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Deep learning network 
for integrated coil inhomogeneity 
correction and brain extraction 
of mixed MRI data
Kai‑Hsiang Chuang1, Pei‑Huan Wu2, Zengmin Li1, Kang‑Hsing Fan3 & Jun‑Cheng Weng2,4,5*

Magnetic Resonance Imaging (MRI) has been widely used to acquire structural and functional 
information about the brain. In a group‑ or voxel‑wise analysis, it is essential to correct the bias field 
of the radiofrequency coil and to extract the brain for accurate registration to the brain template. 
Although automatic methods have been developed, manual editing is still required, particularly for 
echo‑planar imaging (EPI) due to its lower spatial resolution and larger geometric distortion. The 
needs of user interventions slow down data processing and lead to variable results between operators. 
Deep learning networks have been successfully used for automatic postprocessing. However, most 
networks are only designed for a specific processing and/or single image contrast (e.g., spin‑echo or 
gradient‑echo). This limitation markedly restricts the application and generalization of deep learning 
tools. To address these limitations, we developed a deep learning network based on the generative 
adversarial net (GAN) to automatically correct coil inhomogeneity and extract the brain from both 
spin‑ and gradient‑echo EPI without user intervention. Using various quantitative indices, we 
show that this method achieved high similarity to the reference target and performed consistently 
across datasets acquired from rodents. These results highlight the potential of deep networks to 
integrate different postprocessing methods and adapt to different image contrasts. The use of 
the same network to process multimodality data would be a critical step toward a fully automatic 
postprocessing pipeline that could facilitate the analysis of large datasets with high consistency.

Advanced MRI techniques, such as diffusion tensor imaging (DTI), arterial spin labeling (ASL) and functional 
MRI (fMRI), have become essential tools to describe the structural and functional organization of the human 
brain to diagnose disorders non-invasively in humans and to resolve neural mechanisms and treatment targets 
using rodent or other animal models. With the construction of brain atlases and templates, information-rich 
multimodality data obtained from different subjects at different times can be co-registered to a common refer-
ence space for voxel-wise and regional analyses to describe the effects of aging, disorders and therapeutics. To 
achieve accurate co-registration, images must be corrected for head motion, geometric distortion, and coil B1 
field inhomogeneity. Then, the brain is extracted by removing signals from the scalp and other tissues before 
linear/nonlinear transformation can be applied to match the individual brain images to the template. Because 
inferior inhomogeneity correction and brain extraction can result in dislocated or biased  findings1, methods to 
improve the intensity uniformity and skull stripping are essential.

To allow automatic data processing, various methods have been developed for coil inhomogeneity correction, 
such as  N42 and brain extraction, such as  BET3,  MONSTR4, 3D  PCNN5,  RATS6, and  SHERM7. However, manual 
adjustments and editing are still required to obtain optimal  results8. The need for user intervention results in slow 
data processing and variable quality from different users, which affects results. Also, these algorithms are typically 
developed for structural MRI. Performance is degraded when applying to echo-planar imaging (EPI), which 
is widely used for DTI, ASL and fMRI, due to different contrasts (e.g., T2/T2*-weighted versus T1-weighted), 
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spatial resolutions (e.g., 2–3 mm versus 1 mm) and geometric distortions. Because studies have suggested that 
direct registering EPI to the brain template would be more  accurate9, methods that can perform well on EPI are 
required. In addition, most processing methods have been developed for humans and are typically difficult to 
apply to animal data due to the different anatomy and resolutions involved.

Deep learning neural networks have become one of the most popular techniques of image processing in 
recent  years10. The development of deep learning was previously constrained by computing power. With the 
advance of general-purpose computing on graphics processing  units11, an algorithm with a complex deep network 
topology of several hundred million trainable parameters can be completed within a few days, which allows the 
application of deep learning networks to various challenging biomedical image processing issues (for review, 
 see12), including brain extraction and  segmentation13, Nyquist ghost removal and motion  correction14–16. For 
example, variants of 3D convolutional networks were initially successfully applied for brain extraction from 
single contrast  T1-weighted MPRAGE  data17–19 and expanded to multiple contrast modalities or even patho-
logical brains using large multicenter multicontrast training  data20. Yoganada et al. combined DenseNet and 
U-Net to segment gray matter/white matter/CSF from brain MR  images13. They used a 3D framework with 
many trainable parameters to achieve high accuracy, but the kernel size and filters of the convolution layer were 
constrained to allow the topology to converge. Similar attempts have been explored recently for the brain extrac-
tion of non-human  primates21 and  rodents22. Conventional intensity correction methods are still required for 
preprocessing before deep learning-based brain extraction. A deep learning network has also been developed 
to correct coil  inhomogeneity23. However, this method was developed for a rather uniform head or body coil; 
its performance for images acquired by highly inhomogeneous surfaces or array coils is thus unclear. Overall, 
current deep-learning-based methods have several limitations. First, they are primarily designed for structural 
MRI and are thus difficult to apply to EPI data, which suffer from inferior image quality. Second, although skull 
stripping networks could process multicontrast structural MRI, methods for EPI data are still optimized for a 
specific contrast and thus difficult to apply to spin-echo  (T2-weighted) and gradient-echo  (T2*-weighted) EPI, 
which are commonly used for DTI and fMRI, respectively. Third, these methods are all designed for a single 
postprocessing procedure. Therefore, the data processing pipeline would still be limited by user intervention 
being required in the remaining processing.

