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A novel method for assessing 
and measuring homophily 
in networks through second‑order 
statistics
Nicola Apollonio1, Paolo G. Franciosa2* & Daniele Santoni3

We present a new method for assessing and measuring homophily in networks whose nodes have 
categorical attributes, namely when the nodes of networks come partitioned into classes (colors). We 
probe this method in two different classes of networks: (i) protein–protein interaction (PPI) networks, 
where nodes correspond to proteins, partitioned according to their functional role, and edges 
represent functional interactions between proteins (ii) Pokec on‑line social network, where nodes 
correspond to users, partitioned according to their age, and edges respresent friendship between 
users.Similarly to other classical and well consolidated approaches, our method compares the relative 
edge density of the subgraphs induced by each class with the corresponding expected relative edge 
density under a null model. The novelty of our approach consists in prescribing an endogenous null 
model, namely, the sample space of the null model is built on the input network itself. This allows 
us to give exact explicit expression for the z‑score of the relative edge density of each class as well 
as other related statistics. The z‑scores directly quantify the statistical significance of the observed 
homophily via Čebyšëv inequality. The expression of each z‑score is entered by the network structure 
through basic combinatorial invariant such as the number of subgraphs with two spanning edges. 
Each z‑score is computed in O(n+m) time for a network with n nodes and m edges. This leads to 
an overall efficient computational method for assesing homophily. We complement the analysis of 
homophily/heterophily by considering z‑scores of the number of isolated nodes in the subgraphs 
induced by each class, that are computed in O(nm) time. Theoretical results are then exploited to show 
that, as expected, both the analyzed network classes are significantly homophilic with respect to the 
considered node properties.

The homophily principle states that “similarity breeds connections”1. This principle—born in sociology—once 
declined into Network Theory, reads as nodes in a network are more likely to be linked to nodes sharing similar 
attributes. The effectiveness of homophily in social networks has been extensively demonstrated across various 
 instances2–7: social networks exhibit homophily with respect to attributes such as gender, age, ethnicity, occupa-
tion, social class and many others. This simply means that people preferentially interact with people sharing the 
same cultural and sociological attributes. Putting it succintely: “birds of a feather flock together”1,8. In contrast, 
heterophilic networks are those networks whose nodes preferentially interact with nodes having different attrib-
utes values. Homophily can also be seen as the categorical counterpart of “assortative mixing”—the correlation 
of attributes across link—and, as such, at least beyond a certain amount of assortativity, it binds the structure of 
 networks9, and influences the curvature of the cumulative degree distribution under the preferential attachment 
evolutionary  mechanism10. In view of this discussion, homophily qualifies as a genuine network property, namely, 
a property that when possessed to some extent, impacts non trivially on the structure of the network. A quantita-
tive understanding of homophily in networks is therefore useful both from a theoretical and a practical point of 
view. A step forward in this direction is taken once we realize that homophily in networks certainly fits in the 
frame of “community detection”11,12; observe that communities in complex networks identify high order homo-
geneous structures. Arguing as  in13, network community detection can be seen as a procedure consisting of two 
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stages: one stage consists of extracting communities by relying on the geometric structure of the networks, while 
the second stage consists in “abstracting” communities, namely, in identifying the common features and attributes 
of community members. Such common features and attributes are usually referred to as functions or node char-
acteristic14. From this perspective, communities are first detected based on their geometry and then evaluated 
based on their functions. The other way round is also meaningful: given a functional description of a network, 
namely a partition of its nodes into sets of nodes with the same node characteristic, assessing whether or not the 
class of the partition have a certain amount of geometric structure, i.e. assessing whether or not such classes are 
communities, is tantamount to assessing whether or not the network is homophilic with respect to node char-
acteristic. Innocent as it may seem, this observation already provides a way of quantifying homophily: if the 
functional description correlated with the geometry of the network or, equivalently, if the network were homo-
philic with respect to node characteristics, then the node-induced subgraphs of each class of the partition should 
be relatively denser than what we expect under some suitable null model—the relative edge density of a subgraph 
H of a given graph G is the density of H over the density of G. Newman’s celebrated modularity  index15 formulates 
the null hypothesis as the relative expected density of a random graph with the same degree distribution as the 
input graph. Modularity is thus the relative edge density of monochromatic subgraphs minus the expected rela-
tive edge density of monochromatic subgraphs under the null hypothesis that edges are distributed at random 
among nodes. Since the index lies in interval [− 1

2 , 1] , its value directly quantifies network homophily: the larger 
the index the more homophilic the network is. Modularity thus provides a scale for comparing homophily of 
different networks. Notice that Newman’s index resorts to an exogenous model (the configuration model) to test 
homophily. In this paper, by revising the idea  in14, we propose to measure network homophily by testing the 
observed structure (i.e. the relative edge density of functional classes) against the expected structure under an 
endogeneous random model: the input graph itself will be the sample space for the null hypothesis. With this 
aim in mind, in this paper we propose a new statistical model that builds on the approach  in14 (developed for 
networks with only two functional classes), extend it to an arbitrary number of classes, and strengthen it by 
exploiting second order statistics based on a uniformly random coloring of the input network with the same 
color distribution. This machinery yields an explicit exact formula for the z-score of a suitable defined homophily 
index as well as of the number of isolated nodes of each functional class. The statistical significance of the 
observed homophily is then obtained through Čebyšëv inequality. As one may expect, the structure of the net-
work enters second order statistics through the number of its subgraphs with two spanning edges, namely, the 
number of its P3 ’s (if the two edges are adjacent) and the number of its 2K2 ’s (if the two edges are not adjacent). 
This means that our analysis does not require exogenous models (random graphs, for instance) to make com-
parisons for assessing homophily. Throughout the rest of the paper P3 is the graph on three nodes joined by two 

edges, namely the graph • • • , while 2K2 is the graph on four nodes with two edges without common 

endpoints, namely, the graph 
• •
• •.

In line with the work  of14, we probe our theoretical results on two different network classes: (i) Protein–Pro-
tein Interaction (PPI) networks, where nodes correspond to proteins, partitioned according to their functional 
role, and edges represent functional interactions between proteins (ii) on-line social network where nodes cor-
respond to users, partitioned according to their age, and edges represent friendship between users. As expected, 
numerical results provide strong evidence of the homophilic nature of the considered networks with respect to 
the corresponding node properties: protein function for PPI and age class for social network.

