF-filtering, the specular reflection might appear also 
on other wavelengths.

Classification. Table 2 shows the results for all five classifiers and all four accuracy metrics for the results 
with and without spatial features.

The results are strongly dependent on the chosen classifier as well as on the chosen accuracy metric. Neverthe-
less, there is an overall increase by the usage of spatial features especially for weaker classifiers such as the SVM 
with linear kernel. Nevertheless, even the results for the stronger classifiers such as RB, AB and RF improve a 
little bit. In general, the classification between healthy and neoplastic lesion in mice provides better results than 
the in vivo clinical study on oesophagus in humans in our previous  studies16, 17. The best classifier is RB for all 
measures. Thus, it is likely that the training data has misclassified data. Therefore, it is likely that the margin of 
the neoplastic lesion was not correctly identified by the medical expert.

(4)ACC =
TP + TN

TP + TN + FP + FN

(5)ACC2 =
Sen+ Spe

2

(6)MCC =
TP · TN − FP · FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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Table 3 shows the comparison to other groups. The overall results generated in this in vivo study reach a 
similar ACC, AUC and MCC as in the HSI study from Baltusen et al.26 in the visible range despite their study 
is an ex vivo study. However, similar results can only be reached for the MSI data set with spatial features. This 
pinpoints that the usage of spatial features is a very important step in future for multispectral endoscopy. Fur-
thermore, the MCC in this study is nearly identical to the ex vivo results from Collins et al.27 in which they used 
a 3d convolutional neural network (3DCNN). Finally, the multispectral data set with spatial features will likely 
have a similar data dimensionality as hyperspectral data sets. Hence, it is a valid alternative.

An ANOVA shows significant differences (p < 0.0005 ) for each of the following parameters: the kind of 
accuracy measure, the classifier and the spatial features. From these, the accuracy measure explains most of 
the variance (∂η2 = 0.53 ). This is expected as the MCC has its values in a different range than e.g. the ACC. 
The classifier explains the second most variance (∂η2 = 0.07 ). The features only explain around 1% of the 

Figure 4.  Example of multispectral image for the different wavelength bands. An example for the labelling of 
this multispectral image is shown in Fig. 2.

Figure 5.  Example mouse image. The margin of the neoplastic lesion is marked in green.

Table 2.  Classification results of the tested classifiers for 25 mice with LOOS for the multispectral data set 
without (left side) and with spatial (right side) features. The PCA is done and 99% of the variance of the PCA is 
used.

Method ACC ACC2 AUC MCC ACC ACC2 AUC MCC

Data set Without spatial features With spatial features

RF 0.67 0.64 0.73 0.39 0.72 0.73 0.76 0.46

RB 0.70 0.72 0.76 0.44 0.72 0.73 0.76 0.47

SVM (lin) 0.60 0.60 0.65 0.20 0.66 0.65 0.66 0.31

SVM (Gauss) 0.62 0.67 0.68 0.34 0.63 0.65 0.68 0.31

AB 0.68 0.70 0.75 0.41 0.73 0.73 0.76 0.47
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variance (∂η2 = 0.01 ). However despite the low ∂η2 , the spatial features are still required to push the results in 
the region from the study from Baltusen et al.26.

Table 4 shows the different classification results for the inflammation driven tumour models as well as the 
spontaneous tumour models. The results with spatial features are presented in Table 4. Between both results, 
there is no significant difference in the final classification accuracy ( p > 0.3 ; ANOVA). Hence the typical issue 
that inflammation driven neoplastic lesions are more difficult to find does not seem to appear in this study.

Table 5 shows the MCC as a function of spatial features and if inflammation driven tumour models are used 
or not. It can be seen that the improvement due to the usage of spatial features is similar for the inflammation 
driven and the spontaneous tumour model. Thus, both tumour models seem to have distinct alterations of the 
colon. Hence, there does not seem to be an effect of disguise caused by the inflammation. Nevertheless, the results 
from the different classifiers are contradicting. Hence, more analysis of this is required in the future.