In this study, we address these issues of deep learning networks designed to overcome two limiting steps of 
the brain MRI processing pipeline: coil inhomogeneity correction and brain extraction. We solved these issues 
by using generative adversarial nets (GANs)24,25 with expansion of the 2D GAN model to 3D. Because brain 
extraction requires coil inhomogeneity correction, we trained GANs to combine these two separate processing 
together. To manage different image contrasts, particularly spin-echo and gradient-echo EPI, GANs were trained 
using either a single contrast or multiple contrasts. Results demonstrate high accuracy and consistency compared 
to manually adjusted automatic methods like N4 and PCNN.

Results
Model training. In the GANs, the generator and discriminator compete with each other in a zero-sum 
game. Model training is similar to a seesaw battle: if one side is too strong, the loss function tends to oscillate 
strongly (Fig. 1A). If the vibration exceeds a certain critical point, the system has a high probability of break-
down, as shown in Fig. 1B. When that happens, the quality of the pseudoimage generated will worsen with more 
iterations. To prevent the model from oscillating, we use a small learning rate for the generator and discriminator 
( 2× 10−4 and 1× 10−6 , respectively) in all the experiments. The Adam optimizer was used in both the discrimi-
nator and  generator26. This process resulted in a stable trend, as shown in Fig. 1C.

Three types of GAN models were trained by gradient-echo EPI (GE-EPI) only, spin-echo EPI (SE-EPI) only 
and the mixed dataset. Supplementary Fig. 1 shows example results during training over 5 selected iterations 
using the GE-EPI-only dataset. Starting from a noisy image, the predicted image became increasingly similar to 
the correct target image when the GAN was trained with more iterations. With > 2000 iterations, the rough details 
of the brain were shown. With > 10,000 iterations, the predicted image became similar to the target. The histo-
grams also became increasingly more similar to those of the target images, indicating the method’s effectiveness 
at removing the bias field of the surface coil. The models trained by the SE-EPI-only (Supplementary Fig. 2) or 
mixed (Supplementary Figs. 3 and 4) datasets showed similar converging trends. In particular, the model could 
remove the external tissue and the reference phantom over the rat’s head. The similarity indices of the training 
data also show progressive improvements with iterations (Supplementary Fig. 5).

Choosing the best model. With more iterations, the images generated by GANs became increasingly 
similar to the targets, which made it difficult to identify the best model. Because there is no good standard to 
determine how many iterations are required to train a model, we used a strategy that chose the model that could 
generate the best validation results. We calculated the similarity indices of the test data on all the models trained 
at each iteration and selected the one producing the best comprehensive performance as the final model. Fig-
ure 2 shows the similarity indices of the testing data for models over iterations. Then, we chose the model with 
11,744 iterations for mouse-only, 14,356 iterations for rat-only, 16,539 iterations for mix dataset because they 
had the best mean cosine angle distance (CAD), Euclidean distance (L2 norm) and mean structural similarity 
(MSSIM). More specifically, we chose the model that had the highest mean MSSIM score in each experiment 
because the MSSIM was more consistent with visual inspection.

Testing using data from the same modality. Figure 3 shows representative results after applying GE-
EPI or SE-EPI test data to the models trained by GE-EPI-only, SE-EPI-only and mixed datasets. Compared to 
the target image, the outputs of GANs show preserved tissue contrast but improved uniformity, with histograms 
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similar to those of the target images. The GANs could even perform better than the target image. In Fig. 3B, 
the target image showed an abrupt intensity drop at the bottom of the brain, while the GAN output uniformly 

Figure 1.  Effects of the learning rate on the training loss over iterations. (A) When the losses of the generator 
and discriminator strongly interact with each other, the outcome describes vibrations. (B) When the loss of 
the generator diverges, the model breakdowns, and the prediction from the model worsens. (C) With a proper 
learning rate, the loss smooth converges with stable results. The green line is the �LL1(G)+ Ec loss. The red and 
blue lines are cGAN losses formulated as Ec,x and Ec , respectively. The curve is for the GE-EPI-only model.
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covered the entire brain. The target image in Fig. 3D appeared to be overcorrected for coil inhomogeneity so 
that the contrast between the gray and white matter was low. Conversely, the GAN output a uniform image with 
preserved tissue contrast. Interestingly, even when the SE-EPI and GE-EPI data have different image quality and 
features (e.g., external tissue intensity and phantom object), the performance of the mixed modality-trained 
model is comparable to that of the single-modality model. This result indicates that the 3D pix2pix network 
could learn distinct features of the mixed dataset.

