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Theoretical analysis 
of the deformation for steel gas 
pipes taking into account shear 
effects under surface explosion 
loads
Tingyao Wu1, Hongan Yu2, Nan Jiang1*, Chuanbo Zhou1 & Xuedong Luo1

Ground blast loads are of great importance to the safe operation of steel and gas pipelines, and the 
results obtained from traditional theoretical formulas for pipeline safety prediction are in error with 
the actual measured data. In this paper, full-size field tests and corresponding numerical simulations 
are carried out using Timoshenko beam theory and explosion stress wave theory, which consider shear 
effects. At the same time, combined with the theory of foundation stiffness and pipeline stiffness 
flexibility ratio, a modified theoretical model is obtained in line with the actual conditions of the site, 
which can accurately calculate the deformation and displacement of pipeline underground explosion 
load, and greatly reduce the error of theoretical prediction results. The innovation of the research 
results in this paper is that the theoretical stress in the Timoshenko beam can be replaced by the 
circumferential strain. On the other hand, the modified theoretical solution can obtain the critical 
weight of explosives to prevent pipeline damage at different buried depths. It provides a theoretical 
basis for the protection of pipelines’ underground blast loads and provides research ideas for the safe 
protection and design of pipelines.

As the main way of oil and gas transportation, buried pipelines with different diameters play a huge role in 
the field of energy transportation, and their structural safety is of great concern1–3. However, with the further 
increase in urbanization, leading to a denser network of buried pipelines, the safety, and protection of pipelines 
is known as an increasingly important issue4–6. In addition, some military operations and civilian production 
tend to increase the potential for explosive damage to in-service pipelines7,8. At the same time, the potential for 
terrorist attacks has increased in some areas, even with several explosions along oil and gas pipelines9. Meanwhile, 
after a detailed investigation, it was found that in recent years, third-party damage is the main cause of buried 
pipeline failure and has caused serious accidents10. Therefore, it is important to study the damage characteristics 
of pipelines under blast loading.

For the study of pipelines under blast loads in the past few decades, there have been many experimental and 
theoretical studies on buried pipelines subjected to ground explosive loads11–13. As an example, Zhang et al.14 used 
numerical simulation to study the effects of different factors on pipeline safety, such as the weight of explosives, 
the horizontal distance of explosives from the pipe, and the burial depth of the pipeline. Song et al.15 selected 
the X70 pipe for field blast testing and obtained four different failure modes based on the deflection and damage 
level of the pipe, including (a) mode 1 is a large elastic–plastic deformation in the central region; (b) mode 2 is 
the outer surface of the pipe undergoes large plastic deformation, and becomes thinner in the central region; (c) 
mode 3 is where both the outer and inner surfaces of the pipe are slightly torn in the central region; (d) mode 
4 is where both the front and rear parts of the pipe are completely torn. Based on the work of Mishra et al.16 
and Zhang et al.17, the damage was normalized into local damage criteria and overall failure criteria according 
to the damage model. On the other hand, the deflection-to-span ratio damage criterion was used to assess the 
degree of damage to underground pipelines, and the damage to pipelines can be classified into the following 
four categories, including (a) minor damage; (b) moderate damage; (c) severe damage and (d) collapse. By the 
example of the work of Bambach et al.18, who used laboratory studies to analyze metal beams under transverse 
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blast loading, focusing mainly on the solid metal deformation part. In addition to laboratory studies, theoreti-
cal studies are also highly preferred by researchers, some authors such as Abedi et al.19 have used a theoretical 
analytical method to find the beam deflection under the effect of the blast wave. What’s more, Olarewaju et al.20 
conducted an analytical and numerical study of the static and dynamic response of buried pipelines under blast 
loading. Meanwhile, some studies have investigated pipe fracture characteristics in addition to simple deforma-
tion studies, such as Mirzaei et al.21, who analyzed the dynamic fracture of pipes under internal blast loads by 
numerical simulations and experiments.