Homophily in networks
As sketched in “Introduction” section, we look at homophily as a network parameter (actually as an array of 
parameters, see “Assessing and measuring homophily” section) measuring to what extent the attributes (node 
characteristics, functions) of the nodes of the networks correlate across the edges. To give a precise meaning to 
such a correlation, we follow the approach  in14 which we now discuss in more details. Of course, nothing bad 
is happening if we think of node characteristics as node colors and, consistently, of the functional description 
as a partition of the node set into color classes so that (potential) communities are sets of nodes with the same 
color. Consequently, we deal with a simple undirected graph G with n nodes and m edges whose nodes are par-
titioned into a number s of color classes. The simple original model  in14 refers to the case of two colors ( s = 2 ) 
denoted by 0 and 1. Edges of G are then classified as (0, 0)-edges, (0, 1)-edges and (1, 1)-edges according to the 
color at their endpoints. Let c0 (resp., c1 ) be the number of nodes of G having color 0 (resp., 1), with c0 + c1 = n ; 
furthermore, let mi,j be the number of (i, j)-edges, i, j ∈ {0, 1} , with m0,0 +m0,1 +m1,1 = m : if the functional 
definition of the communities correlated with the structure of G, then we should expect a statistical significant 
deviation between m0,0 , say, and what we would expect if characteristic 0 were randomly distributed among the 
nodes of the graph, namely, if any node had an equal chance of possessing it.  In14, it is proposed to measure this 
deviation by the three ratios:

where, for i, j ∈ {0, 1} and i  = j

ω0 =
m0,0

m0,0
, η0,1 =

m0,1

m0,1
, ω1 =

m1,1

m1,1

mi,i = m
ci(ci − 1)

n(n− 1)
and mi,j = m

2cicj

n(n− 1)
,
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are the expected number of (i, i)-edges and (i, j)-edges, respectively, under the hypothesis that properties 0 and 
1 are randomly distributed over the node set of G (see “Homophily, heterophily and isolated nodes: first and 
second order moments” section for proofs). Just by rewriting ωi and ηi,j as

one sees that ωi is nothing but the normalized intracommunity density; analogously, ηi,j is the normalized inter-
community  density13. In this perspective, homophily (and heterophily) provides a suggestive interpretation of 
basic structural graph properties (those that can be captured by first order moments of functions of random 
partitions into two classes with c0 nodes labeled 0 and c1 nodes labeled 1). In this simple model, graph G is 
declared i-homophilic (or homophilic with respect to property i), i ∈ {0, 1} , if  mi,i

mi,i
> 1 ; graph G is declared (i, j)-

heterophilic if  mi,j

mi,j
> 1 (we ask the reader to bear the pedantic reference to the indices i, j in view of the generali-

zation to more than 2 properties). Without any other clue about the likelihood or the variability of ωi and ηi,j , it 
is clear that both the assertions have no statistical significance behind their descriptive power. Moreover, it follows 
from (1) that ωi lies in the interval [0, 1/ρ(G)] , ρ(G) being the edge density of G and such an interval might be 
really wide for sparse graphs. To overcome this  limitation14, they developed a computational model (feasible only 
for the case of two colors) aimed at evaluating the likelihood of an observed instance (ω0, η0,1) in the form of a 
phase diagram in the m0,0m0,1-plane. Each point of such a diagram is the frequency of all partitions of the node 
set G into two parts C0 and C1 with c0 and c1 nodes, respectively, such that the subgraph of G induced by C0 has 
m0,0 edges, while the subgraph induced by C1 has m− (m0,0 +m0,1) edges, m being the size of G. The diagram 
is computed by exhaustive enumeration for small graphs, while for large graphs only the boundary of the diagram 
is heuristically computed. In either cases, the likelihood of the observed pair is determined by its position and 
its darkness (in a grayscale) in the phase diagram. Although this approach has been proven successfully for a 
wide range of real networks (with only two functional classes), including certain PPI  networks14, it still suffers 
of the following limitations: 

(a) it is computationally expensive. In fact, an exact evaluation of the phase diagram requires time exponential 
in the number of nodes in the network, and can be applied to large instances only by exploiting heuristic 
algorithms on a sample. Also, after sampling a subgraph with m̃ nodes, the complexity is O(n2m̃);

(b) it can be applied only to two functional classes;
(c) it is rather qualitative.

To overcome these limitations, we propose to compute the z-score of ωi and ηi,j under the null model described 
in the next section. Since, as we show, this can be done for any number s of colors in O(s(n+m)) time, and s is 
usually a small constant, we have that our algorithm is time optimal, hence (a) and (b) are settled. As for (c), if 
Z(ωi) , say, is the z-score of ωi , then by Čebyšëv inequality the probability of the event (Z(ωi) > �) is at most �−2 
under the null model. Hence Z(ωi)

−2 directly measures the statistical significance of ωi , at the same time mak-
ing the method completely quantitative. Moreover, we propose to evaluate the z-score of the number of isolated 
nodes in the subgraph induced by each color, that are expected to be negative values in the case of homophilic 
network. This computation is computationally harder, requiring O(nm) time, but experimental results show to 
be quite fast on networks with order of 105 edges, and is still applicable to sparse networks with about 106 nodes.

Design of the new model. Throughout the rest of the paper, we think of a network as an undirected 
graph G with node-set V(G) and edge-set E(G). An s-coloring of G is a surjective map g : V(G) → [s] , where 
[s] := {1, . . . , s} is the set of colors. As previously stipulated, we think of g as the functional description of the 
network, and of the set g−1(i) , consisting of the nodes of G having color i, as the functional classes of the descrip-
tion. These classes are our (potential) communities. Hence, in the pair (G, g), G encodes the geometrical descrip-
tion of the network and g encodes its functional description. For instance, Protein–Protein Interaction networks 
(PPI for shortness) are graphs whose nodes are proteins and whose edges model functional interactions between 
proteins. Since proteins are classified by the biological function they are responsible for, each protein is uniquely 
associated with one of the 19 functional classes listed in Table 2 and which we identify by their labels. Therefore, 
given a PPI network G, the correspondence protein →function defines a surjective map g from the set of nodes of 
G into a set of 19 labels and, after thinking of the labels as colors, such a correspondence will be our 19-coloring 
g. For the Pokec social network graph, we partitioned the node set into five age classes. Therefore a correspond-
ence user →age defines a 5-coloring. Notice that the classification of ages is not frequency based, so that node 
classes differ substantially in size.

Let ci , i ∈ [s] , be the number of nodes of G of color i under g and call the integer vector c = (c1, · · · , cs) the 
profile of g. Any other coloring f : V(G) → [s] with the same profile as g will be referred to as a c-coloring of 
V(G) (or simply c-coloring when V(G) is understood). Our next step is to introduce a probability space that 
allows us to formulate null hypotheses to test against alternative hypotheses about (G, g). To this end, let �(c) 
be the set of all c-colorings of V(G). Since the multinomial coefficient with parts c1, c2 · · · cs , denoted by one of 
the two symbols below

(1)ωi =
2mi,i

ci(ci − 1)

/

2m

n(n− 1)
and ηi,j =

mi,j

cicj

/

2m

n(n− 1)

(

n
c

)

,

(

n
c1c2 · · · cs

)

,
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counts the c-colorings of V(G) (see the Appendix for a definition of multinomial coefficient), it follows that 

|�(c)| =
(

n
c

)

 . A random c-coloring is the random variable F with values in �(c) and with probability mass 

function given by

namely, all c-colorings are equally likely (see the Appendix for a more formal definition not needed here). Having 
the probability space (�(c),Pn,c) we test functions of (G, g) versus the same functions under the null hypothesis 
(G, F), where F is a random c-coloring of V(G). We therefore define several random variables as functions of 
the random variable F, and such variables enable us to give first and second order moments of those statistics 
crucial for our purposes. We close this section by describing the former ones, deferring the description of the 
latter ones to the next section.