The performance of coil inhomogeneity correction was evaluated by comparing the similarity of intensity 
distribution, quantified using CAD, L2 norm and MSSIM (Table 1). The quality of brain extraction was quantified 
using the Dice index (Table 2). Overall, the performance of the GAN models was consistently high. Even though 
the training data exhibited a large deviation in the MSSIM for the GE-EPI only and mixed datasets due to the 
particular intensity distribution of certain subjects (see “Discussion” below), the performance of the testing data 
was consistent across subjects with a small standard deviation. The performance of the mixed-modality model 
was also comparable to that of the single-modality model.

Testing using multimodality data. To evaluate how well the three models could manage data that were 
either familiar (same type of EPI as the training data) or unfamiliar (e.g., GE-EPI for SE-EPI-only trained), we 
applied the testing data for the mixed group to all three models and compared their performances (Fig. 4A). 
As expected, the test data of the same modality had high similarity indices, while the performance degraded 
markedly with unfamiliar data types. The performance on the test data was marginally inferior to that of the 
training data, which had similarity indices that were closer to ideal. Interestingly, the model trained by mixed 
data outperformed the model trained by the familiar but single modality data. For the CAD, the mixed model 
performed (0.973 ± 0.003; mean ± SEM) much better than the SE-EPI trained model (0.969 ± 0.003, p < 0.001) 
for the SE-EPI test data. For the GE-EPI test data, the mixed model performed (0.968 ± 0.002) marginally bet-
ter than the GE-EPI trained model (0.966 ± 0.002, p < 0.05). Similar trends were also shown in the L2 norm and 
MSSIM. Therefore, training with more diverse data enhanced the capability of the network.

Using the combination of two popular automatic methods (N4 and PCNN) as a benchmark, we compared the 
Dice indices of the GAN outputs of the test data (Fig. 4B). To achieve the best results of the conventional methods, 

Figure 2.  Similarity indices of test data over iterations. The CAD (first column), L2 norm (second column) and 
MSSIM (third column) of outputs from the GE-EPI-only (A–C), SE-EPI-only (D–F) and mixed (G–I) dataset-
trained models. The mean and standard deviation are shown. The unit of the x-axis is the number of iterations.
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Figure 3.  Example results of 3 experiments. From left to right are the histograms and tri-planar views of the 
source, target and GAN output images from the (A) GE-EPI-only model, (B) SE-EPI-only model, and (C, D) 
mixed model. (A) and (C) show the GE-EPI images, and (B) and (D) are the SE-EPI images.

Table 1.  Similarity indices  of test data for each corresponding model. SD standard deviation.

Model Sample Index Mean SD Max Min

GE-EPI only

Training (scan = 367)

CAD 0.994 0.003 0.996 0.968

L2 norm 4.609 1.116 10.064 3.089

MSSIM 0.968 0.074 0.989 0.368

Test (scan = 36)

CAD 0.969 0.011 0.992 0.950

L2 norm 8.872 2.076 12.106 4.249

MSSIM 0.928 0.031 0.980 0.843

SE-EPI only

Training (scan = 74)

CAD 0.996 0.003 0.998 0.982

L2 norm 3.070 1.274 9.060 1.595

MSSIM 0.985 0.011 0.994 0.922

Test (scan = 13)

CAD 0.966 0.009 0.978 0.949

L2 norm 7.094 1.204 9.406 5.729

MSSIM 0.930 0.012 0.947 0.908

Mix

Training (scan = 447)

CAD 0.994 0.004 0.997 0.966

L2 norm 4.243 1.141 10.785 2.380

MSSIM 0.977 0.062 0.994 0.379

Test scan = 43)

CAD 0.969 0.010 0.991 0.948

L2 norm 8.696 1.977 12.329 4.761

MSSIM 0.944 0.019 0.984 0.895
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the parameters of N4 and PCNN were optimized for each individual. For the SE-EPI data, the Dice indices of 
models trained by the SE-EPI-only (0.955 ± 0.008) or mixed (0.956 ± 0.008) datasets were comparable to those 
of the N4 + PCNN (0.964 ± 0.010) but not the model trained by the GE-EPI-only data (0.871 ± 0.044; p < 0.0001). 
Similarly, the GE-EPI-only (0.923 ± 0.024) and mixed (0.923 ± 0.024) dataset trained models performed as well as 
the N4 + PCNN (0.915 ± 0.032), except for the SE-EPI-only trained model (0.858 ± 0.024; p < 0.0001). In addition, 
the mixed-trained model generally exhibited smaller variations than N4 + PCNN, indicating more consistent 
performance.

Discussion
This study addressed two issues of deep-learning-based brain extraction: dependency on coil inhomogeneity 
and inflexibility for multimodality data. We used a deep learning network (3D pix2pix) to automate two critical 
and labor-intensive steps—coil inhomogeneity correction and brain extraction—in the brain EPI postprocessing 
pipeline. Results shows that different types of MRI postprocessing can be combined into one network, which 
can streamline the data processing pipeline and can reduce operator-dependent variations and bias in different 
processes. This network model can manage both spin- and gradient-echo EPI that are commonly used in DTI, 
ASL and fMRI. The capability of processing these major data types could facilitate the data analysis of the most 
commonly used advanced neuroimaging data. The model performed as well as existing automatic methods (N4 
and PCNN) that were individually adjusted and optimized. Particularly, the results of the proposed method are 

Table 2.  Dice index of GANs and N4 + PCNN outputs.

