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Brain tumor image generation 
using an aggregation of GAN 
models with style transfer
Debadyuti Mukherkjee 1,4, Pritam Saha 2,4, Dmitry Kaplun 3*, Aleksandr Sinitca 3 & 
Ram Sarkar 1

In the recent past, deep learning-based models have achieved tremendous success in computer 
vision-related tasks with the help of large-scale annotated datasets. An interesting application of deep 
learning is synthetic data generation, especially in the domain of medical image analysis. The need for 
such a task arises due to the scarcity of original data. Class imbalance is another reason for applying 
data augmentation techniques. Generative Adversarial Networks (GANs) are beneficial for synthetic 
image generation in various fields. However, stand-alone GANs may only fetch the localized features 
in the latent representation of an image, whereas combining different GANs might understand 
the distributed features. To this end, we have proposed AGGrGAN, an aggregation of three base 
GAN models—two variants of Deep Convolutional Generative Adversarial Network (DCGAN) and a 
Wasserstein GAN (WGAN) to generate synthetic MRI scans of brain tumors. Further, we have applied 
the style transfer technique to enhance the image resemblance. Our proposed model efficiently 
overcomes the limitation of data unavailability and can understand the information variance in 
multiple representations of the raw images. We have conducted all the experiments on the two 
publicly available datasets - the brain tumor dataset and the Multimodal Brain Tumor Segmentation 
Challenge (BraTS) 2020 dataset. Results show that the proposed model can generate fine-quality 
images with maximum Structural Similarity Index Measure (SSIM) scores of 0.57 and 0.83 on the said 
two datasets.

The age of Artificial Intelligence (AI) has brought many opportunities to make our living standards better. 
Medical diagnosis and healthcare facilities are benefited from the perks of AI as well. Various deep learning 
techniques are proven to be helpful for medical image analysis which further lead to a better understanding of 
diseases occurring in the human  body1. Brain tumor scan comes under the category of medical imaging domain. 
tumors are formed due to the excessive growth of cells that occurred in a particular region of the human body 
including the brain region. Proper identification of early-stage brain tumor is necessary because tumor forma-
tion in the brain may ultimately cause long-term disability in our  body2 whereas, severe cases of brain tumor 
such as High-Grade Glioma (HGG) may ultimately result  death3. A huge number of brain tumor cases has been 
reported in the USA in the last few years, and many succumbed to  death4. Considering the severity caused by 
the brain tumor, many researchers developed computer-based diagnosis systems using deep learning models for 
screening brain tumor scan images. The most popular way of obtaining these brain scans is Magnetic Resonance 
Imaging (MRI) in which a magnetic field is applied to detect the presence of the tumor in the brain. MRI is 
also able to estimate the size of the present tumor. Although MRI has its limitations like consuming too much 
time or causing Claustrophobia, it is preferred over other methods for brain tumor detection due to its overall 
 performance5. Being a powerful non-invasive analytic tool, MRI is applied to the image-based diagnosis of vari-
ous systems throughout the  body6,7.

MRI of a brain tumor can provide some key information, such as location, size, shape, irregularity, the intra-
tumoral structure of brain tumors to physician by qualitative or quantitative  analysis8,9, which help to identify 
the growth state of brain tumors and evaluate the performance of analysis. In this regard it is to be noted that 
for better training a machine learning or deep learning model, sufficient volume of data is  necessary10, which 
is also true for this kind of medical image analysis. Data with high-class imbalance or insufficient variability 
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leads to poor analytical  results11,12. There are some publicly available datasets for conducting research in vari-
ous medical image analysis, however in many cases, they are either small in size or due to privacy concerns, 
common researchers cannot have the access to the datasets. Data augmentation is a commonly used approach 
in this field to overcome the problem of limited datasets. Basic image processing operations can be used for 
generating new images. However, such techniques may not be very effective in the medical imaging domain 
since it lacks the ability to add the sufficient information to generated images in order to make it natural. Simple 
image augmentation techniques are also unable to understand the underlying features of the image. Besides, 
image manipulation techniques such as translation and rotation might change the pattern useful for the diag-
nosis. These datasets contain highly correlated image training  data12. Hence, machine learning models trained 
on these augmented data gain little performance improvements due to the lack of variance of the data. Another 
type of data augmentation strategy adopted in literature is synthetic data generation. A synthetic dataset can be 
generated using computer-based programs. Such datasets can be highly beneficial for the purpose of medical 
image analysis. Furthermore, in this case there is no patient data handling or privacy concerns as the samples 
are produced  synthetically1.

GANs13 can be used to generate synthetic data with good generalization ability and also serve as an effective 
method of data anonymization. GAN has two different networks—Generator and Discriminator. The model is 
trained in an adversarial process, where the Generator generates fake images, and the Discriminator learns to dis-
criminate between the real and fake  images1. GAN can generate synthetic images which can be used to share the 
data outside of the institution, to do different medical analysis and also can be used as an anonymization  tool12.

Generation of medical images especially brain tumor scans is a challenging task overall. Traditional image 
augmentation techniques such as translation, rotation, scale, flip, etc. cannot produce sufficient variation in 
shape, location, size of a tumor in brain  scans14. However, in the recent past, GANs have been used to perform 
the image generation task in various domains quite successfully. GAN models have yielded better outcomes for 
both generation and segmentation tasks on brain tumor scan images in several works performed previously. Shin 
et al.11 have segmented the overall scans of Alzheimer’s Disease Neuroimaging Initiative (ADNI)15 dataset and 
BraTS  dataset16 into brain anatomy, tumors using  pix2pix17 GAN. They have obtained the augmented scans by 
applying different combinations of the segmented brain anatomy and tumor labels by introducing some alterna-
tions. Islam et al.1 have proposed a Deep Convolutional Generative Adversarial Network (DCGAN)18 model for 
generating synthetic Positron emission tomography (PET) scan images from the scans present in the  ADNI15 
dataset. They have synthesized scans for all the three different stages of Alzheimer’s disease—Normal Control 
(NC), Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD).