For a node v ∈ V(G) and a color i ∈ [s] , let Xi
v be the Bernoulli random variable that equals to 1 if and only 

if node v has color i under the random c-coloring F, i.e. Xi
v is the indicator of the event F(v) = i . Since Xi

v is a 
Bernoulli random variable, by (5) in the Appendix, one has

Analogously, for the product of two such variables for u, v ∈ V  , u  = v , and i, j ∈ [s] , after resorting to (5) and 
(6) in the Appendix, one has

where, after adhering to the notation  in16, for a positive integer a and a nonnegative integer r, we have 
denoted by the symbol ar  the falling r-th power of a (see also the Appendix for more details), namely 
ar = a(a− 1) · · · (a− r + 1) , with a0 = 1 . Thus, the 2-nd falling power a2 of a equals a(a− 1) . The above for-
mula immediately shows that the random variables Xi

v as v runs in V(G) and i runs in [s] are not independent 
(neither are Xi

u and Xj
v ). Without pretending to be rigorous, this is only due to the fact that a random c-coloring 

can be thought of as the outcome of experiments where one draws from a bin “without replacement”. However, 
variables in {Xj

v | v ∈ V , j ∈ [s]} are exchangeable, in the sense that the joint distribution of any subset of them 
does not depend on the order of drawing (the distribution is symmetric with respect to permuting indices). 
Hence, as long as we consider statistics based only on linear combinations of Xi

v , there is no other dependency 
other than the one inherited by the sampling procedure. To let the graph come into the structure of the depend-
ency among variables, we have to consider second order statistics.

Let us come to edges now and, for an edge uv ∈ E(G) and colors i, j ∈ [s] , let Yi,j
uv be the Bernoulli random 

variable which is equal to 1 if and only if one of the endpoints of uv has color i and the other one has color j. 
Hence , if i = j , then Yi,i

uv = Xi
uX

i
v while if i  = j , then Yi,j

uv = Xi
uX

j
v + X

j
uX

i
v . Therefore by (2)

One more random variable is needed to compute the first two moments of the statistics we are interested in. Let 
T be a nonempty subset of V(G) and let i ∈ [s] be a color; define Di

T as the number of elements of T having color 
i; by definition, Di

T has the following expression:

Let A and B be disjoint subsets of V(G). To determine the distribution of Di
T we are interested in the probability 

of the event that all the elements of A have color i while all those of B have not. Let �i(A,B) denote this event 
(for more on events of this type refer to the Appendix). Thus

Hence

and since the events on the right hand side of the identity above are mutually incompatible, after equation (3) in 
the Appendix and after setting t = |T| , one has

Pn,c(F) = Pr{F = f } =
(

n
c

)−1

,

E
(

Xi
v

)

= Pr
{

Xi
v = 1

}

=
ci

n
.

(2)E

�

Xi
uX

j
v

�

= Pr

�

Xi
uX

j
v = 1

�

= Pr

�

Xi
u = 1,X

j
v = 1

�

=







c
2

i

n2
if i = j

cicj
n2

if i �= j

(3)E

�

Y
i,j
uv

�

= Pr

�

Y
i,j
uv = 1

�

=







c
2

i

n2
if i = j

2
cicj
n2

if i �= j

.

Di
T =

∑

v∈T
Xi
v

�i(A,B) = (F(a) = i, ∀a ∈ A) ∧ (F(b) �= i, ∀b ∈ B).

(

Di
T = h

)

=
∨

R ⊆ T
|R| = h

�i(R,T \ R)
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and the close resemblance with the binomial distribution with parameters t and cin is clear: powers are replaced 
by falling powers. This is not an accident: Di

T follows a hypergeometric distribution Hyp(n, ci , t) giving the 
probability of success by drawing without replacement t balls from an urn containing n balls, ci of which are 
successfull. By choosing T equal to the neighborhood of a node v ∈ V(G) , one immediately gets the distribution 
of the random number of neighbors of node v with color i, i.e. Di

NG(v)
∼ Hyp(n, ci , degG(v)).

Homophily, heterophily and isolated nodes: first and second order moments. We are now in 
position to describe statistics capable of assessing whether PPI networks are homophilic. Let (G, g) be a pair 
consisting of a PPI network G with n nodes and m edges and a c-coloring g. We classify the m edges of G 
according to the colors of their endpoints. Consequently, we say that edge uv ∈ E(G) is a (i, j)-edge of (G, g) 
if {g(u), g(v)} = {i, j} , i, j ∈ [s]—with a little abuse of notation we also admit i = j . Notice that (i, i)-edges, the 
intra-community edges, are the edges of G induced by the nodes in color class i (those responsible for the homo-
phily of (G, g)) and, for i  = j , (i, j)-edges, the inter-community edges, are the edges with one endpoint in color 
class i and the other one in color class j (those responsible for the heterophily of (G, g)). Let mi,i and mi,j be 
the number of (i, i)-edges and (i, j)-edges of (G, g), respectively. Therefore, for any two (possibly equal) colors 
i, j ∈ [s] , the random variable

counts the number of (i, j)-edges of (G, F) where F is a random c-coloring. Let mi,j be the expected value of Mi,j : 
by (3) and the linearity of expectation it follows straightforwardly that

which generalizes to an arbitrary number of colors the corresponding expressions given above for two colors. 
Analogously, we define the i-homophily of (G, g) and (i, j)-heterophily of (G, g), i  = j , as the ratios

namely, the relative intra- and inter-community density, respectively (recall the identities in (1)). If for all i, j ∈ [s] 
(possibly i = j ) we knew the variance σ 2

i,j of Mi,j , then we could compute the z-score of the observed ωi e ηi,j as 
the ratios

By Čebyšëv inequality, if we assume, for instance, the null hypothesis that the observed value ωi is a value assumed 
by the random variable M

i,i

mi,i
 in the probability space (�(c),Pc,n)—which is tantamount to assume that (G, g) does 

not display i-homophily—then the confidence level for accepting the null hypothesis would be at most Z−2(ωi) . 
Deferring for a while the computation of σ 2

i,j , let us examine another useful statistic for (G, g): the number li of 
isolated nodes in the subgraph induced by color i, i.e. the number of nodes in color class i having no neighbors 
in color class i. Call any such node i-isolated and observe that by definition the number of i-isolated nodes is

Let Li be the random variable defined as the number of i-isolated nodes of (G, F), where F is a random c-col-
oring of V(G). Although the random variables Li ’s and Mi,i ’s are clearly dependent (as confirmed by results 
plotted in Fig. 7) in the next section—at the extreme cases, for instance, Pr

{

Mi,i = 0 | Li ≥ ci − 1
}

= 1 and 
Pr
{

Mi,i ≥ ci
2 | Li = 0

}

= 1—the joint knowledge of corresponding statistics li and ωi is still quite informative. 
Indeed, consider two graphs G and G̃ on the same node set and let g be a c-coloring of V(G). The i-homophily 
of (G, g) and (G̃, g) could be well the same, but the number of i-isolated nodes can be significantly different as 
in the following example.