Model Sample (scan) Method Mean SD Max Min

GE-EPI only 36 (GE-EPI)
N4 + PCNN vs target 0.917 0.032 0.961 0.834

GANs vs target 0.927 0.026 0.968 0.857

SE-EPI only 13 (SE-EPI)
N4 + PCNN vs target 0.958 0.024 0.982 0.885

GANs vs target 0.954 0.009 0.969 0.940

Mix

43 (mix)
N4 + PCNN vs target 0.926 0.036 0.982 0.834

GANs vs target 0.931 0.025 0.971 0.874

33 (GE-EPI)
N4 + PCNN vs target 0.915 0.032 0.961 0.834

GANs vs target 0.923 0.024 0.964 0.874

10 (SE-EPI)
N4 + PCNN vs target 0.964 0.010 0.982 0.948

GANs vs target 0.956 0.008 0.971 0.943

Figure 4.  Performance comparison using mixed testing data. Box plots of (A) CAD, L2 norm and MSSIM, and 
(B) Dice index. ****p < 0.0001.
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more consistent than those from automatic methods. Although the proposed method was demonstrated using 
rodent data in this proof-of-concept study, similar network models could be built and trained using human data 
to streamline the workflow of clinical MRI data processing.

Criteria for stopping the training of a model. There is no common standard about how many itera-
tions are required to train model sufficiently. The original GAN paper mentioned that a global optimum solution 
exists for an ideal model such that the model iterated countless times will converge to the global optimum. In 
that case, fake data from the generator infinitely approach real data, and the discriminator can no longer distin-
guish real and fake data. Because there is no ideal model in reality, the proposed models may reach a local opti-
mum  solution27,28 or undergo mode collapse in  training29. When we inspected the similarity indices calculated 
using the training dataset itself, the performance increased monotonically, and thus, the optimal performance 
would be achieved with infinite iterations. Therefore, we chose to use test data to select the best model. However, 
this approach suffers from the fact that the best model may be different for different test datasets. To overcome 
this issue, a more diverse testing dataset from different MRI scanners may be used to evaluate the overall perfor-
mance across datasets from different sites.

Performance of coil inhomogeneous correction. By visual inspection of the pseudoimages and their 
histograms generated by GANs, results were found to be similar to those of the target images, indicating good 
performance of the GANs in learning the corrected intensity distribution. To quantify the difference in the 
intensity distribution, we compared the CAD, L2 norm and MSSIM between the pseudo and target images 
(Table 1). The high similarity of the training data indicated that the model learned the importance features and 
relationships of the source and target images. Comparing the three datasets, the GE-EPI-only model had better 
performance than SE-EPI-only, which was likely due to the larger GE-EPI training dataset; thus, the model could 
learn more features for generating pseudoimages. Also, the image complexity of the SE-EPI data is much higher 
than that of the GE-EPI because the scalp and muscle signals are stronger in the SE-EPI in addition to the pres-
ence of an external phantom. Although the similarity indices of the SE-EPI-only model were inferior, the quality 
of the pseudoimage remained high, and only a few differences at the edge of the brain tissue could be identified. 
For the same reason, the similarity indices of the GE-EPI-only model were marginally worse than those of the 
mixed-trained model. Overall, there are many more distinct features in the mixed modality dataset that must 
be learned than in single-modality datasets. Under the same topology and hyperparameters, the mixed-trained 
model could learn complex features and achieved high similarity indices.

Performance of brain extraction. Using the Dice index, the overlap between the ideal and automatically 
extracted brain masks was evaluated. Overall, the GANs achieved comparable accuracy compared to those of 
the two existing methods (N4 and PCNN) together. The extraction results of SE-EPI were better than those of 
GE-EPI, likely due to better image contrast and less blurring.

The two tasks (inhomogeneity correction and brain extraction) can potentially be processed by two network 
models separately. For example, GAN is used for the first step, and U-Net is used for the second step. When 
using two models in two stages to map two data distributions, it could suffer from error propagation. The first 
model may contribute some error and lead to more error in the prediction of the second model. The first model 
will also require more time to fine-tune the hyperparameters and training, as well as additional storage space for 
saving weights. Here we demonstrated that GANs can successfully combine these two processing in one network.

Testing GANs using multimodality data. To evaluate how a trained model performs with data that are 
completely different from the training data, we tested the model trained by a single modality (i.e., GE-EPI-only 
and SE-EPI-only) dataset with the test data of the mixed model. The outcome was, as expected, not ideal when 
the data type was unfamiliar. The model trained by the SE-EPI-only data performed better than the model 
trained by GE-EPI-only, likely due to more features in the SE-EPI data that allow the model to process GE-EPI 
data but not conversely.