Han et al.19 have applied DCGAN and WGAN  separately20,21 on the BraTS 2016  dataset16 to generate artificial 
MRI scans. To validate their results, they have conducted the Visual Turing Test on 50 real, 50 fake images and 
have achieved the highest performance for the WGAN with 53% accuracy. Lei et al.22 have proposed Dense cycle 
GAN to generate Computed Tomography (CT) scans from MRI scans based on one-to-one mapping formed 
during the training procedure. They have collected the original MRI and CT scans from 24 brain cancer patients 
and 20 prostate cancer patients. Finally, they have achieved the following results: (i) Mean Absolute Error (MAE) 
as 55.7 Hounsfield Units (HU) and 50.8 HU, (ii) mean Peak Signal-to-Noise Ratio (PSNR) as 26.6 dB and 24.5 
dB, (iii) Normalized Cross-Correlation (NCC) as 0.963 and 0.929 in the brain cancer and prostate cancer scans 
respectively. GAN has shown outstanding performance in several research works conducted on image segmenta-
tion tasks as well such as Li et al.14 have proposed TumorGAN on the BraTS 2017  dataset16.

Nie et al.23 have used Fully Convolutional Network (FCN)24 as the generator and a basic CNN as the discrimi-
nator. They have proposed a basic 3D FCN to estimate the target image from the corresponding source image. 
They have used  ADNI15 dataset and pelvic dataset (an in-house dataset) as the source images. They have obtained 
a mean PSNR of 34.1 and MAE of 39.1 for their proposed method. Emami et al.25 have proposed a GAN-based 
model where  ResNet26 is used as the generator and discriminator is a CNN with five convolutional layers that 
have classified the input image as real or fake. They have achieved a mean PSNR of 26.6 ± 1.2 and SSIM of 0.83 
± 0.03 for an IRB-approved  dataset27. Zhan et al. have used a latent representation-based conditional generative 
adversarial network to synthesize a real-like missing MRI modality using multiple modalities which already been 
obtained. They have performed their experiment on BraTS 2015  dataset16 and have got mean PSNR as 26.495 ± 
3.245, normalized root-mean-square error (NRMSE) as 0.235 ± 0.09 and SSIM as 0.917 ± 0.037.

From the above discussion, we can comment that most of the previous works are based on simply training 
the generator to synthesize new data and the discriminator to recognize the same as real or fake. In other words, 
most of the works are based on one-to-one synthesis methods which attempt to synthesize a new image from the 
latent representation of a given source image. Since these methods are optimized for a single input channel, they 
can sensitively learn the unique and detailed features of the given source contrast. However, this might produce a 
high correlation between source and generated  images28. Kim et al.29 have introduced a new architecture named 
DiscoGAN. Their proposed GAN can generate images of different domains considering the cross-domain rela-
tions effectively. Architecture-wise this model consists of two inter-domain Generators and one discriminator 
for each image-domains.

Basically, many-to-one synthesis methods aim to synthesize an image from a shared latent representation 
of multiple source images. These methods are good in capturing features that are shared across distinct source 
images, even when these features are weakly present in individual contrasts. Yet, a shared latent representation 
might also be less sensitive to complementary features that are uniquely present in a specific source image. To 
this end, we aim to capture both unique information of a source image and also shared information among dif-
ferent latent representations of multiple images. In doing so, we have proposed AGGrGAN, where three different 
GAN models are used in order to synthesize new images. We have also developed a novel aggregation method 
to combine these synthesized images and to get a new image. Finally, we have applied style  transfer30–33 on the 
generated image using GAN, where the same is trained using the original images. After training, the style of 
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aggregated image is transferred, where raw images are considered as style images. Therefore, by aggregation, we 
have considered the shared information among multiple images and we are able to capture unique features by the 
style transfer. We have performed our experiment on two publicly available datasets namely, BraTS 2020  dataset16 
and brain tumor  dataset34. The overview and main contributions of our work can be summarized as follows:

• A novel aggregation method, called AGGrGAN, is proposed to combine synthesized images obtained from 
different GAN models.

• An attempt is made to capture shared information from the latent representation of the generated images by 
the GAN models.

• Style transfer is performed on the aggregated image to encapsulate the localized information of the source 
images.

• Pixel wise aggregation of images has been performed, where the weights assigned to the images depend on 
what extent the corresponding pixel lies in the edge region.

• The experiments have been done on two publicly available datasets—(i) brain tumor  dataset34, (ii) BraTS 
2020  dataset16, and the obtained results are satisfactory when measured in terms of some standard metrics.

Overall our work consists of the following sections: (1) Introduction; (2) Results and discussion; (3) Method-
ology; (4) Conclusion. In the following section, we have discussed the performance of our proposed method.

Results and discussion
In this section, we have evaluated and have discussed our proposed method’s performance. So, we have consid-
ered the following two datasets to conduct all these evaluation-based experiments individually: 

1. Brain tumor dataset34: this brain tumor dataset contains 3064 T1-weighted contrast-enhanced images with 
three kinds of brain tumors. The classes are given as follows:

• Glioma.
• Meningioma.
• Pituitary.

   We have shown three sample images from for each class in Fig. 1.
2. BraTS 2020 dataset16: all scans in the dataset are available as NIfTI files and the different types of data in 

the dataset are described below:

• Native (T1).
• Post-contrast T1-weighted (T1ce).
• T2-weighted (T2).
• T2 Fluid Attenuated Inversion Recovery (T2-FLAIR).

   These samples have has been acquired with different clinical protocols and various scanners from multi-
ple (19) institutions. Each type contains a total of 369 NIfti files. We have extracted the images from it and 
created these four kinds of cases. We have a total of 1107 images for each type of data. Figure 2 shows three 
sample images for all the four classes present in this dataset.