It is clear from the above analysis that despite the extensive use of experimental and analytical methods in 
the literature, numerical simulation analyses cannot be neglected because they can provide valuable informa-
tion on the response details of structural members with more complex material properties22–24. Recently, many 
scholars have used numerical simulation software such as ABAQUS, LS-DYNA, and AUTODYN to study the 
effect of blast loading on pipelines, and more detailed dynamic response parameters were obtained, which could 
not be obtained experimentally25–27. However, these pieces of literature are not systematic enough for the study 
of the dynamic response parameters, and the numerical simulation software has more parameters, in which it 
is difficult to find many studies containing the correspondence between field tests and numerical simulations. 
However, it is worth mentioning that the post-damage motion of explosive fragments is very important in the 
dynamic analysis of structures, while it is difficult to quantify the material properties at the time of deformation 
and damage, the deformation of pipelines has been difficult to predict so far.

In addition, the research on blasting parameters and pipeline parameters is not comprehensive enough, and 
there is not enough theoretical explanation on how to apply dynamic response characteristics to pipeline safety 
protection. More importantly, many of the methods used to analyze the numerical simulation response data are 
not sufficiently comprehensive and accurate, and the failure modes of buried pipelines of different diameters 
and burial depths under surface explosive loads have not been adequately investigated. In addition, most of 
the numerical simulations are commercial software and the research results are similar. Therefore, this paper 
introduces a theoretical analysis approach, which has the advantage that the safety criterion model for pipelines 
under different surface explosive loads can be studied by combining the theoretical analysis approach with 
damage discrimination criteria.

On the basis of the above analysis, this paper considers the impact of surface explosion load on the pipeline, 
at the same time, multiple dynamic response parameters are analyzed, and the buckling damage of the buried 
pipeline is evaluated based on the theoretical analysis method. The field tests and numerical calculation model 
on full-size X42 (L290) steel pipes were designed and carried out under surface explosive loads. Meanwhile, the 
relevant parameters of the numerical model were well verified by comparing the field data with the numerical 
simulation data. At the same time, combined with Timoshenko beam theory considering the shear effect and 
flexible ratio theory of foundation stiffness to pipeline stiffness, the vertical displacement prediction equation 
of pipeline is modified. More importantly, the field tests were generally well reproduced, which also further 
investigated the flexural damage of buried pipelines under the action of the ground blast. Finally, the effects of 
burial depth and explosive level on different dynamic characteristics of the pipeline are discussed in conjunction 
with the least-squares approach, and the maximum vertical displacement of the pipeline is well predicted, and 
the theoretical analysis results reflect the key phenomena well.

Material and methods
Theoretical model calculation method for initial impact pressure.  When the explosive is deto-
nated, the blast stress wave will be along the free surface of the direction of rapid propagation impact around 
the rock body. When the blast stress wave reaches the interface between air and rock, the external force acting 
on the rock interface is the initial impact pressure. Many impact pressure equations28–30 for explosives have been 
introduced and the initial impact pressure can be used to express the pressure of the blast stress wave, as shown 
in Eq. (1):

where P0 is the role of the explosion pressure, ρ0 is the density of the explosion, D is the speed of the explosion, 
β is the adiabatic expansion index of the products of the explosion, is taken as 3.0. When the surface explosive 
is detonated, the blast shock wave and stress wave will produce a fragmentation zone, fracture zone, and elastic 
zone around the center of the explosive. The values of the shock and stress waves decrease as the blast time 
increases. The curves of shock and stress waves with the blast time are in the form of an exponential function. 
The attenuation coefficient is as shown in Eqs. (2)–(3).

where μs is the Poisson’s ratio of the soil. The stress wave reaches the outer edge of the fracture zone and then 
enters the elastic zone. In the elastic zone, the stress wave action only produces elastic vibration, the explosion 
pressure as shown in Eq. (4):

(1)P0 =
ρ0D

2

2(β + 1)

(2)m1 = 2+
µs

1− µs

(3)m2 = 2−
µs

1− µs
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where Pe is the explosion pressure at the boundary of the elastic zone, rb is the radius of the package; rc and rf 
are the radius of the fracture zone and the radius of the elastic zone, respectively, the radius of the fracture zone 
caused by conventional explosives rc is 3–5 times the radius of the package, the radius of the elastic zone rf is 
10–15 times the radius of the package31, in this paper, rc = 3rb, rf = 11rb.