Comparison to other network models. Deep learning has been applied to extract or correct different 
types of structural information, such as brain tumors, gray/white matter tissue segmentation, skull stripping or 
EPI distortion correction. Although these methods all belongs to image segmentation, each has its own spe-
cial focus and challenge. Brain tissue segmentation focuses on classifying voxels of different intensity distribu-
tions with less consideration of morphology. Brain extraction focuses on identifying the boundary of the brain 
while ignoring intensity distributions of different tissue types. Recently, a few studies have used a popular deep 
learning network, U-net, for automatic brain extraction. U-net has been a popular method for segmentation in 
medical images. Huang et al. applied 3D U-Net to T1-weighted structural MRI of the human  brain18. Similarly, 
Pontes-Filho et al. applied a standard U-net on SE-EPI of the mouse brain, where they used a data augmenta-
tion strategy to increase the training data using elastic affine  transform30. Hsu et al. also applied U-net to mixed 
T2-weighted structural MRI and GE-EPI datasets of both rats and mice, demonstrating the feasibility of process-
ing mixed  data22. The latter two studies used 2D U-net to process slice-by-slice instead of 3D volume. Also, these 
studies either used data that were acquired with a homogeneity coil or applied inhomogeneity correction as a 
preprocessing step. Compared to the GAN in this study, we used U-Net as the generator together with Patch-
GAN as the discriminator. The advantage of such a competing network design is the ability of the discriminator 
to learn the features of the desired output instead of relying on pixel intensity differences, which improves the 
generator in creating better overall results without being affected by pixel-level variations.
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Outliers. As shown in Table  1 and Fig.  4, most similarity indices of the training data are high except in 
certain cases. Although the predicted images of these outliers appeared to be nearly identical to their targets, 
we found that there were low intensity voxels after adjusting the display contrast (Supplementary Fig. 6). All 
corresponding training targets had the lowest intensity voxel inside the brain instead of the background. When 
the intensity was normalized to 0–1, the background of these training targets was not zero, as opposed to the 
“good” training targets, whose background value was zero. This result led to poor similarity indices, particularly 
for MSSIM because it is sensitive to structure, contrast and brightness differences between two images. This type 
of data constitutes approximately 2% of the training data.

Limitation. This study suffers from the following limitations. First, the training and test datasets were 
acquired using similar coils (i.e., single-loop surface coils but different sizes for rats and mice). Because the coil 
intensity profile depends on the geometry of the coil in relation to the brain, images acquired by a different coil, 
such as an array coil, will have different intensity inhomogeneity features. The efficacy of the intensity correction 
under different coils remains to be evaluated. Second, the images have similar pulse sequence parameters, par-
ticularly the echo time, and resolutions. Because the echo time and spatial resolutions could affect the contrast 
and distortion of the EPI, they would affect the feature contents of the data and thus the performance of the 
trained model. Third, the “gold standard” of coil intensity correction was generated by a popular algorithm, N4. 
Therefore, the intensity correction by the GAN could only be as good as N4. The performance of N4 depends 
on the adjusted parameter, and sometimes does not generate a completely uniform profile. Better ways to gener-
ate the gold standard, such as measuring the coil B1 profile, is preferable. As the real B1 field depends on the 
object and EPI distortion, the B1 field acquired using a pulse sequence (e.g., conventional gradient echo) that 
has different distortion from the EPI sequence will result in a different B1 field. Previous studies that develop 
this kind of correct methods usually used synthetic data by applying an assumed bias field as weighting factor to 
a perfect image without bias  field31 or used N4, as in this  study32. Using an assumed bias field may be acceptable 
for structural MRI but is not suitable for highly distorted EPI. Obtaining a true “gold standard” thus remains a 
challenge. Fourth, brain anatomy was associated with a specific type of EPI. SE-EPI was obtained from the rat 
brain, and GE-EPI was obtained only from the mouse brain. There is no SE-EPI data of mouse or GE-EPI data 
of rat. Because the brain structures of rats and mice are similar, the influence of anatomical differences on pro-
cessing performance is expected to be small. Future studies that include more diverse datasets will be required 
to clarify this issue. Fifth, typical multiband EPI acquisition could suffer from slice leakage artifacts that impact 
the image quality and bias field. The proposed multiband GE-EPI avoided the brain in different slices from over-
lapping with each other during acquisition and therefore did not suffer from slice leakage in typical multiband 
EPI on a clinical MRI scanner. However, this artifact may affect the accuracy when expanding this technique to 
multiband EPI data from clinical scanners. Finally, we did not have sufficient data to divide the dataset into three 
parts. Data augmentation is a promising technique to overcome issues associated with limited training  data33 
and to balance the number of GE-EPI and SE-EPI data in future work.

These limitations are primarily due to the fact that data were obtained from a single site. Although several 
recent studies have provided their image data in open repositories, they typically only provide raw images but 
not processed data, such as the brain mask, which are critical for training models and testing new algorithms. 
Future studies will benefit from open data that share the processed data. To promote this initiative, the imaging 
data used and analyzed in this study are available from the corresponding author on reasonable request.