Conclusion and summary
MSI with support of spatial features allowed classification of neoplastic lesions in the colon. Normally there is 
an expected advantage of real HSI over MSI, HSI has two major drawbacks. The first one is the curse of dimen-
sionality. The problem is that an increase in dimensionality leads to a fast increase of the volume of the feature-
space so that the available data become sparse, making classification problems much harder to solve. Second, 
the high correlation between continuous spectral  bands28 must be considered. This leads to the problem that - in 
combination with the sparsity of the data - it is difficult to find the correlations between spectral bands. Due to 
these points, HSI will be very difficult to set up in future. A further minor issue is that the margin of carcinomas 
is not known for in vivo  endoscopy29.

Despite the expected advantage of real HSI over MSI, the above points emphasize why it still seems to be 
an attractive option to revert to MSI. Additionally, this is an issue well known in remote sensing: Not all HSI 
spectral bands are required as some of them already include all significant  information30, 31. Thus, it might make 
sense to switch back to MSI after the optimal spectral bands have been found by HSI; potentially, it might not 

Table 3.  Comparison with the results from other groups.

Study/year Spectral range (nm) Ex vivo/in vivo MCC AUC ACC 

Baltusen et al.26/2019 400–1000 Ex vivo 0.50 0.81 0.74

Baltusen et al.26/2019 900–1600 Ex vivo 0.59 0.87 0.80

Baltusen et al.26/2019 400–1600 Ex vivo 0.83 0.98 0.91

Collins et al.27/2021 500–1000 Ex vivo 0.49 0.93 –

This study with spatial features 400–630 In vivo 0.47 0.76 0.73

Table 4.  Classification results of the tested classifiers for the spontaneous cancer model (left) for 14 mice and 
the inflammation driven cancer model (right) for 11 mice.

Method ACC ACC2 AUC MCC ACC ACC2 AUC MCC

Cancer model Spontaneous (n = 14) Inflammation driven (n = 11)

RFW 0.73 0.74 0.77 0.48 0.71 0.71 0.74 0.43

RB 0.72 0.74 0.77 0.48 0.72 0.72 0.76 0.45

SVM (lin) 0.65 0.64 0.65 0.30 0.68 0.66 0.68 0.32

SVM (Gauss) 0.62 0.63 0.66 0.27 0.64 0.67 0.70 0.36

AB 0.73 0.74 0.77 0.48 0.72 0.73 0.75 0.46

Table 5.  Classification results of the MCC for all five classifiers as a function of spatial features and if 
inflammation driven tumour models are used or not.

Spatial features No Yes No Yes

Cancer model Spontaneous (n = 14) Inflammation driven (n = 11)

RFW 0.41 0.48 0.37 0.43

RB 0.43 0.48 0.45 0.45

SVM (lin) 0.24 0.30 0.15 0.32

SVM (Gauss) 0.36 0.27 0.32 0.36

AB 0.41 0.48 0.41 0.41
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even be required to use the HSI at all as almost all absorbers in tissue have a broad spectral effect. Finally, MSI 
set-ups are also easier to build.

This line of arguments is supported by the fact that the classification results of the present study are similar 
quality to the results from the ex vivo HSI study from Baltusen et al.26 in the visible range; however, their results 
are superior in the NIR range from 1000 to 1600 nm and their combination of NIR and VIS leads to further 
huge improvements. This allows the conclusion that multispectral endoscopy with a few additional wavelengths 
in the NIR region is likely to show the same promising results as full HSI without the downside of the latter.

The main limitation of the present study is the fact that there was a trade-off between the number of available 
mice and the possibility to perform biopsies as gold standard for the evaluation the neoplastic lesions. This trade-
off was solved at the expense of omitting the biopsies, allowing to investigate 25 mice—a quite substantial num-
ber. Therefore, only neoplastic lesions without further differentiation could be used as target for classification.
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