To measure the performance of our proposed method over the two datasets, we have used the following four 
metrics to measure the performances for all three base models before applying style transfer, and after applying 
style transfer and AGGrGAN: 

Figure 1.  Sample images in brain tumor  dataset34 where each row represents images of same class.
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1. SSIM : It denotes the degree of similarity present between two images. Hence, the closure the similarity exists, 
the greater the SSIM index becomes whereas, two identical images have SSIM as exactly 1. SSIM is evaluated 
using the following formula: 

where, µx , µy are the mean and σx , σy are the standard deviation of the intensity values present in the two 
images respectively. σxy is the covarience between the two images’ intensities. The constants c1 , c2 are used 
for negating the weak denominator effect.

2. PSNR: It denotes the ratio between the maximum intensity value to the present noise value. Maximum pixel 
intensity is generally 255, and the square root of Mean Squared Error (MSE) between the two images can be 
used as an estimate of noise. Therefore, PSNR can be evaluated as- 

where, MAXf  is the maximum pixel intensity value and f(i, j), g(i, j) denote the pixel intensity value of pixel 
(i, j) for the two images respectively. Size of both images are m · n . So greater value of PSNR indicates less 
amount of noise which means the synthetic image has closer resemblance to the original image.

3. Kullback-Leibler (KL) divergence: For any two distributions P and Q, KL divergence of P from Q can be 
evaluated as: 

where, P(x), Q(x) denote the probabilities for any event x occurred under P and Q respectively. Hence, 
more divergence between two distributions indicate higher KL divergence value. To measure the KL-diver-
gence between two images, their corresponding histogram distribution values can be considered as P and Q 
whereas, every possible pixel intensity value can represent the events.

4. Sharpness Difference (SD): It indicates the degree of sharpness diversity between two images. It is evaluated 
based on the ratio of the square of the maximum intensity to the gradient difference ( ∇ ) between two images. 

(1)SSIM = (2µxµy + c1)(2σxy + c2)

(µx
2 + µy

2 + c1)(σx2 + σy2 + c2)

(2)PSNR =20log10

(

MAXf√
MSE

)

(3)MSE = 1

m · n

m
∑

i=1

n
∑

j=1

(f (i, j)− g(i, j))2

(4)KL(P � Q) =
∑

x

P(x) · log{P(x)/Q(x)}

(5)SD =10log10

(

MAXf
2

∇

)

Figure 2.  Sample images in BraTS 2020  dataset16 where each row represents images of the same class.
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So more identical images have less gradient difference value which leads to greater SD measure.
We have considered the above-mentioned metrics for assessing the proposed model when applying on two 
publicly available datasets, namely brain tumor  dataset34, and BraTS 2020  dataset16. For each dataset, we have 
recorded the metrics of the generated images considering the original images as the reference. The performances 
of all the categories under these two datasets have been shown in Tables 1 and 2 respectively.

(6)∇ = 1

mn
|�f (i, j)−�g(i, j)|

(7)�f (i, j) =2f (i, j)− f (i − 1, j)− f (i, j − 1)

Figure 3.  Sample generated images in the brain tumor  dataset34 where each row represents images of the same 
class and each of the six leftmost columns represents images generated by the same method (tumor region 
produced by the AGGrGAN model is marked) and the rightmost column represents the original images.

Table 1.  Performance of the base GAN models along with AGGrGAN applied on the brain tumor dataset. 
Values in bold signify that they are—(i) the metric-wise best value obtained for the corresponding class for 
Tables 1, 2, 3, 4 and (ii) case-wise best performance obtained for a particular dataset.

Category Method SSIM PSNR KL-divergence SD

Glioma

DCGAN-1 0.39 17.33 0.23 28.52

DCGAN-1+style transfer 0.56 17.80 0.37 29.68

DCGAN-2 0.40 15.55 0.34 28.04

DCGAN-2+style transfer 0.55 16.85 0.45 29.73

WGAN 0.42 17.31 0.36 28.14

WGAN+style transfer 0.52 17.65 0.45 29.48

AGGrGAN (SSIM) 0.57 17.85 0.50 29.78

AGGrGAN (PSNR) 0.55 17.97 0.44 29.50

Meningioma

DCGAN-1 0.42 16.18 0.27 28.97

DCGAN-1+style transfer 0.49 16.21 0.63 29.47

DCGAN-2 0.40 15.61 0.27 28.26

DCGAN-2+style transfer 0.51 16.38 0.42 29.31

WGAN 0.46 17.92 0.40 28.64

WGAN+style transfer 0.48 17.59 0.48 29.09

AGGrGAN (SSIM) 0.53 17.13 0.40 29.61

AGGrGAN (PSNR) 0.51 17.49 0.57 29.56

Pituitary

DCGAN-1 0.37 15.35 0.38 28.54

DCGAN-1+style transfer 0.44 15.83 0.46 28.66

DCGAN-2 0.37 16.42 0.34 27.71

DCGAN-2+style transfer 0.42 16.53 0.21 28.34

WGAN 0.40 16.91 0.39 28.11

WGAN+style transfer 0.42 16.87 0.28 28.35

AGGrGAN (SSIM) 0.47 16.93 0.34 28.75

AGGrGAN (PSNR) 0.44 17.12 0.19 28.54
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First, we look into the generated images for each dataset along with the raw images so that it might be easier 
to understand the proposed model’s performance. Figure 3 shows all the generated images in the brain tumor 
dataset.

Figure 3 shows that although the generated images resemble the original images in Fig. 1, the generated 
images are somewhat dull compared to the original ones. However, applying style transfer may cause the result-
ing image to have more resemblance with the original ones. Table 1 further analyses the generated images 
performance-wise.