Conclusion
In this article, a deep learning model, 3D pix2pix, that is designed to combine automatic coil inhomogeneity 
correction and brain extraction was developed and validated using several quantized similarity indices. With 
sufficient training data, the model can effectively combine these two district and operator-dependent image 
processing steps in an advanced neuroimaging data processing pipeline. Further development and refinement of 
the model could allow fully automated data processing without user intervention and thus improve the efficiency 
of processing big data. Although this study only demonstrated the method using rodent EPI data, a similar 
algorithm should be trained and applied to human data.

Methods
Generative adversarial networks. The GAN architecture primarily has two parts, a discriminator (D) 
and a generator (G), which play two different roles in the algorithm. The goal of the discriminator is to distin-
guish whether an input image comes from the generator. Conversely, the goal of the generator is to generate a 
pseudoimage that can deceive the discriminator. The relationship between discriminator and generator is similar 
to that of a vaccine and bacteria or a predator and its prey; they have opposite purposes in the algorithm. In an 
iterative adversarial process, the ability of both sides increases. Therefore, an image generated by the generator 
will be increasingly similar to the real image. The objective function from the original paper of GANs is shown 
in (1):

where x is data acquired from the real world, z is random noise for the generator, D(x) is the output of the 
discriminator, and G(z) is the generated fake data. pdata and pz are the distributions of real-world data and ran-
dom variable z, respectively. subscript x ∼ pdata represents that x belongs to pdata . E is the expected value. The 
designed output range of the discriminator is between 0 and 1. This objective function is expected to train the 
discriminator to distinguish every real-world data x from the fake data G(z).

(1)min
G

max
D

V(D,G) = Ex∼pdata(x)

[
logD(x)

]
+ Ez∼pz (z)

[
log(1− D(G(z)))

]
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3D pix2pix. To process image data, we used pix2pix, which is an extended topology of GANs that can con-
vert a picture with a certain style into another  style34. pix2pix consists of a PatchGAN classifier as the discrimina-
tor and a U-net as the  generator35. Different from the traditional classifier, which maps an image onto a single 
number, the PatchGAN classifier maps an image onto a M×M patch, and every element in this patch has its 
own receptive field. There are several benefits of the PatchGAN classifier. First, images of different matrix sizes 
can be verified by the same PatchGAN. Second, this method does not need to process an entire image each 
time so that a PatchGAN model has fewer weighting parameters and thus will be more efficient. U-net has an 
autoencoder-like topology. The biggest difference between U-net and  autoencoder36 is that U-net has a shortcut 
between the encoder and decoder. The function of shortcut is to provide location information of a pixel of an 
image from the encoder block to the decoder block, making the decoder produce a higher quality image.

Particularly, pix2pix is a type of conditional GAN (cGAN)37 that imposes an additional condition on the 
discriminator and the generator. After training, the output image of the generator will be constrained by the 
condition, and the discriminator must distinguish the authenticity of the input image and determine whether 
there is a relationship between the input image and the additional condition. The condition can be a label of 
class, vector, a portion of data from different modalities, or even a certain type of image. The loss function of 
cGANs is shown in (2):

where c is the condition. In this study, we set the raw image as c and the ideally inhomogeneity corrected and 
brain extracted image as x . There are two input states for the discriminator: the first takes “c” and “x” as input, 
denoted as “D(c, x)”, where the variable “c” represents the raw image that is affected by intensity bias and the vari-
able “x” represents the image with bias field corrected; and the second takes the raw image “c” and a fake image 
G(c) as input, denoted as D(c, G(c)). The topology of the generator only requires a single input (“c”). According 
to the original pix2pix  paper34, the noise variable z is not necessary; thus, we did not use random noise as input. 
pix2pix then mixes the cGAN loss function with traditional loss functions, such as the L1 or L2 distance, to 
enhance sharpness. In this study, we used the L1 distance as in (3):

Therefore, the final loss function is:

where � is 100, as used in the original pix2pix  paper34. To prevent pseudoimages between slices from forming dis-
continuities, we expanded the original 2D framework of the pix2pix architecture into 3D so that it could properly 
process the volumetric data. The original pix2pix is based on a 2D framework, which means that the shape of the 
input/output/hidden layers of the generator/discriminator and all the calculations (e.g., convolution, padding, 
pooling or stride) are suitable for a two-dimensional image. In this study, we added one more dimension to the 
input/output/hidden layers and called the “Conv3D” and “Conv3DTranspose” functions from the Keras API to 
perform the calculation in three dimensions with additional parameters for the third dimension. In addition, 
we also modified the layer number and hyperparameters of the U-net to have 6 layers of encoders and decoders.

To find a set of hyperparameters to balance the generator and discriminator, we used a search strategy that 
is similar to the “grid search”. The key hyperparameters to be tuned are learning rates for the generator and dis-
criminator. We used a list of numbers in different orders of magnitude, such as 2× 10−3 , 1× 10−3 , 5× 10−4 , …, 
2× 10−6 , and 1× 10−6 . Based on the trends of loss in the early stage of the training process, we can determine 
whether to stop the process. If the process was stopped, then the next combination of learning rates was evaluated.