Example 1 For a positive integer t denote by Kt the complete graph on t nodes and by Kt its complement, namely 
the graph with t nodes and no edges. Also denote by K1,t the complete bipartite graph with one node in a color 
class and t nodes in the other class. Finally, for graphs G and H denote by G +H their disjoint union, namely the 
graph obtained by picking a copy of G a copy of H disjoint from G, and then forming the union of the two copies. 
Consider the subgraphs Gi and G̃i induced by color i in G and G̃ , respectively. If, for some positive integer p, one 
has Gi

∼= Kp + K2p and G̃i
∼= Kp−1 + K1,p−1 + Kp , then Gi and G̃i have the same i-homophily but the number of 

i-isolated nodes in Gi is twice the number of i-isolated nodes in G̃i.

(4)Pr
{

Di
T = h

}

=
(

t
h

)

c
h
i (n− ci)

t−h

nt

Mi,j =
∑

uv∈E(G)
Y
i,j
uv

mi,j =
{

m
c
2
i

n2
if i = j

2m
cicj
n2

if i �= j
,

ωi =
mi,i

mi,i
, ηi,j =

mi,j

mi,j
,

(5)Z(ωi) =
mi,i −mi,i

σi,i
= Z(mi,i), Z(ηi,j) =

mi,j −mi,j

σi,j
= Z(mi,j) .

li = |
{

v ∈ V(G) | g(v) = 1 ∧ g(w) �= i, ∀w ∈ NG(v)
}

| .
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Therefore, if we knew that ωi ≤ ω̃i and li ≥ l̃i , then this fact would support the claim that (G̃, g) is more 
i-homophilic than (G, g) because the relative density of property i is less concentrated in (G̃, g) than in (G, g). In 
conclusion, to assess i-homophily of (G, g) the use of the statistics (Z(ωi),Z(li)) , where Z(ωi) and Z(li) are the 
z-scores of ωi and li , respectively, could be useful. The next theorem, besides summarizing what we have said 
about the first order moments of the statistics considered so far, also gives the announced expression for σ 2

i,j and 
the expression for the variance of Li . We then exploit these results to compute z-scores as a tool for analyzing 
networks in the next section.

Theorem 1 Let G be a graph with n nodes and m edges and let (�(c),Pn,c) be the probability space of the random c
-colorings, where c = (c1, . . . , cs) . Assume ci > 0, ∀i ∈ [s] . Moreover, let π3(G) denote the number of (not necessarily 
induced) copies of P3 in G. For i, j ∈ [s] , consider the random variables Mi,j and Li defined on (�(c),Pn,c) . Then

(1) for i ∈ [s] the expected value and the variance of random variable Mi,i =
∑

uv∈E(G) Y
i,i
uv where Yi,i

uv = Xi
uX

i
v for 

all uv ∈ E(G) , namely the random number of (i, i)-edges of (G, F) under a random coloring F, are respectively 
given by

(2) for i, j ∈ [s] , i  = j , the expected value and the variance of random variable Mi,j =
∑

uv∈E(G) Y
i,j
uv where 

Y
i,j
uv = (Xi

uX
j
v + X

j
uX

i
v) for all uv ∈ E(G) , namely the random number of (i, j)-edges of (G, F) under a ran-

dom coloring F, are respectively given by

(3) for i ∈ [s] let Li be the random number of i-isolated nodes of (G, F) under a random coloring F, namely the 
random variable Li =

∑

v∈E(G) W
i
v , where Wi

v is the Bernoulli variable defined as the indicator of the event 
(F(v) = i) ∧ (F(w) �= i, ∀w ∈ NG(v)) ; then the expected value and the variance of Li are respectively given 
by

where we have set b(u, v) = |NG(u) ∪ NG(v)| = degG(u)+ degG(v)− |NG(u) ∩ NG(v)| . Clearly, ci − Li is 
the random number of nodes of color i spanned by the (i, i)-edges.

A formal proof of Theorem 1 is given in the Appendix.
A couple of facts are notable before closing the section.
Statistics presented in points (1) and (2) in Theorem 1 can be easily computed in O(n+m) time, where n is 

the number of nodes and m is the number of edges in the input graph, assuming we have a constant number of 
colors. Hence, computing the s2 z-scores for the number of edges Mi,i and Mi,j is computationally efficient for 
any input instance. We observe that the method  in14 requires exponential time for an exact evaluation, or O(s2n3) 
time, where s is the number of functional classes, if optimisation heuristics are exploited. Computing statistics 
for the number of isolated nodes Li presented in point 3) in Theorem 1 is more time consuming. As shown in 
the Appendix, it requires O(smn) time, that can be improved to O

(

s ·
∑

v∈V deg(v)2
)

 . This is still efficient for 
sparse large graphs, with up to millions of nodes and edges.

All of the second order statistics presented in the theorem have an expression that encodes part of the struc-
ture of the input graphs, e.g. its number of P3’s, 2K2 ’s as well as the cardinalities of the set of common neighbors 
of nonadjacent pair of nodes. This means that the coefficient of variation of ωi , defined as σi,i/mi,i is completely 
determined by G and ci and that different c-colorings (inducing different functional description) have the same 
scale. In this respect the homophily of the pair (G, g) is an intrinsic measure of the same pair and the coefficient 
of variation of ωi is an invariant of the pair (G, c) . We can thus answer the question “how homophilic the network 
is?” without resorting to comparisons with other networks.
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(
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)
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E
(

Li
)

=
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n

∑

v∈V(G)

(n− ci)
degG(v)

(n− 1)degG(v)
,

var(Li) = E
(
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)(

1− E
(

Li
))

+
c
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i
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∑

(u, v) ∈ V(G)
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(n− 2)b(u,v)
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Assessing and measuring homophily
In this section we reap the crops of the last theorem by devising a methodological recipe to assess and measure 
homophily in networks. The main tools in this respect are the z-scores computed in the previous section. Given 
a pair (G, g) consisting of a network and one of its functional description g—a partition of the node-set of the 
network into s classes of nodes having the same characteristic, e.g. age, marital status, biological function, kind 
of phone subscription, geographical localization etc.—we can define the s × s random matrix D whose i, j-th 
entry is the standardized random variable (Mi,j −mi,j)/σi,j and, analogously, the s-dimensional random vector 
d0 whose i-th entry is the random variable (Li − E

(

Li
)

)/
√

var(Li)—notice that D is symmetric because Mi,j and 
Mj,i are the same variable. From (G, g) we can compute the arrays Z and z0 consisting, respectively, of the z-scores 
of intra- and inter-community edges (with the former displayed on the main diagonal of the s × s matrix Z ) and 
of the s z-scores of the i-isolated nodes (nodes of color i none of whose neighbors has color i), for i = 1, . . . , s . 
We refer to Z and z0 as the z-score arrays of (G, g). Hence we may think of Z and z0 as the observed values of D 
and d0 , respectively—notice that Z is symmetric as well. For an array A (matrix or a vector) denote by 1/A2 the 
array of the same dimensions as A whose generic entry b is a−2 , a being the corresponding entry of A . Call the 
arrays 1/Z2 and 1/z20 U-values arrays. By Čebyšëv inequality, the U-values arrays give (entry-wise) an upper bound 
of the probability of observing a value at least as extreme as the one observed for the corresponding random 
variable. Hence U-values are upper bounds of the corresponding p-values—so called in the Theory of statistical 
hypotheses. Although U-values arrays:

• do not capture the statistical dependency structure of the corresponding random arrays—this subject deserves 
further research;

• do not ensure a tight approximation of the corresponding p-values: though using only second order moments 
Čebyšëv bounds are undoubtedly the best possible bounds, such bounds can be actually rather loose yielding 
(possibly) too conservative methods (especially in conjunction with the pervious point),

U-values arrays certainly exhibit the following merits:

• robustness: U-values do not require distributional assumptions and therefore have an endogenous nature;
• complexity: U-values can be efficiently computed (see “Implementation details” section);
• rigour: U-values are computed exactly and do not require sampling or estimates and have precise quantitative 

meaning for homophily.

Notice that the U-values arrays (1/Z2, 1/z20) and the z-scores arrays (Z, z0) convey the same statistical informa-
tion. Hence (Z, z0) is already a direct measure of the homophily of G with respect to g. We spend the remainder 
of the section to substantiate this claim.

Descriptive power of z-score arrays and comparisons of networks The generic entry of Z = {zi,j} measures 
the distance from the expected value of the corresponding random variables on a scale whose unit is the mean 
square error. At the same time, such an entry bounds from above the likelihood of this distance through the 
U-values, namely, the map zi,j  → z−2

i,j  . Similar considerations hold for the array z0.
It follows that z-score arrays can be conveniently described as heat-maps that provide a visual representation 

of homophily. These kind of diagrams can be particularly useful when comparing different networks that use the 
same set of colors because all the arrays involved have the same dimensions and thus the corresponding heat-
maps are comparable. This can be done for PPI networks, for instance, because they have the same functional 
description (see “Protein-protein interaction networks” and “Numerical results” sections). In this case one can 
also refine the analysis with the help of vector z0 to provide a measure of the concentration of homophily in each 
color class (however we did not pursue this idea numerically).

Multiple Testing The natural extension of Park and Barabasi’s  method14 is the following procedure, which we 
present first in a scalar form to clarify the need for the Bonferroni correction and then in a more algebraic form 
to confirm the descriptive power of matrix Z . Although in what follows, when dealing with hypothesis testing, 
it would be more appropriate to use one-sided Čebyšëv inequality (a.k.a. Cantelli’s inequality)—this amounts to 
consider (1+ z2i,j)

−1 in place of z−2
i,j —for simplicity we stick to the two-sided Čebyšëv inequality.

While the procedure above correctly assesses homophily (heterophily) of the marginal entries of D , it is not true 
that the same significance level is valid for the joint distribution of D . For assessing joint homophily (heterophily) 
we have to look at Procedure (6) as a multiple testing procedure which therefore requires multiple testing cor-
rections. One of such correction, the most conservative one, is Bonferroni’s correction which, in its simplest 

(6)

Procedure. Given the pair (G, g) fix a significance level α. Compute the z-scores

arrays (Z, z0). If zi,i ≥
1√
α
, then declare Gi-homophilic at level α (recall that

zi,i = Z(ωi)). Analogously, if zi,j ≥
1√
α
, i �= j, then declare G(i, j)-heterophilic at

level α (recall that zi,j = Z(ηi,j)). Array z0 can be dealt with in the same way and

can be used to refine the analysis.
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form, scales level α—the level below which the null hypothesis is rejected—by the reciprocal of the number h of 
testing performed. For instance, suppose we want to assess whether a pair (G, g) is jointly homophillic at level 
α . Then we need to simultaneously test the s diagonal elements of D . In this case, Procedure (6) specializes by 
declaring that (G, g) is i-homophilic when zi,i > s√

α
 . Clearly, as the number of testing increases, the procedure 

becomes too conservative especially in conjunction with Čebyšëv bounds. This limitation is unavoidable without 
further information about the statistical dependence structure among the marginals of D . Nonetheless, by using 
a slightly refined form of Bonferroni correction, we can still devise a method to measure homophily in a given 
network and to compare homophily between different networks that use the same set of colors. For 
(i, j) ∈ [s] × [s] , with i  = j , consider the alternative hypothesis H1

i,j : Di,j > 0 versus the null hypothesis 
H

0
i,j : Di,j ≤ 0 at the significance level αi,j . Pair (i, j) is said to positive at the significance level αi,j whenever Pro-

cedure (6) accepts H1
i,j . More generally, for Q ⊆ {(i, j) ∈ [s] × [s] | i �= j} , the joint confidence level of the family 

of tests H0
Q = {H0

i,j | (i, j) ∈ S}—a.k.a family-wise error rate of the family of tests H0
Q—is α = min{1,

∑

Q αi,j} and 
set S is called positive at the joint significance level α whenever H1

i,j is accepted by Procedure (6) for all (i, j) ∈ Q . 
The main observation is as follows. If we prescribe the individual significance level αi,j = z−2

i,j  for (i, j) ∈ Q , then 
S will be positive at the joint significance level min{1,

∑

Q z−2
i,j } . In particular, if Q = {(i, i) | i ∈ [s]} , then the set 

of diagonal positions of Z , namely the positions of the z-scores of the intra-community densities, is positive at 
joint confidence level given by the trace of the U-value array 1/Z2 . This observation suggests that we can relate 
the number of positive elements in a set Q at a significance level α with the sum of entries of 1/Z2 indexed by Q. 
Indeed, letQ (α) be the largest subset ofQ such that

∑

(i,j)∈Q(α)z
−2
i,j ≤ α and let q(α) be the cardinality of Q(α) . 

Notice that q(α) can be 0. Hence Q contains exactly q(α) positive elements at the joint significance level α . 
Parameter, q(α) depends only on Q, Z and α and therefore can be used to compare different networks that use 
the same set of colors. On the other hand, by definition, q(α) is related to Z by the following fact: for a real number 
� , let J(�) = {(i, j) ∈ [s] ∈ [s] | i ≤ j ∧ zi,j > �} . It is clear that for each α there exists a � (not in general unique) 
such that Q(α) = J(�) ∩ Q . Therefore, family {J(�) | � ∈ R} globally conveys the same information as family 
{q(α) | α ∈ [0, 1)} and we can get rid of the significance level α when comparing networks that use the same set 
of colors. Notice however that {J(�) | � ∈ R} conveys globally the same information as the heat-map of the z-
score matrix Z with the temperature acting as an inverse transform of the significance level.