Based on the results shown in Table 1, it is evident that our proposed AGGrGAN (SSIM) has generated images 
with the best SSIM scores for all categories of the brain tumor dataset whereas, AGGrGAN (PSNR) has generated 
images with maximum PSNR scores for Glioma and Pituitary. Our proposed method can produce images with 
SSIM values neighbouring 0.50. SSIM has widespread applications for measuring similarities between images 
in different domains, and a high SSIM score suggests a better quality of images. Although for other metrics, 
AGGrGAN (SSIM) has not delivered the best results in some cases. Especially, at least one base model with or 
without style transfer has better KL-divergence scores than AGGrGAN (SSIM) for all the three categories. Only 
AGGrGAN (PSNR) has generated the images with most KL-divergence score for pituitary. DCGAN-1 without 
style transfer has generated the best Glioma and Meningioma images according to KL-divergence scores. This 
proves that the resulting image of AGGrGAN may be structurally more similar to the original ones but it has a 
diverse histogram distribution. Overall, the addition of style transfer has improved the base models’ SSIM values 
for all the cases and PSNR values for most of the cases. Only WGAN has produced better Meningioma images 
with respect to PSNR. However, the style transferred images acquired a more diverse histogram distribution 
which suggests their higher KL-divergence value than that of the base models’ produced ones. style transfer has 
improved KL-divergence values for only WGAN in the case of Pituitary. Similar to SSIM, AGGrGAN (SSIM)’s 
generated images have the best SD results. Since the edges of the base image are prioritized during aggregation, 
the final output provides more edge-wise similarity thus yielding better SD results. Besides that, the style-trans-
ferred images generally have higher SD compared to their original counterparts. During style transfer, the edge 
characteristics of the raw images are transferred to the synthetic image as well which causes the style transferred 
images to have SD-wise better performance.

We can observe the synthetic images for the BraTS 2020 dataset in Fig. 4 which shows that the generated 
images are more clearer compared to that of the brain tumor dataset.

To further analyze the images present in Fig. 4, Table 2 has been provided with the metric-wise performance.
Table 2 shows that the results are far better in the BraTS 2020 dataset. The proposed AGGrGAN model 

(considering both SSIM and PSNR based aggregation) has outperformed all the base models in the case of all 
the performance metrics. PSNR based AGGrGAN has the best KL-divergence score results for all the classes. 
One point is to be noted that the performance of DCGAN-1 is poorer than the other two. AGGrGAN takes 
advantage of choosing the best two models and further applies logical aggregation technique so it is not affected 
by DCGAN-1’s poor performance and further improves from the other two by selecting their best features 
only. Another reason could be attributed to the fact that DCGAN-2 and WGAN have more or less the same 
performance which is not that much is reflected in the results shown in Table 1. High SSIM values around 0.80 
suggest that the generating images are more resembling the original ones which further ensures the success of 
the GAN. The only drawback has occurred for the KL-divergence scores as all the scores exceed 1 which means 

Figure 4.  Sample generated images in the BraTS 2020  dataset16 where each row represents images of the same 
class and each of the six leftmost columns represents images generated by the same method (tumor region 
produced by the AGGrGAN model is marked) and the rightmost column represents the original images.
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that diversity in histogram remains at a larger scale. To conclude, AGGrGAN, we can say that base GAN models 
have performed better on the BraTS 2020 dataset than that on the brain tumor dataset.

Next, we analyze our proposed AGGrGAN’s performance in a competitive scenario by comparing with two 
basic GAN models: (i) Least Squares GAN (LSGAN)35, (ii) Information maximizing GAN (InfoGAN)36. In this 
scenario, we have considered SSIM based AGGrGAN only. First, a side-by-side comparison of the images gener-
ated by these two models and AGGrGAN for the brain tumor  dataset34 is shown in Fig. 5.

Figure 5 shows that the images generated by LSGAN and InfoGAN are more faded compared to that of 
AGGrGAN which indicates the upper hand in our proposed architecture’s performance. We have also provided 
the metric-wise performance in Table 3.

Table 3 shows us that AGGrGAN has higher SSIM and SD values compared to the other two which justi-
fies the success of edge-based priority-based aggregation of base architecture outputs. AGGrGAN has also 
outperformed the other models with respect to PSNR for the classes Glioma and Pituitary. Meanwhile, for the 
Meningioma class, InfoGAN has generated the best images with response to PSNR values. However, AGGrGAN 
has not the best results for the KL-divergence score. LSGAN has the lowest KL-divergence scores for Glioma 
and Pituitary whereas, InfoGAN has for the Meningioma class. Next, this kind of comparison is provided for the 
BraTS 2020  dataset16. Figure 6 shows the images generated by LSGAN, InfoGAN and AGGrGAN.

The synthetic images generated by LSGAN, InfoGAN and AGGrGAN are almost similar. All of these images 
are appealing and bear a strong resemblance to the original ones. So we have further provided the performance 
metric wise comparison in Table 4.

Table 4 shows that AGGrGAN has the best outcome for most of the cases. It has provided the best results 
with respect to all of the metrics for T1ce, T2 and T2-FLAIR. Only cases where our proposed approach is out-
performed by any other model are PSNR and KL-divergence for T1. Overall, beating other models in most cases 
ensures the robustness and efficiency present in our proposed approach.

Table 2.  Performance of the base GAN models along with AGGrGAN applied on the BraTS 2020 dataset. 
Values in bold signify that they are—(i) the metric-wise best value obtained for the corresponding class for 
Tables 1, 2, 3, 4 and (ii) case-wise best performance obtained for a particular dataset.