Assuming that the stress wave propagates to the peak explosion pressure at point G of the pipe is PG:

Due to the symmetry of the pipe with the blast load, only half of the load acting on the pipe is considered. 
Also ignoring the axial load component of the pipe (Z direction in Fig. 1), the blast load q(x) acting on the pipe 
can be expressed as Eq. (7):

Theory of longitudinal deformation of pipes considering shear effects.  As mentioned above we 
have mainly discussed the propagation characteristics of blast stress waves in the soil. When the surface of a pipe 
is subjected to a transverse shock wave, the deformation of the pipe belongs to the dynamic bending problem 
of the pipe, which can be described by the treatment of vibration or by the treatment of fluctuations, where the 
fluctuations are called bending waves. Meanwhile, bending waves are the consequence of the joint coupling of 
interdependent bending moment perturbations and shear perturbations, in which the shear effect is already 
included. In contrast to the role of shear in the quasi-static response of a pipe, the study of the dynamic response 
of a pipe subjected to transverse impact loads plays a more important role due to the inclusion of transverse 
inertia shear in the set of control equations. The explosion of the upper ground surface causes a concentration 
of stress, which in turn causes bending and deformation of the pipe below. To simplify the calculations, the fol-
lowing assumptions are made in the calculation model in this paper: (1) the pipe is assumed to be a Timoshenko 
beam with shear effects; (2) pipe–ground interaction is considered through the Winkler foundation model; (3) 
soft ground creep and drainage consolidation are not considered. The calculation model was solved using the 
commonly used two-stage analysis method32–34. Firstly, the additional distributed load on the pipe caused by 
surface explosive blasting is calculated by the blast stress wave mechanics equation; secondly, the finite differ-
ence method is used to establish the analytical solution for the longitudinal deformation of the pipe under the 
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Figure 1.   Schematic diagram of the forces on the pipe.
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additional distributed load. Figure 3 shows the model for calculating the effect of the surface blast on an underly-
ing pipe. The surface explosive blast results in a concentration of stress in the existing ground, which causes an 
additional vertical distributed load q(x) to be applied to the pipe, as shown in Fig. 2. The additionally distributed 
load q(x) is obtained by solving for "Theoretical model calculation method for initial impact pressure" section.

Under the additional load q(x), the equilibrium differential equation for the Timoshenko beam on Winkler 
foundations concerning vertical displacement w(x) and angle of rotation θ can be obtained as shown in Eq. (8).

where: EIeq is the longitudinal equivalent bending stiffness of the pipe, (κ′GA)eq is the equivalent shear stiffness 
of the pipe, Dt is the diameter of the pipe, k is the foundation reaction coefficient, and q(x) is the additional load 
caused by the surface explosion.

Where t is the wall thickness of pipe:

For the vertical bearing soil springs, based on the work of the Federal Emergency Management Agency 
(FEMA) and the American Society of Civil Engineers (ASCE)35, the maximum vertical upward soil bearing 
capacity Qd can be obtained.

where: Nc, Nq, Nγ are bearing capacity factors, γ is the total unit weight of soil, γ′ is the effective unit weight of 
soil, ∆qd is vertical displacement to develop Qd, c is soil cohesion, Dt is the diameter of the pipe, H is the depth 
of cover to the pipe centerline.

(8a)−
d

dx

{

(k′GA)eq

[

dw(x)

dx
− θ

]}

+ q(x)Dt = kDtw(x)

(8b)(EI)eq
d2θ

dx2
+ (k′GA)eq

[

dw(x)
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− θ

]

= 0

(9)(EI)eq = EI I =
t3

12
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′HDt + Nγ γ
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2

Figure 2.   Calculation model for the impact on the pipeline.