Synthetic measure via Multidimensional Čebyšëv-type inequalities Multidimensional Čebyšëv 
 inequalities17 provide a somewhat dual method to the multiple testing procedure above. Recall that if X is a 
d-dimensional real random vector whose marginals have zero mean and unitary variance, ‖X‖ is the Euclidean 
norm of X , and t is a positive real number, then the following multidimensional Čebyšëv-type inequality holds

by a straightforward application of Markov inequality to the random variable ‖X‖2 . The same inequality holds for 
matrices but replacing the Euclidean norm by the Frobenius norm and adjusting for dimensions. More generally, 
it holds by vectorializing any subset of entries of a given matrix (after adjusting for dimensions). For instance, 
direct application of inequality above yields:

with diag(A) denoting the vector formed by the diagonal entries of the square matrix A . Hence, the sum of the 
squares of the diagonal entries of Z gives a global synthetic measure of homophily: the higher such sum is the 
more globally homophillic the network is. Therefore,

Pr{�X� ≥ t} ≤
d

t2

Pr
{

�diag(D)� ≥ �diag(Z)�
}

≤
s

�diag(Z)�2
,

Table 1.  Complete list of considered organisms, together with their network size (nodes and edges). Density is 
expressed as the ratio between the actual number of edges and the number of edges in the complete graph with 
the same number of nodes.

Organism PPI network

Species Kingdom Phylum/class Nodes Edges Density

Brucella melitensis (Bm) Bacteria Alphaproteobacteria 2675 15,450 0.43%

Escherichia coli (Ec) Bacteria Gammaproteobacteria 4020 29,748 0.37%

Haemophilus influenzae (Hi) Bacteria Gammaproteobacteria 1609 9202 0.71%

Helicobacter pylory J99 (Hp) Bacteria Epsilonproteobacteria 1264 7678 0.96%

Mycobacterium tuberculosis H37Rv (Mt) Bacteria Actinobacteria 3779 24,889 0.35%

Streptococcus pneumoniae TIGR4 (Sp) Bacteria Firmicutesi/Bacilli 1811 8813 0.54%

Treponema pallidum (Tp) Bacteria Spirochaetes 894 8157 2.04%

Vibrio cholerae (Vc) Bacteria Gammaproteobacteria 3153 20,844 0.42%

Pyrococcus abyssi (Pa) Euryarchaeota Thermococci 1564 9090 0.74%

Saccharomyces cerevisiae (Sc) Fungi Ascomycota/Saccharomycetes 6157 119,051 0.63%
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is a global index of homophily lying in [0, 1], like Newman’s modularity  index15.

Numerical tests on real networks
We now probe our theoretical results on two different network classes: (i) Protein–Protein Interaction (PPI) 
networks, where nodes correspond to proteins, partitioned according to their functional role, and edges represent 
functional interactions between proteins (ii) on-line social networks, where nodes correspond to users, parti-
tioned according to their age, and edges represent friendship between users. As shown in the previous section, 
the major character of our methodology is the z-score matrix Z . Let us discuss data and the running time of the 
method in some details before going to the numerical tests.

Protein–protein interaction networks. We consider ten PPI networks retrieved from STRING data-
base (https:// string- db. org/)18,19, setting a high confidence score cut-off (0.70). The selected networks, listed in 
Table 1, are mainly related to Bacteria (8 out of 10, belonging to diffent Phyla or classes), we also included in the 
study Saccharomices cerevisiae (Fungi - Ascomycota) and Pyrococcus abyssi (Euryarcheota - Thermococci) for 
comparison. The 8 bacterial organisms were chosen as representatives of Bacteria Kingdom, including differ-
ent Phyla (Alpha, Gamma, Epsilon proteobacteria, Actinobacteria, Firmicutes/Bacilli, Spirochaetes). Organisms 
were also chosen on the basis of their network sizes (number of nodes and edges), in order to build an etheroge-
neous dataset. Species, Kingdom, Phylum/Class as well as number of nodes, number of edges, and density of the 
relative network are reported in Table 1 for each organism.

Functional classes of proteins of the considered ten organisms were obtained from NCBI database
(ftp://ftp.ncbi.nih.gov/pub/COG/COG/). Proteins were partitioned into 25 different functional classes, but 

only 19 were taken into account in this work, since:

• 5 classes (A—RNA processing and modification, B—Chromatin structure and dynamics, Y—Nuclear struc-
ture, Z—Cytoskeleton, W—Extracellular structures) had no representatives (or only a few) for most of bacte-
rial organisms;

• classes R—general function prediction, and S—Function unknown, were merged into the X class.

The 19 considered classes are reported in Table 2. The number of proteins for each functional class in each 
organism is reported in the Appendix.

max

{

0, 1−
s

�diag(Z)�2

}

Table 2.  Protein functional classes, partitioned into higher categories.

Information storage and processing

J Translation, ribosomal structure and biogenesis

K Transcription

L Replication, recombination and repair

Cellular processes and signaling

D Cell cycle control, cell division, chromosome partitioning

V Defense mechanisms

T Signal transduction mechanisms

M Cell wall/membrane/envelope biogenesis

N Cell motility

U Intracellular trafficking, secretion, and vesicular transport

O Posttranslational modification, protein turnover, chaperones

Metabolism

C Energy production and conversion

G Carbohydrate transport and metabolism

E Amino acid transport and metabolism

F Nucleotide transport and metabolism

H Coenzyme transport and metabolism

I Lipid transport and metabolism

P Inorganic ion transport and metabolism

Q Secondary metabolites biosynthesis, transport and catabolism

Poorly characterized

X Function unknown or general function prediction only

https://string-db.org/
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Each organism’s network is an undirected graph, in which each node represents a protein associated to a 
color denoting one of the functional classes listed in Table 2, and each edge represents the interaction between 
two proteins, weighted according to the likelihood of the given interaction. A PPI graph is thus represented by 
two text files, the first lists node labels and the associated colors, the second lists edges as pairs of nodes and the 
associated weight in range [0, 999]. Edges have been cut-off at a 700 minimum weight, usually considered as a 
high confidence threshold. Isolated nodes in the resulting graph have been deleted. Some networks present a 
very limited number of nodes (some units) labeled by similar values (e.g. jhp0681_1 and jhp0681_2 in the 
node file for organism Helicobacter pylori) representing different isoforms of the same protein, but these nodes 
were simply denoted by a unique label (e.g. jhp0681) in the edge listing file. We merged such nodes in a single 
node; in the few cases in which they were associated to different functional classes, we merged them associating 
the functional class X to that node.

Pokec social network. Pokec is the most popular Slovak on-line social network. Datasets, obtained during 
May 25–27 2012, are anonymized and contain relationships and user profile data of the whole  network20. Friend-
ships in the Pokec network are originally oriented. We decided to consider only symmetric pairs, so that we 
derived an undirected graph where nodes x, y are adjacent if and only if both x is a friend of y and y is a friend of 
x, so that it can be assessed that the two considered members had an actual interaction; also in this case, isolated 
nodes have been discarded. The network obtained contains more than one million nodes and 8 millions edges. 
Nodes are partitioned in classes according to the age declared by members, where about 34% of them either did 
not declare age, or declared a patently untrue value—in some cases even less than 10 or over 100. So, we decided 
to put into a “fake” age class denoted by X all members whose age is not a numeric value in [12, 60). The size of 
each subgraph induced by the 5 age classes, possibly containing isolated nodes, is shown in Table 3, together with 
the size of the entire network.