Category Method SSIM PSNR KL-divergence SD

T1

DCGAN-1 0.47 17.9 5.05 28.52

DCGAN-1+style transfer 0.69 19.69 1.71 28.91

DCGAN-2 0.68 19.69 3.83 27.70

DCGAN-2+style transfer 0.76 20.61 1.17 29.05

WGAN 0.62 20.62 2.37 27.51

WGAN+style transfer 0.76 21.07 1.34 28.99

AGGrGAN (SSIM) 0.77 21.14 1.16 29.14

AGGrGAN (PSNR) 0.74 22.12 1.10 29.10

T1ce

DCGAN-1 0.48 18.60 3.93 28.51

DCGAN-1+style transfer 0.72 21.53 1.76 28.96

DCGAN-2 0.65 19.70 1.53 27.57

DCGAN-2+style transfer 0.79 22.10 1.23 28.81

WGAN 0.61 20.20 2.37 27.52

WGAN+style transfer 0.82 22.85 1.19 29.12

AGGrGAN (SSIM) 0.83 23.30 1.11 29.15

AGGrGAN (PSNR) 0.82 23.68 0.99 29.07

T2

DCGAN-1 0.49 18.76 3.70 28.41

DCGAN-1+style transfer 0.68 19.71 1.92 28.86

DCGAN-2 0.69 19.67 3.54 27.82

DCGAN-2+style transfer 0.77 20.63 1.21 29.55

WGAN 0.60 21.14 2.40 27.46

WGAN+style transfer 0.77 21.28 1.25 29.10

AGGrGAN (SSIM) 0.80 21.60 1.20 29.63

AGGrGAN (PSNR) 0.78 21.94 1.15 29.11

T2-FLAIR

DCGAN-1 0.48 17.81 1.65 29.05

DCGAN-1+style transfer 0.65 19.05 1.34 28.54

DCGAN-2 0.65 21.27 1.48 27.62

DCGAN-2+style transfer 0.76 21.33 1.27 28.93

WGAN 0.54 19.91 2.06 27.49

WGAN+style transfer 0.77 21.04 1.32 29

AGGrGAN (SSIM) 0.78 21.90 1.26 29.11

AGGrGAN (PSNR) 0.77 21.77 1.18 29.35
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We have also used standard CNN models, namely  InceptionResNetV237,  VGG1938 and  ResNet152V226 to 
perform classification based evaluation of the images generated by our proposed model. We have generated 300 
images for each class for both datasets. To measure the performance for the generated images w.r.t. the original 
images, we have performed such classification for two different cases, which are: (i) Case-1: considering the 
original images and the generated images as training and test sets respectively, (ii) Case-2: considering 80% of 
the mixture of original and generated images as training data and the remaining as testing data. Furthermore, we 
have experimented with whether the addition of generated images to the training dataset causes any improve-
ment of the performance and whether our proposed method can beat traditional data augmented methods 
such as flip, shift and zoom. To conduct such experiments, three additional test cases have been considered, 
which are—(i) Case-3(a): the raw image dataset has been divided into training and test sets by 80:20 ratio. (ii) 
Case-3(b):  instead of using 80% of the raw images only as training data, we have also included all the gener-
ated images in the training data. (iii) Case-3(c):  we have created 100 images using each of the three images 
augmented methods- flip, shift and zoom to achieve 300 augmented images per class and have added to the 80% 
of the raw images for training data. For each case, we have used 20% of the training data for validation purpose. 
Each CNN model is trained for 20 epochs and a batch size of 32 is considered. Since the brain tumor  dataset34 
is a class-imbalanced dataset, we have considered an equal number of images for each class. The results of these 
experiments are noted in Table 5.

Table 5 shows that the performance is more diverse in Case-1 compared to Case-2. In Case-2, the pairwise 
accuracy difference does not exceed 4%. Overall, VGG-19 provides accuracy-wise better results compared to the 
other two CNN models for both cases. Based on the case-wise results, it can be said that the Case-2 shows better 
accuracy values for all three CNN models considered here than Case-1. In the Case-2, each model predicts with 
accuracy greater than 78% and 85% for brain tumor dataset and BraTS 2020 dataset respectively, whereas only 
VGG-19 provides more than 75% accurate results for the brain tumor dataset in the Case-1. We can also observe 
that each model has performed better for Case-3(b) than Case-3(a) by at least 2% higher accuracy for most of 

Figure 5.  Visual comparison between samples images generated by existing GAN architectures like LSGAN, 
InfoGAN and the proposed AGGrGAN in brain tumor  dataset34 where each row represents images of the same 
class and each column represents images generated by the same method.

Table 3.  Quantitative comparison of performance between existing GAN architectures like LSGAN, InfoGAN 
and the proposed AGGrGAN applied on the brain tumor dataset. Values in bold signify that they are—(i) 
the metric-wise best value obtained for the corresponding class for Tables 1, 2, 3, 4 and (ii) case-wise best 
performance obtained for a particular dataset.

Category Method SSIM PSNR KL-divergence SD

Glioma

LSGAN 0.48 17.52 0.26 28.57

InfoGAN 0.43 17.22 0.28 28.63

AGGrGAN 0.57 17.85 0.50 29.78

Meningioma

LSGAN 0.45 17.96 0.25 28.75

InfoGAN 0.43 16.48 0.31 28.18

AGGrGAN 0.53 17.13 0.40 29.61

Pituitary

LSGAN 0.38 16.61 0.31 27.68

InfoGAN 0.44 16.75 0.24 27.80

AGGrGAN 0.47 16.93 0.34 28.75
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the cases. Thus, the goodness of the generated images can be ensured. Based on the comparison between two 
cases i.e., Case-3(b) and Case-3(c), we can see that Case-3(b) outperforms Case-3(c) for almost all the scenarios. 
Only exceptions are—(i) VGG19-brain tumor dataset and (ii) InceptionResNetV2—BraTS 2020 dataset. Such 
comparison proves the effectiveness of AGGrGAN with respect to traditional image augmentation procedures. 
Also, all these cases provide high accuracy. Hence, all these results can be considered as satisfactory keeping in 
mind the complexity of brain tumor images.

Methodology
In this section, we have mainly discussed our proposed method along with its detailed architecture. We have also 
described the benchmark datasets briefly. This section consists of mainly two subsections: (i) Datasets Used, (ii) 
Proposed method and AGGrGAN Architecture.

Proposed method and AggrGAN architecture. In the present work, we have proposed a novel GAN 
model, called AggrGAN, where images generated by the different variants of GAN are aggregated. Finally, we 

Figure 6.  Visual comparison between sample generated images by existing GAN architectures like LSGAN, 
InfoGAN and the proposed AGGrGAN in the BraTS 2020  dataset16 where each row represents images of the 
same class and each column represents images generated by the same method.