Figure 3.   Discrete diagram of the pipe.
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where ∆qd is displacement at Qd, ∆qd = 0.2D.
Decoupling Eq. (8), we can obtain the differential equations for the vertical displacement w(x) and the angle 

of rotation θ, respectively.

The longitudinal deformation of the existing pipe under the additional load q(x) caused by the blasting of 
the explosive at the surface can be obtained by solving Eq. (11a). As Eq. (11a) is a fourth-order ordinary dif-
ferential equation, there is some difficulty in solving it mathematically. To simplify the calculation, the finite 
difference method is used to solve the equation. Figure 3 shows the discrete diagram of the pipe. The pipe is 
discretized into n + 5 nodal units (including 2 dummy nodal units at the ends of the pipe), each with a length 
of l (0.2 m). According to the standard finite difference principle, the finite difference form of the differential 
terms of Eq. (11a) is as follows.

where: wi is the vertical displacement of nodal unit i, and qi is the additional load at nodal unit i. Substituting 
Eqs. (12a)–(12c) into Eq. (11a), the finite difference expression for the Timoshenko beam on Winkler founda-
tions is obtained as follows in Eq. (13).

Assuming that the pipe is free at both ends, the bending moment M and the shear force Q at both ends of 
the pipe are 0.

Equation (15) can be obtained from Eq. (8b).

Taking one derivative of Eqs. (8a), (16) and (17) can be obtained.

Combining Eqs. (15)–(17), (14b) can be written as Eq. (18).
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2
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2

)
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Taking the differential form of Eq. (18), the differential expression for the shear force Q at each end of the 
pipe can be obtained as shown in Eq. (19).

Equation (20) can be obtained from Eq. (8a).

After substituting Eq. (20) into Eq. (17), we can obtain Eq. (21).

Equation (22) is obtained from Eqs. (21a)–(21b).

Substituting Eqs. (22a)–(22b) into Eqs. (19a)–(19b), we can obtain Eq. (23).

Equation (13) can be written in matrix form as shown in Eq. (24).

where: [K1] is the displacement stiffness matrix of the pipe, [K2] is the shear stiffness matrix of the pipe, [K3] 
is the flexural stiffness matrix of the pipe, {w} is the vertical displacement column vector of the pipe, Q1 is the 
additional load column vector of the pipe, Q2 is the load correction column vector of the pipe, and Q3 is the 
supplementary vector of the pipe for the solution.

Field tests.  The full-scale field tests were conducted at the field test site where the explosives were placed 
on the ground surface directly above the center of the pipe, and the sketch of the experimental setup is shown 
in Fig. 4. The explosion load was caused by the explosion of No.2 rock emulsion explosive, in the study of field 
testes, the weight of the explosive was varied from 0.1 to 0.3 kg to achieve different explosion loads, in which the 
peak particle velocity (PPV) and displacement of both the pipe and the surface were recorded. The full-scale field 
tests scheme is shown in Table 1. The field test procedure is shown in Fig. 5.

Computational model.  Explosion mechanics is a nonlinear problem, which is very difficult to study the 
buckling damage of buried pipes subjected to surface explosive loads using analytical calculations. Therefore, 
the numerical simulation is more suitable to solve this problem36. The schematic diagram of the computational 
model is shown in Fig. 6. In this paper, the inner diameter of the steel pipe is 1000 mm with a wall thickness of 
10 mm, which is a typical size of an oil and gas transmission pipeline. The type of steel pipe is X42(L290), which 
means its yield stress is 290 MPa37. Meanwhile, the burial depth of the pipe is the same as the field test, and the 
No. 2 rock emulsion blast load is used to simulate the ground explosion. The dimensions of the whole computa-
tional model are 10 m × 4.8 m × 6.0 m in the X, Y, and Z directions, respectively.
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Figure 4.   Schematic diagram of the full-scale field tests.

Table 1.   Scheme of full-scale field tests.

