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A novel early diagnostic framework 
for chronic diseases with class 
imbalance
Xiaohan Yuan, Shuyu Chen*, Chuan Sun & Lu Yuwen

Chronic diseases are one of the most severe health issues in the world, due to their terrible clinical 
presentations such as long onset cycle, insidious symptoms, and various complications. Recently, 
machine learning has become a promising technique to assist the early diagnosis of chronic diseases. 
However, existing works ignore the problems of feature hiding and imbalanced class distribution in 
chronic disease datasets. In this paper, we present a universal and efficient diagnostic framework to 
alleviate the above two problems for diagnosing chronic diseases timely and accurately. Specifically, 
we first propose a network-limited polynomial neural network (NLPNN) algorithm to efficiently 
capture high-level features hidden in chronic disease datasets, which is data augmentation in terms 
of its feature space and can also avoid over-fitting. Then, to alleviate the class imbalance problem, we 
further propose an attention-empowered NLPNN algorithm to improve the diagnostic accuracy for 
sick cases, which is also data augmentation in terms of its sample space. We evaluate the proposed 
framework on nine public and two real chronic disease datasets (partly with class imbalance). 
Extensive experiment results demonstrate that the proposed diagnostic algorithms outperform state-
of-the-art machine learning algorithms, and can achieve superior performances in terms of accuracy, 
recall, F1, and G_mean. The proposed framework can help to diagnose chronic diseases timely and 
accurately at an early stage.

Chronic diseases have been a severe health issue in the world. In 2019, the World Health Organization pointed 
out that chronic diseases account for about 7 of the top 10 causes of death in the world2. Deaths caused by chronic 
diseases account for more than 63% of the total global deaths. Common chronic diseases include heart disease, 
diabetes, hypertension, etc., which are mainly caused by individual unhealthy lifestyles3. Once people suffer from 
chronic diseases, several vital organs (e.g., eye, brain, heart, kidney, etc.) will be damaged, and it is easy to cause a 
series of serious complications affecting work and life4. Patients with chronic diseases are particularly vulnerable 
to infectious diseases, such as the coronavirus disease 2019 (COVID-19)5. More than 48% of COVID-19 patients 
have a history of chronic diseases and are more likely to develop severe symptoms6,7. Additionally, chronic dis-
eases will lead to expensive medical expenses8. The Centers for Disease Control and Prevention reports chronic 
diseases are leading drivers of the nation’s 3.8 trillion in annual health care costs9. The main reason for the high 
fatality rate and expensive medical expenses is that chronic diseases have some terrible clinical presentations 
such as a long onset cycle, insidious symptoms, irreversible development, and various complications10. The above 
information reminds us that we need to quickly strengthen the prevention, diagnosis, and treatment of chronic 
diseases. Therefore, the early diagnosis of chronic diseases is urgent and essential, which can motivate high-
risk patients to change their unhealthy lifestyles, thereby reducing the incidence of complications and further 
improving their health and quality of life.