Table 4.  Quantitative comparison of performance between existing GAN architectures like LSGAN, InfoGAN 
and the proposed AGGrGAN applied on the the BraTS 2020 dataset. Values in bold signify that they are—(i) 
the metric-wise best value obtained for the corresponding class for Tables 1, 2, 3, 4 and (ii) case-wise best 
performance obtained for a particular dataset.

Category Method SSIM PSNR KL-divergence SD

T1

LSGAN 0.69 20.17 1.14 27.53

InfoGAN 0.76 21.35 3.55 27.82

AGGrGAN 0.77 21.14 1.16 29.14

T1ce

LSGAN 0.58 20.31 1.52 27.49

InfoGAN 0.72 19.51 1.87 27.64

AGGrGAN 0.83 23.30 1.11 29.15

T2

LSGAN 0.68 20.16 1.39 27.60

InfoGAN 0.75 21.56 2.63 27.75

AGGrGAN 0.80 21.60 1.20 29.63

T2-FLAIR

LSGAN 0.63 19.91 1.49 27.49

InfoGAN 0.68 17.47 2.08 27.76

AGGrGAN 0.78 21.90 1.26 29.11
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have applied style transfer on the aggregated image. Before we move deeper into the architecture, we will briefly 
discuss GANs, DCGAN, WGAN, Aggregation method and style transfer.

Generative adversarial networks. GANs have proved to be very effective for image generation in different com-
puter vision  tasks39 since the breakthrough work by Goodfellow et al.13. GANs have shown promise in generating 
highly realistic images without a well-defined objective function and also the generator of GAN can learn from 
extremely small varieties in data. GAN is a deep learning architecture that consists of two models—a generative 
model G and a discriminative model D. The generative model captures the data distribution. The discriminative 
model estimates the probability for the sample that if it is drawn from the training data rather than the genera-
tive model. The two models are simultaneously trained via an adversarial process. The architecture follows a 
game theory approach, and it corresponds to a minimax two-player  game13. The training procedure of G is to 
maximize the probability of D making a mistake.

Let the generator G (z, θx ) is a differentiable function represented by a multilayer perceptron with param-
eters θg that depicts a mapping to the data space. To learn the generator’s distribution ρg over the data space x, 
a prior ρz is defined on the random input noise variable z. The discriminator D (x, θd ) is also a neural network 
that gets a sample from the real dataset or the generated synthetic dataset produced by G and outputs a single 
scalar value that the input data comes from the real training dataset. The training process focuses on the task 
that the discriminator D will maximize the probability of assigning correct labels to the training examples and 
generated samples from G. At the same time, G is trained to generate data samples similar to the real dataset 
so that D cannot differentiate them from actual data. It is formulated as a minimax two-player game with value 
function V (G, D), as defined in Eq. (8):

where x is the real data and z is the input random noise. ρdata , ρz represent the distribution of the real data and 
the input noise respectively. This can be reformulated as the minimization of the Jensen-Shannon (JS) divergence 
between the distribution ρdata and another distribution ρg derived from ρz and G. D(x) represents the probability 
that x came from the real data while G(z) represents the mapping to synthesize the real data. The generator G is 
a deeper neural network and has more convolutional layers and non-linearities. The noise vector z is upsampled 
while G learns the weights through backpropagation. At some point, the generator starts producing data that 
are classified as real by the discriminator. A workflow of GANs is given in Fig. 7.

Deep convolutional generative adversarial network. DCGAN18 is a major improvement on the first  GANs13. 
DCGAN can generate better quality images and has more stability during the training stage. In the synthetic 
image generation process using the DCGAN, there are two phases: a learning phase and a generation phase. In 
the training phase, the generator draws samples from an N-dimension normal distribution and works on this 
random input noise vector by successive upsampling operations, eventually generating an image from it. The dis-
criminator attempts to distinguish between images drawn from the generator and images from the training  set18. 
Two important features of DCGAN are  BatchNorm40 for regulating the extracted feature scale, and  LeakyRelu41 
for preventing dead gradients. DCGAN also replaces all max pooling with a convolutional stride and uses trans-
posed convolution for upsampling. It eliminates fully connected layers and uses batch normalization. DCGAN 
uses Rectified Linear Unit (ReLU) in the generator except for the output which uses Tanh and uses LeakyReLU 
in the discriminator.

Wasserstein generative adversarial network. WGAN20 is an alternative to traditional GAN which improves the 
stability during training of the model and provides a loss function that correlates with the quality of generated 

(8)min
G

max
D

V(D,G) = Ex∼ρdata(x)[logD(x)] + Ez∼ρdata(z)[log(1− D(x))]

Table 5.  Classification performance of generated images in brain tumor dataset and BraTS 2020 dataset, 
where Case-1: considering the complete original images and the generated images as training and testing data 
respectively, Case-2: considering 80% of the mixture of original and generated images as training data and 
the remaining as testing data and Case-3: considering 20% of the original images as testing data and choosing 
the training data by three different ways: (a) remaining 80% only, (b) remaining 80% along with all generated 
images and (c) remaining 80% along with augmented images created by- shift, flip and zoom.

Dataset Case Accuracy (%)—InceptionResNetV2 Accuracy (%)—VGG19 Accuracy (%)—ResNet152V2

Brain tumor dataset

Case-1 44.43 77.12 58.45

Case-2 78.15 81.23 78.56

Case-3 (a) 87.29 90.12 92.24

Case-3 (b) 90.35 92.70 93.88

Case-3 (c) 90.11 93.41 92.47

BraTS 2020 dataset

Case-1 59.05 61.79 53.12

Case-2 86.17 88.28 85.65

Case-3 (a) 88.57 91.27 88.18

Case-3 (b) 89.72 94.24 92.80

Case-3 (c) 90.20 93.66 92.03
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images. The development of the WGAN has a strong mathematical base, although in practice it requires only a 
few minor modifications to the established standard DCGAN. In WGAN, instead of using a discriminator to 
classify or predict the probability of generated images as being real or fake, it changes or replaces the discrimi-
nator model with a critic that scores the realness or fakeness of a given image. This change is motivated by a 
mathematical argument that training the generator should seek a minimization of the distance between the 
distribution of the data observed in the training dataset and the distribution observed in generated examples. 
The argument contrasts different distribution distance measures, such as KL divergence, JS divergence, and the 
Earth-Mover (EM) distance (also known as the Wasserstein-1 metric) and given in Eq. (9):

where 
∏

(pg , pr ) is the set of all joint distributions γ (x, x′) whose marginals are pg and pr , respectively. In other 
words, p implies how much mass must be transported from one distribution ( pr ) to another ( pg ). This distance 
intuitively indicates the cost of the optimal transport  plan20.