Dataset. Three experiments were conducted using either spin-echo EPI (SE-EPI) of the rat brain, gradient-
echo EPI (GE-EPI) of the mouse brain, or both (mix). A total of 87 rat brain scans (male Wistar rat, n = 87) and 
403 mouse brain scans (male C57BL/6, 373 scans from n = 78 mice; male rTg4510 mouse, n = 30) were used in 
this study. Each C57BL/6 mouse was scanned with 1 or 2 sessions and in 2 to 3 repeated runs of scans acquired 
in each session. Only one run was acquired from each rTg4510 mouse and Wistar rat. The rat experiment was 
approved by the Institutional Animal Care and Use Committee of the Biomedical Sciences Institutes, A*STAR, 
Singapore. The mouse experiment was approved by the Animal Ethics Committee of the University of Queens-
land and conducted in compliance with the Queensland Animal Care and Protection Act 2001 and the current 
National Health and Medical Research Council Australian Code of Practice for the Care and Use of Animals for 
Scientific Purposes. The study was also carried out in compliance with the ARRIVE guidelines. Rat brain data 
were obtained from a published  study38 and were originally acquired using a volume coil for transmission, a 
15-mm single-loop coil for receiving and SE-EPI with TR/TE = 2000/45 ms, 150 or 300 repetitions, and a spatial 
resolution of 0.4 × 0.4 × 1  mm3 and 0.1 mm slice gap (for details,  see38). Mouse brain data were acquired using a 
volume coil for transmission, a 10-mm loop coil for receiving and multiband GE-EPI with TR/TE = 300/15 ms, 
2000 repetitions (10 min), spatial resolution of 0.3 × 0.3 × 0.5  mm3 and 0.1 mm slice gap (for details,  see39). All 
analyses were operated in real-valued data.

The EPI time-series data were motion corrected using FSL mcflirt (https:// www. fmrib. ox. ac. uk/ fsl) and then 
averaged to obtain a mean image, which was corrected for coil inhomogeneity using N4 (implemented in ANTs; 
http:// stnava. github. io/ ANTs/) with settings that were separately adjusted for rat and mouse data. Then, auto-
matic brain extraction was conducted using PCNN (https:// sites. google. com/ site/ chuan glab/ softw are/ 3d- pcnn), 
followed by manual editing. To obtain optimal results from the PCNN, the expected brain size option was 

(2)LcGAN (G,D) = Ec,x

[
logD(c, x)

]
+ Ec

[
log(1− D(c,G(c)))

]

(3)LL1(G) = Ec,x(L1)[�x − G(c)�1]

(4)G∗ = argmin
G

max
D

LcGAN (G,D)+ �LL1(G)

https://www.fmrib.ox.ac.uk/fsl
http://stnava.github.io/ANTs/
https://sites.google.com/site/chuanglab/software/3d-pcnn
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particularly adjusted for each data point. The brain masks generated by the optimized PCNN without editing 
were used for comparison with the GAN results and resulted in an image pair composed of the motion-corrected 
mean image (source) and the inhomogeneity-corrected and brain-extracted image (target). These pairs were 
divided into three datasets (SE-EPI-only, GE-EPI-only and mixed), where the latter includes both SE-EPI and 
GE-EPI datasets. Each dataset was randomly split into training and test data for training and testing a different 
GAN (Table 3). We wanted to maximize the amount of training data; thus, we only used approximately 10% as 
testing data (9.8% and 9.6% for the GE-EPI and mixed data, respectively). There were 36 test samples for the 
GE-only model, 13 test samples for the SE-only model and 43 test samples for the mixed model. We merged the 
GE-only and SE-only datasets into a mixed dataset, and then split the mixed dataset into a training and testing 
set. The test samples were chosen randomly, and this study was performed without data augmentation.

Because the input and output intensity of the network model ranged from -1 to 1, the intensity of each dataset 
was normalized to this range by the maximum and minimum intensities with the following equation:

where A is the original image and Â is the normalized image. To present the source, target and GAN outputs 
as positive values in the results section, their intensities were rescaled to between 0 and 1 by multiplying by 0.5 
and adding 0.5.

Implementation. We use an open source API, Keras (http:// keras. io/), for deep-learning model building, 
training, prediction and testing. The program runs on a GPU-based server ESC8000 G4 with GeForce 1080 
Ti (Nvidia, USA). Figure 5 shows the topology of the U-Net and PatchGAN classifiers and the parameters of 
U-Net, including the number of feature maps. Batch normalization was used and is denoted as BN in Fig. 5. The 
“shortcut” symbol represents the “concatenate” operation. The hidden layer settings are as follows: because the 
best initial point of the algorithm was unknown, we set the initial status of weight parameters for all layers as in 
the original pix2pix paper when setting the initializer, which is a normal distribution with a standard deviation 
of 0.0234. The sizes of both 3D convolution and 3D transpose convolution were 4 × 4 × 4, and both strides were 
2 along each dimension. The training process included 200 epochs in total and a batch size of 1. The PatchGAN 
output size was 4 × 4 × 4.