Number of test case 1 2 3 4 5

Weight of explosives/kg 0.1 0.15 0.2 0.25 0.3

Figure 5.   Procedure of the field tests.
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In this paper, the behavior of materials is modeled using various nonlinear material models and equations of 
state. These material models and equations of state are briefly described below. Before the explosion is detonated, 
the material model for the No. 2 rock emulsion explosive can be described as HIGH_EXPLOSIVE_BURN. After 
the explosion, the No. 2 rock emulsion explosive exhibits gaseous properties and it is modeled using the JWL 
equation of state, which describes the pressure resulting from the expansion of the chemical explosive explosion 
products. It can be written as shown in Eq. (25) below38.

where p is the pressure of the explosive, E1 is the internal energy per unit volume of explosive, and V1 is the 
relative volume of the explosive. The values of the constants for many common explosives, such as A, B, R1, R2, 
and ω, are determined by dynamic experiments. The values used for the explosive state parameters and the JWL 
equation are listed in Table 2.

The mechanical behavior of soils and rocks is described by the *MAT_PLASTICITY_POLYMER material 
model, the physical parameters of the soil and rock are shown in Table 3.

The solid elements are applied to the explosives, soil, rock, and pipeline areas. The interface between the pipe 
and other materials is simulated using a fluid–solid coupling algorithm. Except for the free surface at the top 
of the air zone, the infinite layer is simulated using non-reflective boundary conditions to avoid reflective wave 
perturbation results.

Results
Model validation.  As shown in Table 1, the different weights of No. 2 rock emulsion explosives were placed 
on the ground surface directly above the pipe, and the PPV of the pipe and ground surface were counted and 
compared with the above numerical simulation results, as shown in Fig. 7. The velocity of the pipe increased as 
the weight of the explosive increased, and most of the numerical simulation results were smaller than the field 
test results, meanwhile, the waveform variation of the vibration velocity at the same time is consistent. This is 
because the influence of soil joints on wave propagation is not considered in numerical simulation, and the 
refraction and reflection of wave joints in the soil increases the amplitude of waves on the pipeline surface. At 
the same time, it is easy to see from the waveform of the model that the variation trend between the two curves 

(25)p = A

(

1−
ω

R1V1

)

e−R1V1 + B

(

1−
ω

R2V1

)

e−R2V1 +
ωE1

V1

Figure 6.   Schematic diagram of the computational model.

Table 2.   Parameters of explosives materials.

Density/(g/cm3) Velocity of detonation/(m/s) Pressure of detonation/GPa A/GPa B/GPa R1 R2 E0/GPa

1.09 3600 3.24 234.4 0.182 4.2 0.9 4.192

Table 3.   Physical and mechanical parameters of steel pipeline and soil and rock.

Type γ′/(N m−3) γ/(N m−3) E/GPa G/GPa μ C/MPa φ/(°) σs/MPa

Steel pipe 9500 – 210 79 0.35 – – 290

Silty clay 19,800 25,000 0.62 4.3 0.35 0.65 25 –

Sandstone 26,800 – 52.00 11.2 0.25 5.500 43 2.580
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is consistent, indicating that the parameters of the numerical model are in line with the actual engineering prac-
tice. Also, on closer inspection of Fig. 7c, it is not difficult to find that the error between the numerical simula-
tion results and the field test results decreases as the weight of the explosive increases. This is because with the 
increase of the weight of explosives, the velocity amplitude of blasting vibration wave becomes larger and larger, 
and the velocity error on the pipeline caused by the wave’s reflection becomes smaller and smaller gradually. 
Therefore, the parameters of the numerical model are available to study the buckling effect of the pipe under the 
surface explosion load, while the numerical simulation results are more accurate and reliable when the weight 
of the explosive is larger.