In our work, we have used Wasserstein Divergence  GAN21 as Wasserstein-1 metric cannot be directly applied 
as an objective without imposing the strict k-Lipschitz  constraint21,42. The objective function is given as in Eq. 
(10).

Here pg and pr have same meaning as in Eq. (9). pu is a Radon  probability43 measure, ∇ is the gradient operator, 
p > 0 . So the optimization problem can be formulated as given in Eq. (11).

where z is random noise, x is the real data, and x̂ is sampled as a linear combination of real and fake data points.
In our research, we have used three GANs i.e., one WGAN and two variants of DCGAN which are different 

in terms of their upsampling method in the Generator. After we obtain the generated image from the different 
GANs, we aggregate them by our proposed aggregation method.

Aggregation method. We have selected two images out of the three images with closer metric scores (i.e., SSIM 
or PSNR value) generated by the three GAN models according to their metric value assessed w.r.t. the raw 
images (i.e., top-two images are selected based on the metric score). Then, we have aggregated the two selected 
images in the following manner:

• We apply  Sobel44 filters on both images and generate the corresponding edge-mapped images.
• After this, we find the  Gaussian45 value of the intensities of edge-mapped image as g1(x, y) and g2(x, y) 

respectively, where gi(x, y) = Gaussian-Function(i(x,y)) of edge mapped image i).

(9)W(pg , pr) = inf
γ∈

∏

(pg ,pr )

E(x,x′)∼γ ||x − x′||

(10)LDIV = E
x∼pr

[f (x)] − E
x̂∼pg

[f (x̂)] + k E
x̂∼pu

[||∇f (x̂)||p]

(11)min
G

max
D

V(D,G) = E
G(z)∼pg

[D(G(z))] − E
x∼pr

[f ([D(x))] + k E
x̂∼pu

[||∇x̂ f (D(x̂))||p]

Figure 7.  A workflow of generative adversarial network (sample real image source: Br 2020  dataset16).
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• Then we assign weights to each edge-mapped image based on the Gaussian value for each pixel. The weight 
assignment method is described in Algorithm 1. Here, we have generalized the approach for different metrics 
that means the aggregation can be done based on the SSIM or PSNR value of each image.

• We finally aggregate the selected two generated images pixel-wise based on these weights.

This aggregated image will further be processed using the style transfer method. The overall working procedure 
of the aggregation method is given in Fig. 8.

Algorithm 1 Aggregation Method
1: gaussian_matrix← [2][]
2: for img in images do
3: f lag= 0
4: edge_img= Sobel(img)
5: for pixel in edge_img do
6: g= Gaussian_Function(pixel)
7: gaussian_matrix[ f lag][position(pixel)]← g
8: end for
9: f lag= f lag+1
10: end for
11: weight_matrix← [2][]
12: f lag= 0
13: metric_arr← [2]
14: metric_arr[0]← metrico f Image1
15: metric_arr[1]← metrico f Image2
16: for flag < 2 do
17: for g, index in gaussian_matrix[flag], length(gaussian_matrix[flag]) do
18: g1 ← gaussian_matrix[0][index]
19: g2 ← gaussian_matrix[1][index]
20: if g1 not 0and g2 not 0 then
21: w← g

g1+g2
22: else
23: t = metric_arr[ f lag]

metric_arr[0]+metric_arr[1]
24: w← t
25: end if
26: weight_matrix[ f lag][index]←w
27: end for
28: f lag= f lag+1
29: end for
30: Agg_img← [][]
31: for pixel_1, pixel_2, w_1, w_2 in img_1, img_2, weight_matrix[0], weight_matrix[1] do
32: if position(pixel_1) equals position(pixel_2) then
33: Agg_img[position(pixel_1)]← pixel_1∗w_1+w_2∗ pixel_2
34: end if
35: end for

Style transfer. Style  transfer30–32 is applied to generate the image, of which style is equivalent to the style of 
the raw image, and the content is equal to the content of the aggregated image, obtained by using the proposed 
aggregation method. To define a style and a content representation clearly, a loss function can be used, which 
shows how far away our synthesized images are from the perfect style transfer. Without style transfer, the syn-
thetic images from the generator are rather smooth, hence style transfer is applied to make the synthetic images 
more similar to real ones. We hold the idea of style transfer and employ the popular CNN model, called VGG-

Figure 8.  The working procedure of the proposed aggregation method (sample image source: BraTS 2020 
 dataset16).
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1938, to extract content features and style features from multiple convolutional layers. Next, we need to under-
stand the losses calculated during each iteration of style transfer. These are further back-propagated throughout 
the whole network to update all the weights. 

1. Content Loss Given the chosen content layer l, the content loss is defined as the Euclidean distance between 
the feature map Fl of our content image x and the feature map Pl of our generated image x̂ . Suppose, Fli,j and 
Pli,j are the feature values of the i-th filter at position j in layer l for the images x and x̂  , then the content loss 
Lcont can be defined as follows: 

2. Style Loss For each style layer, we find the pairwise correlation between all the filters’ feature vectors so that 
we can maintain a resemblance between the style image and the output image based on the spatial infor-
mation. These feature correlations are given by Gram matrix G/

i1,i2
 , where G/

i1,i2
 denotes the inner product 

between the vectorized feature map of filters i1 and i2 in layer l: 

 Suppose there are total Al filters each having the feature map of size Bl and we have the Gram matrices Gl
i1,i2

 , 
Hl
i1,i2

 for the style image y and the output image x̂  . So we can evaluate the total Style Loss Lsty as: 

 where, wl is the weight assigned to layer l. In this case, each wl holds the value 1
Total number of style layers i.e. 1

5
.