Implementation details. We developed a Python 3 prototype implementing our model, source code is 
available at http:// www. stati stica. uniro ma1. it/ users/ pfran cio/ homop hily/.

Experiments have been performed on an Intel Core i5 PC with 4 cores, 2.3 GHz clock, 16 GB RAM, 256 
KB L2 cache and 6 MB L3 cache, equipped with MAC OS 10.14.6. For the huge Pokec network, a 250 GB RAM 
machine running 18.04.5 LTS has been used.

Computing times, using a single core, are reported in Table 4, excluding time elapsed in file I/O. As it clearly 
appears from the table, the ratio between the number of edges in the graph and the time needed to compute 

Table 3.  Classes of Pokec social network. For each class the number of nodes is reported, with the number of 
edges joining nodes in the same class.

Class Age Nodes Edges

C [12,18) 152,659 348,617

D [18, 25) 332,826 2,038,089

E [25, 40) 270,299 521,228

F [40, 60) 46,295 23,156

X Otherwise 410,270 949,026

Whole network 1,212,349 8,320,600

Table 4.  Computing times for edge z-scores and singleton z-scores, on organisms and Pokec networks. For 
each network we report the number of nodes, the number of edges and the sum of squared degrees. The 
complexity of singleton z-scores computation strongly depends on the sum of squared degrees.

Network

Size Computing time (s)

Nodes Edges Squared degrees sum Edgez-score Singleton z-score

Bm 2675 15,450 942,470 0.042 15.338

Ec 4020 29,748 1,947,532 0.077 63.174

Hi 1609 9202 607,128 0.023 10.477

Hp 1264 7678 535,246 0.020 9.973

Mt 3779 24,889 1,574,806 0.068 43.241

Sp 1811 8813 555,570 0.023 9.010

Tp 894 8157 818,544 0.021 14.284

Vc 3153 20,844 1,505,448 0.054 39.030

Pa 1564 9090 713,514 0.022 12.510

Sc 6157 119,051 30,075,870 0.257 1062.981

Pokec 1,212,349 8,320,600 752,382,968 24.270 24,086.467

http://www.statistica.uniroma1.it/users/pfrancio/homophily/
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edge z-scores is close to be constant (varying from 340k to 460k edges per second), confirming the asymptotic 
complexity O(n+m)—assuming the number of colors is constant.

An efficient computation of singleton z-scores requires some more care. Expression for var(Li) in point 3) 
in Theorem 1 requires O(n3) time to be computed. Actually, it can be manipulated (details are discussed in the 
Appendix), so that the complexity of computing var(Li) for each color i is lowered to O(nm). More precisely, its 
complexity is strictly related to the number of pairs of nodes at distance 2, which in turns is bounded by π3 , i.e. 
the number of P3 ’s in the graph. It is immediate to see that

The sum of squared degrees for all experimented networks is reported in Table 4, where it is confirmed to be 
proportional to computing times for singleton z-scores (with a ratio varying from 28k to 61k P3 ’s per second).

Numerical results. In order to have a pictorial quantitative perception of homophily and heterophily in 
the considered networks, we present matrix Z of the z-scores of the intra- and inter-community edges (see 
“Assessing and measuring homophily” section) in the form of heat-maps. Color scale is logarithmic on z-scores, 
traslated in order to avoid negative values. Each entry of Z corresponds to a square in the diagram. Green squares 
corresponding to entry i, j represent positive z-scores, while pink squares represent negative z-scores. Results 
related to PPI networks are shown in Fig. 1. Homophily of PPI’s with respect to their functional description is 
clearly readable from all the heat-maps by the green squares in all diagonals—showing the relative intra-com-
munity density—except for the poorly characterized X function class. A majority of off-diagonal z-scores are 
negative (more than 79.6%), while diagonal z-scores tend to show very high values. As a global result, neglecting 
all i, j pairs where either i = X or j = X , we recap that:

• the average value of the diagonal entries Z is 36.26, with standard deviation 49,85, ranging from a − 0.3183 
minimum to a 326.6 maximum;

• more than 91% of diagonal entries Z are greater than 5;
• the average value of off-diagonal entries Z is − 0.836, with standard deviation 3.707, ranging from a − 5.983 

minimum to a 55.67 maximum;
• more than 65% of off-diagonal entries Z are less than − 1.

Concerning the off-diagonal entries of Z (namely, those corresponding to inter-community edges) it is worth 
noting that some classes show significant values, highlighting a unexpected heterophily although in most cases 
the associated classes belong to close functional classes such as class J, K and L, that can be grouped in the higher 
category Information, storage and processing.

In particular significant heterophilic z-scores are reported, in most of the organism networks, for classes J-L 
and class J-U representing Translation, ribosomal structure and biogenesis (class J), Replication, recombination 
and repair (class L) and Intracellular trafficking, secretion, and vesicular transport (class U). These heterophilic 
relationships can be considered reasonable from a biological point of view, since nodes associated to protein 
synthesis in the ribosome (class J) are related to nodes involved in DNA replication (class L) and also to intra-
cellular transport (class U) according to the mechanics of protein biosynthesis (when DNA is transcribed, the 
resulting RNA copy is transported to the ribosome and after translation the protein can be transported away 
from the ribosome and onto the relevant part of the cell). These results provide consistency to our work as a 
real-world validation of our method.

To have a global and comparative glimpse of the whole scenario concerning PPI, we isolated the diagonal 
entries of Z and plotted them in Fig. 2 on a different scale.

A large majority of z-scores (diagonal) shows very high values corresponding to extremely significant devia-
tion from expected ones. As expected, the exception regards last column related to X class (Function unknown or 
General function prediction only) showing z-score values typically negative including very small values (− 14 for 
Saccharomyces cerevisiae, − 7 for Pyrococcus abyssi and -6 for Escherichia coli) with only two organisms showing 
positive values (0.44 for Mycobacterium tubercolosis and 1.9 for Vibrio cholerae) (Fig. 2). This typical scenario is 
consistent with what we could expect from a biological point of view, since it is reasonable that proteins, envolved 
in a common task, could on average preferentially interact or be close to each other in the PPI. Proteins belong-
ing to X class do not share a common task since in most of cases they are not associated to any given functional 
class, so it is reasonable that they are not likely to interact with each other. Some functional classes seem to show 
extremely high values, shared among almost all the organisms. It is evident for class J (Translation, ribosomal 
structure and biogenesis) showing the highest values, reaching huge z-scores (335 for Escherichia coli, 280 for 
Mycobacterium tubercolosis) always higher than 124. Also class N (Cell motility) shows extremely high z-score 
values reaching 229 for Brucella mellitensis and 206 for Escherichia coli, with the only exception of Mycobac-
terium tubercolosis—2.47—that is anyway more than two standard deviations greater than the expected one. 
Genes coding for proteins in bacteria are known to typically occur phisically close on chromosome, according 
to the operon paradigm, and it was shown, consistently with our findings  (see21), that especially genes coding 
for proteins envolved in translation and cell motility task are very close to each other, favoring their syncronous 
transcription and the interaction of their protein products.