However, based on the maximum vertical displacement of the pipe in Fig. 7d, it can be seen that the numeri-
cal simulation results are very close to the field test results, while on the contrary, the difference between the 
theoretical results and the other two curves is surprisingly large. This is because a certain parameter in the 
theoretical model leads to large stress on the pipeline, resulting in a large displacement of the pipeline. After 
comparing with the field data, it is not difficult to find that such a result is not accurate, so the force acting on the 
pipeline should be further analyzed and solved. Therefore, the theoretical solution process needs to be further 
modified before it can meet the need to fit the safety prediction equation of the pipeline regarding the weight of 
explosives in the actual project.

Discussion
Correction of theoretical equations.  The relative stiffness of the pipe to its embedded medium affects 
the stress concentration in the restrained structure. For all practical purposes, a restrained structure should be 
considered fully flexible when the ratio of the flexibility of the pipe to the flexibility of the ground is greater than 
1039, which is named the flexible ratio theory of the foundation stiffness to the pipe stiffness. For pipelines, the 
flexibility ratio J of the foundation stiffness to the pipe stiffness is defined by Eq. (26):

Figure 7.   Comparison of field measured data and numerical simulation: (a) field test results of D1, (b) 
numerical simulation results of D1, (c) PPV of ground and pipe, (d) comparison of results of the field test and 
numerical simulation with a theoretical solution.
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where Es and E are Young’s modulus of the ground and the pipe, μs and μL are the Poisson’s ratio of the ground 
and the pipe respectively, r is the radius of the pipe and I is the rotational inertia of the pipe.

Combining Eq. (26) we can obtain Eq. (27):

Rigas and Sebos40 show that the steel pipe should be considered fully flexible compared to the ground, as the 
flexibility ratio of ground to pipe stiffness is more than 100 times. The worst-case strains and stresses due to pipe 
explosions occur in bending and tensile strains parallel to the pipe axis and perpendicular to the circumferential 
stresses. These can be calculated by the following Eq. (28)39:

where V0 is the peak particle velocity, ε is the strain, b is the bending direction, S is the stretching direction, C 
is the circumferential direction, Cs and Cl are the propagation velocities of shear and compressional waves, and 
Fv is the wave frequency.

By using the biaxial equation41, the circumferential and axial (longitudinal) stresses can be calculated from 
strains as follows.

Using Eq. (29b), we can obtain the stresses on the pipe from the surface blast load, which consists mainly of 
axial and circumferential stresses. Of these, it is the circumferential stresses that should apply to Timoshenko’s 
theory, so the Sc calculated in Eq. (29b) is substituted for q(x) and its value is brought into Eqs. (21)–(24), which 
allows the value of the longitudinal deformation of the existing pipe under surface blast loading to be solved in 
this way, as shown in Fig. 8. As can be seen in Fig. 8, the modified theoretical solution is close to the field test 
results and numerical simulation results, and the trend of both three curves is the same. At the same time, it can 
be seen from Fig. 8 that the maximum displacement of the pipe in the numerical simulation result is similar to 
that in the field test result, and with the increase of the weight of the explosive, the displacement of the pipe has 
little difference and fluctuates in a small range, while the theoretical solution is lower than the field test results, 

(26)J =
Es/(1+ µs)
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(
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Figure 8.   Comparison of results of the modified theoretical solution and field tests and numerical simulation.
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mainly because the theoretical equation calculation ignores the problems that can occur during wave propagation. 
Moreover, this problem is mainly related to the secondary dissipation of wave energy caused by reflection and 
refraction. But in any case, the overall error between the three is low and the maximum error does not exceed 
12.9%. However, by comparing Fig. 7d, it can be seen that it is significantly improved, and its maximum error 
is less than 15%, so the modified theoretical solution can be used for the solution of the pipeline safety criterion 
model under surface explosive loads.

Model for pipeline safety criteria under surface explosive loading.  The safety of underground 
pipelines is influenced by many parameters, and damage criteria regarding pipelines can be divided into force 
yield damage and deformation damage40,42–45. In this paper, the damage criterion of deflection to span ratio is 
used to assess the extent of damage to the pipeline in surface explosive loading, as shown in Table 4.