Three models were trained by the 3 combinations of datasets. In each model, the weighting parameters of the 
model were initialized as random numbers of normal distribution. We set the epoch to 200 for model training 
in all experiments (mouse-only: 200 epochs × 367 samples = 73,400 iterations; rat-only: 200 × 74 = 14,800; mix: 
200 × 447 = 89,400). This setting means that the training ran through up to 73,400, 14,800 and 89,400 iterations 
for the three datasets, respectively. The model at each epoch was saved to evaluate how the model improved 
over the epoch.

Quantitative evaluation. To test the performances of the models trained by the three combinations of 
datasets, we use other sets of data. In particular, the rTg4510 mouse data were used to test the performance of 
the model that was trained solely by the C57BL6 mouse data. Both the rat and mouse testing data were applied 
to all three models to evaluate how well they manage images of different MRI protocols. The GAN output was 
compared with the reference target image and the automatic brain mask generated by one of the most popular 
rodent brain extraction methods, the PCNN. We used the following quantized methods to evaluate the simi-
larity of two images: cosine angle distance (CAD)40, Euclidean distance (L2 norm)40, mean square error, peak 
signal-to-noise ratio, and mean structural similarity (MSSIM)41. Because the L2 norm, mean square error, and 
peak signal-to-noise ratio are linear combinations of each other, only the L2 norm is reported. In addition, the 
Dice index was used to compare the brain  masks42. Their definitions are described below:

Assuming that images A and B each have N voxels, the intensity of each voxel in these images can be expressed 
as linear arrays (6):

(5)






Â = 2×
�
A−m

d

�

m = max(A)+min(A)
2

d = max(A)−min(A)

Table 3.  Summary of the combinations of datasets used in three experiments.

Exp Model Purpose Sample size

1 GE-EPI only
Training Scan = 367

Test Scan = 36

2 SE-EPI only
Training Scan = 74

Test Scan = 13

3 Mix

Training
GE-EPI scan = 370
SE-EPI scan = 77
Total scan = 447

Test
GE-EPI scan = 33
SE-EPI scan = 10
Total scan = 43

http://keras.io/
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Figure 5.  Topology of the pix2pix network. The topology and parameters of the (A) U-Net and (B) 
PatchGAN classifiers with two input terminals. The job of the PatchGAN classifier determines whether 
the two input images are the same pair and the input of the right terminal is the target (real) or prediction 
(fake). In the first three layers of Conv3DTranspose, dropout can prevent overfitting. “BN” is abbreviation of 
“BatchNormalization”. (C) Framework of the cGAN. The input “c” and “x” represent raw images that are affected 
by intensity bias and images with bias field correction, respectively.
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The following formulae were used to calculate the similarity indices.
CAD:

where CAD is the cosine angle distance between two images, and the range is [− 1, 1]. The closer the value of 
CAD is to 1, the more similar two images are.

L2 norm:

The smallest value of the L2 norm is 0. The closer the value of the L2 norm is to 0, the more similar two 
images are.

MSSIM:

where Aglobal and Bglobal are the two images that we want to compare. A and B are local windows of Aglobal and 
Bglobal , with ai and bi located inside windows A and B , respectively. The SSIM is composed of three factors: lumi-
nance ( l  ), contrast ( c ) and structure ( s ), which were calculated from local statistics µA , σA and σAB weighted by 
a circular-symmetric Gaussian weighting function w = {wi|i = 1, 2, . . . ,N} with a standard deviation of 1.5 
samples, normalized to unit sum 

(∑N
i=1wi = 1

)
 . Users can decide which factor is the most important by adjust-

ing their corresponding weights α , β and γ . To prevent the denominator and numerator from both being equal 
to zero, C1 , C2 and C3 are small scalars. In this study, α , β , and γ were all set to 1; and C1 , C2 , and C3 were set to 
10−4 , 9× 10−4 , and 4.5× 10−4 accordingly. M is the total number of windows throughout the image, and a value 
of 58× 10× 58 was used. The range of MSSIM is [− 1, 1], with values closer to 1 representing the highest 
similarity.

Dice index:

where p is the binarized target, and p̂ is the binarized GAN output or PCNN brain mask. An intensity threshold of 
0.05 was used to turn the target and GAN output into binary masks with voxel intensity exceeding the threshold 
set to 1 and 0 otherwise. The range of the Dice index is between 0 and 1, with a larger value representing more 
overlap between two brain masks.

Statistical analysis. To determine the performance difference between GAN models and methods, 
between-group comparisons were applied to the above indices using the nonparametric Friedman test (Prism, 
GraphPad Software, Inc., USA). P < 0.05 with correction for multiple comparisons using Dunn’s method was 
regarded as significant. Except particularly noted, values are reported as the mean ± standard deviation.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author on reason-
able request.
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