As for the Pokec social network, results are presented in a completely analogous manner: see Fig. 3 for the 
heat-maps, while in (4) we isolated the diagonal elements.

π3 =
1

2

∑

v∈G
(degG(v))

2 ≤
1

2

∑

v∈G
(degG(v))

2
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As expected Pokec shows a significant homophilic beahavior with respect to the considered node attribute, 
age class, as reported in Table 3.

All diagonal z-scores, excepting class X (no age or non reliable value), reported in Figs. 3 and 4 show highly 
significant positive values, ranging from an astonishing value around 500 for class C ([12–18) years old) and 

Figure 1.  Heat-maps corresponding to Z matrices of the ten organism PPI networks. Diagonal entries 
correspond to intra-community edges z-scores, while off-diagonal entries correspond to inter-community edges 
z-scores. Values in the color scale have been cut to interval [−10, 60].
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around 200 for class D ([18–25) years old) till around 50 for classes E ([25–40) years old) and F ([40–60) years 
old). Diagonal z-score associated to class X is very close to 0, meaning that users that do not report their age 
(or report a non reliable age) do not interact with each other. They prefer to have relationships with other users 
reporting an age belonging to class C and D (showing positive values in the heat-map Fig. 3), while they do not 
interact with users belonging to class D and E. It can be hypothesized, if we trust in the homophilic nature of 
social network with respect to age, that most of those users (not reporting their age) have an age belonging to 
classes C and D.

To complement the analysis, we also computed vector z0 . Recall that the i-th entry of such vector is the z
-score of the number of isolated nodes in the subgraph induced by color i (functional class for the PPI and age 
class for Pokec). As explained in “Homophily, heterophily and isolated nodes: first and second order moments” 
section, although correlated with the intra-community densities (as confirmed for PPIs in Fig. 7: the higher the 
density, the lower the likelihood to find isolated nodes), the entries of z0 provides a measure of the concentration 
of the intra-community edges within color classes and, as expected, they are typically negative, consistently with 
what they represent. A negative entry means that subgraph induced by the corresponding functional classes for 
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Figure 2.  z-score intra-community density values (diagonal entries of Z ) of each functional class (x-axis) are 
reported in different colors (each color representing a different organism as indicated in the top right legend of 
the plot).

Figure 3.  Heat-map corresponding to Z matrix of Pokec social network. Values in the color scale have been cut 
to interval [−100, 100].
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the PPI and age class for Pokec contains less isolated nodes that expected. As can be observed in both Figs. 5 
and 6, except for the X class which shows a z-score value close to zero for Pokec and few values close to zero z
-scores associated to all other classes assume very low (negative) values (around 75% of values are smaller than 
−5, around −140, for class C and D and around −80, and −60, for class E and F in Pokec), that can be considered 
extremely significant from a statistical point of view.

Finally, as we said in “Homophily, heterophily and isolated nodes: first and second order moments” 
and “Assessing and measuring homophily” sections, the entries of the p-values arrays 1/Z2 and 1/z20 (obtained 
simply by squaring the reciprocal of the entries of the z-score arrays) can be rather loose estimates of the cor-
responding true quantiles. In this respect our method is rather conservative. Nonetheless, as shown in Fig. 8, 
a large majority of p-values entries are under the threshold of 0.05, which is usually considered as reliable (for 
individual testing) with the exceptions already discussed above.
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Figure 4.  Diagonal z-score values related to age class.
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representing a different organism as indicated in the top right legend of the plot).
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Conclusions and discussion
In this paper we presented a new approach to assess and measure homophily in networks. The model, described 
in “Assessing and measuring homophily” section, relies on computing

• the z-scores of mi,j , the number of edges with one endpoint in functional class i and the other endpoint in 
functional class j (with possibly i = j),

• the z-scores of li , the number of nodes in functional class i with no neighbours in class i,

under the hypothesis that these numbers are samples from the corresponding random variables Mi,j and Li under 
the random coloring model (�(c),Pn,c) (the null model). These z-scores are either directly interpreted as a refined 
measure of network homophily (through heat-maps) or serve as the basis either for more synthetic measure via 
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Figure 6.  z0 values (y-axis) of each age class (x-axis) are reported.
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multiple testing or via the significance level of the Euclidean distance between the observed intra-community 
densities and the expected ones under the random coloring model. The idea of random coloring is implicit  in14 
from which we also borrowed terminology. As a result, we extended their model to an arbitrary number of colors 
and made it computationally efficient and also quantitative (via the z-score). The method is clearly applicable to 
any kind of network and to any of its functional description. Different networks with the same functional descrip-
tion can also be compared directly. Moreover, we noticed that the coefficients of variations of the Mi,j ’s and Li ’s 
are invariant for the pair (G, c), where G is the network and c is the profile of the functional description g of G.

Obtained results provide evidence of the strong homophilic nature of PPIs, in terms of protein function, and 
of Pokec social network, in terms of age classes, making our method reliable and affordable since homophilic 
nature of PPIs and social networks is something expected and known to some extent.

Network homophily is directly linked to network communities and to the paradigm of Guilt By Association 
(GAS)22. According to this paradigm, attribute of a given node can be inferred by analyzing the attributes of its 
 neighbours23,24. In this view assessing and measuring network homophily can be extremely significant for the 
applicability of the GAS paradigm, allowing to classify nodes according to neighbor attributes. The analysis of Z 
matrix in Pokec network can provide an example of how GAS paradigm can be concretely applied. Users belong-
ing to X class (age not reported or non reliable) are significantly close (according to the values of entries of Z 
matrix) to classes C and D, showing an heterophilic behavior while they are not close to users of classes D and E. 
This leads to hypothesize that users of class X could have, even if they did not report it, an age associated to class 
C or D. It is worth noting anyway that in some networks, in particular in PPIs, node attributes can be already 
classified through GAS paradigm, leading to a bias or to a tautological analysis, generating a circular argument.

Concerning PPI networks, comparison of Z matrices shows that the homophilic behavior is not linked to 
evident stronger similarity among close related species (also Saccharomyces cerevisiae and Pyrococcus abyssi 
show similar homophilic/heterophilic z-scores), so that homophilic behavior can be considered as an intrinsic 
characteristic of PPIs. Interestingly, some functional classes are more associated than expected showing an het-
erophilic behavior, especially classes J, K and L, that can be grouped in the higher category “Information, storage 
and processing”. Another significant z-score highlights heterophily in most of organism networks with respect 
to classes J and U representing “Translation, ribosomal structure and biogenesis” (class J) and “Intracellular 
trafficking, secretion, and vesicular transport” (class U) respectively.

The model has been implemented in Python, and experimental results confirm that the computational com-
plexity of the proposed model is optimal for edge density computation, requiring O(n+m) time to compute the 
Z matrix. Computing the z-score of the number of i-isolated nodes is more time consuming, requiring O(nm) 
time, but experiments show that it is still efficient in practice for sparse large networks.

In conclusion we are confident that this work can provide a significant contribution allowing to assess and 
measure, through a robust statistical method, homophily in networks.
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