Through the validated theoretical calculation model, the pipeline safety criterion model under different 
surface explosive loads was derived, while the maximum vertical displacement change of the pipeline under 
surface explosive loads under different working conditions was studied, as shown in Fig. 9. Meanwhile, it is easy 
to notice that the main changes in Fig. 9 are the weight of the explosive above the pipe and the burial depth of 
the pipe. In addition, after fitting the curve where Fig. 9b is located, the prediction formula for the critical value 
of the weight of the explosive to prevent pipeline damage under different burial depths is obtained as shown in 
Eq. (30). In addition, it is not difficult to find through Fig. 9a that when the burial depth of the pipe is greater than 
or equal to 3 m, the maximum vertical displacement of the pipe varies slightly, and the displacement of the pipe 
decreases linearly with a small slope as the weight of the explosive increases. However, as the burial depth of the 
pipe decreases, the maximum vertical displacement of the pipe gradually increases. In addition, when the burial 
depth of the pipe is less than or equal to 2 m, the maximum vertical displacement of the pipe increases with the 
increase of the maximum weight of the explosive, and the function form of the fitting curve is the exponential 
function. This is due to the buffering effect of the soil on the blasting seismic waves generated by the surface 
explosives, and the fact that thicker soils contain more joints and fissures, which have an absorbing effect on the 
blasting seismic waves. Moreover, as the soil depth increases, the blasting seismic wave is constantly refracted and 
reflected and gradually decreases, thus resulting in a greater vertical maximum displacement of the pipe when 
the depth of burial is greater. What’s more, the critical weight of explosives to prevent damage to the pipeline 
increases exponentially with the increase in the depth of burial of the pipeline. Meanwhile, it is also interesting 
to note that when the depth of burial is less than or equal to 2 m, the critical weight of the explosive does not 
change much, but as the depth of burial increases, the critical weight of the explosive increases exponentially.

(30)Qc = 39.353 ∗H(2.8723) + 100
(

R2 = 0.86
)

Table 4.   Damage criteria for different levels.

Damage level Slight damage Moderate damage Severe damage Collapse

Deflection-span ratio  < 1/200 1/200–1/100 1/100–1/50  > 1/50

Displacement/mm  < 5 5–10 10–20  > 20

Figure 9.   Change of maximum vertical displacement of the pipeline under surface explosive loads under 
different working conditions.
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Conclusion
The theoretical study of the deformation of pipelines by surface blast loads has been a hot topic of research at 
home and abroad. In this paper, combining Timoshenko beam theory and the elastic ratio theory of founda-
tion stiffness to pipeline stiffness, the modified theoretical model in line with the actual situation in the field 
is obtained, and the deformation laws and safety guidelines of different types of pipelines under the action of 
surface blast loads are studied according to this theoretical model.

The model for calculating the pipe displacement without considering the flexible ratio theory of foundation 
stiffness to pipe stiffness is far from the numerical simulation results and field test results, while when applying 
the theoretical stresses in the Timoshenko beam, the original stress was replaced with circumferential stress, 
the modified theoretical solution is close to the field test results and numerical simulation results. Meanwhile, 
the validated theoretical calculation model resulted in a model of the pipeline safety criteria for different sur-
face explosive loads, while the maximum vertical displacement of the pipeline increased exponentially with the 
weight of the explosive at different burial depths. More importantly, when the burial depth is greater than 2 m, 
the change in critical weight of the explosive varies dramatically with increasing burial depth, so it is recom-
mended that for better protection against damage from surface blast loads, the recommended burial depth of 
the pipeline is at least 2 m.

The model proposed in this paper only considers the impact of the explosion load above the vertical surface 
of the pipeline on the pipeline displacement but does not consider the impact of explosives buried in the soil or 
different horizontal distances on the pipeline displacement prediction formula. Moreover, it provides a theoretical 
basis for the protection of pipelines’ underground blast loads and provides research ideas for the safe protection 
and design of pipelines.

Data availability
All data generated or analyzed during this study are included in this published article.
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