3. Total Variation Loss Furthermore, by combining the following total variation losses ( x for generated phan-
toms, x ∈ RW∗H ), we can perform spatial smoothing in the synthesized brain tumor images. 

 the image size of w, h ∈ W, H, and xw,h denotes the pixel value of the given position in the generated image x . 

 The total loss value of the style transfer network covers content loss, style loss, as well as variation loss, where 
wcont ,wsty ,wtv denote the weight of Lcont , Lsty , Ltv , respectively. So, in our research, we will optimize this total 
variation loss LST and generate images more similar to raw images.

Architecture of the proposed AggrGAN model. Our architecture consists of three GANs and one style transfer 
model, which uses CNN to do the operation, and the aggregation method which is described in Algorithm 1. In 
this section, we have described the architectural details of all the models that have been used.

DCGAN architecture. The two variants of DCGAN are described here: 

1. DCGAN-1: The first variant has architecture similar to the DCGAN architecture reported  in18. We have used 
 LeakyRelu41 in each layer for both generator and discriminator (except the last layer). We have used dropout 
of 0.25 in each layer of discriminator except the last layer, where we have used a fully connected layer with 
a  sigmoid46 activation function. All the convolution layers are strided instead of pooling layer and the filter 
size is 4 * 4 in both the generator and the discriminator. The batch size of 64, learning rate of 0.0002 with 
Adam  optimizer47 and total 1000 epochs have been used for the network.

2. DCGAN-2: The second variant has also similar network to the DCGAN architecture reported  in18. The major 
difference of this with the first variant is that we have used transpose convolutional  layer48 in the genera-
tor instead of using traditional convolution layer and upsampling method. It performs both the upsample 
operation and interprets the coarse input data to fill in the detail during upsampling. The discriminator uses 
traditional convolution layer and both convolution layers in the generator and the discriminator are strided, 
and all the filters are of size 4 * 4. The batch size of 128, learning rate of 0.0002 with Adam  optimizer47 and 
total 650 epochs have been used for this case.

The main difference in these variants is how the upsampling is done in the generator of the GANs.

WGAN architecture. The architecture of WGAN is the same as given  in21. We have a used fully connected 
layer in both generator and the discriminator, and  LeakyRelu41 as an activation function. We have used Adam 
 optimizer47 with a learning rate of 0.001 and the number of epochs used for training is 1000. We have used a 
mini-batch of the size of 32 in this network.

(12)Lcont =
∑

l=0

∑

i,j

1

2
(Fli,j − Pli,j)

2

(13)Gl
i1,i2

=
Fli1,k
∑

k

Fli2,k

(14)Lsty =
∑

l

wl ·
1

4Al
2Bl

2

∑

i1,i2

(Gl
i1,i2

−Hl
i1,i2

)
2

(15)Ltv =
(

∑

w,h

||xw,h+1 − xw,h||22 + ||xw+1,h − xw,h||22)

(16)LST = wcontLcont + wstyLsty + wtvLtv
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Architecture of style transfer. Finally we have applied style transfer on the aggregated image obtained via Algo-
rithm 1. The VGG-19 network extracts the style of a style image and the content of a content image for mixing to 
generate the final output. Some layers in the network structure are adopted to extract style and content features, 
as shown in Fig. 9, the style index set is Ŵs = 1_1, 2_1, 3_1, 4_1, 5_1 and the content index Ŵc = 4_2 where index 
i_j denotes the j-th layer of the i-th sub-network in the overall VGG-19 architecture. Each of the style and con-
tent layers is introduced with ReLU activation function. Besides, there are average pooling layers sittuation in 
between the Convolution layers. The different layer structures of the VGG-19 network can be better understood 
from Fig. 9. The weights of the three corresponding loss functions are expressed as wcont ,wsty ,wtv in Eq. (16) 
with coefficients of 5, 100 and 0.001 respectively. The Limited memory Broyden–Fletcher–Goldfarb–Shanno 
(L-BFGS)49 optimizer is used here and total 2000 iterations are used for training the network.

Conclusion
Information received from a small number of available medical images might be inadequate for proper medi-
cal analysis using deep learning-based approaches. Classifiers that need a vast amount of data, might suffer the 
most for performing classification or segmentation on a small-sized dataset. Thus to resolve this issue, synthetic 
images, which are consistent with the original medical images are required as an addition to the original data. 
This implies that synthetic medical image generation holds a promising future and has a scope of opening mul-
tiple possibilities in the medical imaging domain. In addition to that such approaches help to reduce the cost 
required to prepare the original medical data. In this work, we have proposed a new model for synthetic medi-
cal data generation called AGGrGAN. It uses the advantage of selecting distributed features across the multiple 
latent representations and captures the local patterns as well. Since our base models are already well-known and 
robust, the aggregation of the best two among them is ensured to bring good results than a stand-alone GAN 
model. However, our proposed aggregation method is limited to combining two images which can be further 
extended. In the future, we also plan to apply this model to other medical imaging domains where the number 
of sample images is scarce.

Data availability
The brain tumor dataset analysed during the current study are available in the Figshare repository, https:// figsh 
are. com/ artic les/ datas et/ brain_ tumor_ datas et/ 15124 27 BRATS 2020 dataset analysed during the current study 
are available in the Multimodal Brain Tumor Segmentation Challenge 2020: Data repository, https:// www. med. 
upenn. edu/ cbica/ brats 2020/ data. html For the generated images, we did not aim to create a dataset and we gener-
ated the images to check the performance of our method.
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