Since the onset of chronic diseases is imperceptible and there are no obvious clinical symptoms in the early 
stage, it is difficult for doctors to determine the risk of patients with chronic diseases. Nowadays, machine learn-
ing has become the hottest promising technology for the assisted diagnosis of diseases with its advantages of 
autonomous learning and low error rate11–13. Several state-of-the-art machine learning algorithms have been 
widely used in the early diagnosis of different chronic diseases (e.g., chronic kidney disease, diabetes), such as 
support vector machines (SVM)14, logistic regression (LR)15, k-nearest neighbor (KNN)16, decision trees (DT)17, 
and the ensemble of some algorithms18–20. However, existing works are mainly dedicated to data preprocessing 
(e.g., data regularization and feature selection) to improve the early diagnostic performance of only a certain 
chronic disease21,22. Besides, they ignore the problems of feature hiding and imbalanced class distribution in 
chronic disease datasets. Hence, these methods are not conducive to improving the performance of the diagnostic 
model and are not suitable for a universal and efficient diagnosis of chronic diseases.
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The problem of feature hiding represents that the feature in the dataset maybe not be directly related to 
decision-making. It needs to be further comprehensively analyzed together with other features to obtain the 
features directly related to decision-making23. For example, based on the heart rate and body mass index in the 
data, it is not possible to directly decide whether a patient has heart disease. If the visible original features of the 
data are directly used, neither the doctor nor the machine learning may be able to make a wise decision. There-
fore, we need to expand the feature space of the data to capture its potential features related to chronic disease 
diagnosis. Additionally, the imbalanced class distribution of the dataset refers to a significant skew that exists 
between the number of samples for the different classes, which is also called the class imbalance problem24. The 
dominant class is called the majority class, and the remaining classes are called the minority class. Learning from 
the dataset with the class imbalance problem will make the learned model unreliable, which is more concerned 
with identifying the majority class correctly and ignoring the minority class25,26. Especially, in the chronic disease 
dataset, the number of sick cases (minority class) is generally lower than the number of healthy cases (majority 
class). However, the cost of misdiagnosing a sick case as a healthy case is significantly higher than the cost of 
misdiagnosing a healthy case as a sick case. The former may cause the patient to miss the best treatment period27. 
Therefore, how to accurately identify sick cases from the class imbalanced chronic disease dataset without affect-
ing the overall diagnostic performance is of crucial importance and also a very challenging task.

Deep neural networks have great potential for solving various engineering problems in many fields, by extract-
ing high-level features from data to achieve superior classification performance28,29. However, most deep neural 
network algorithms are not friendly to small-scale datasets and are prone to data overfitting30,31. Additionally, 
as the collected chronic disease data are not generally abundant (i.e., small-scale datasets), some existing deep 
neural network algorithms cannot train a well diagnostic model for chronic diseases. Recently, the deep poly-
nomial neural network (PNN) has received the attention of some researchers32–34. We investigate the advantage 
of PNN and find that PNN is very friendly to classification tasks on small-scale datasets compared to other deep 
neural network algorithms. Surprisingly, the ideal PNN is parameter-free and can reduce the training error to 
zero iteratively35. Each network node of PNN is a polynomial function of its input. Thus, PNN can represent any 
polynomial value over the input data. Particularly, similar to other deep neural network algorithms, the network 
architecture of PNN is constructed layer by layer, which can represent higher and higher level (hidden) features 
of the input data. In other words, PNN can hierarchically expand the feature space of its input, and effectively 
capture features related to chronic disease diagnosis. Finally, the output layer of PNN can be constructed by 
solving a simple convex optimization problem.

In this paper, we are motivated to investigate the issue of the early diagnosis of chronic diseases. To the best 
of our knowledge, we are the first to study a universal and efficient diagnostic framework for chronic diseases, 
which can extract high-level features and solve the class imbalance problem to diagnose chronic diseases timely 
and accurately. Specifically, to efficiently capture high-level features hidden in chronic disease datasets, we propose 
a network-limited PNN (NLPNN) algorithm to avoid the problem of over-fitting. NLPNN can be seen as data 
augmentation in terms of its feature space. Additionally, as collected chronic disease datasets generally have a 
serious class imbalance problem, that is, the number of positive samples (sick cases) is significantly less than the 
number of negative samples (healthy cases), the PNN-based diagnostic model cannot fully learn the knowledge 
of sick cases, resulting in costly misdiagnosis (low recall). To alleviate this class imbalance problem, we further 
consider empowering samples with attention (i.e., weight) to change the importance of each sample and propose 
an improved NLPNN algorithm, named attention-empowered NLPNN (AEPNN). AEPNN pays more attention 
to these samples that are misclassified by NLPNN, regarded as data augmentation in terms of its sample space. 
Thus, the main contributions of this paper are summarized as follows.

•	 We study a universal and efficient diagnostic framework to make timely and accurate early diagnosis of 
chronic diseases with small-scale datasets.

•	 We propose an NLPNN algorithm to avoid the problem of over-fitting, which can efficiently capture high-level 
features hidden in chronic disease datasets and achieve high classification accuracy.

•	 We further propose an AEPNN algorithm to solve the class imbalance problem, which greatly improves the 
recall of the diagnostic model, that is, it can accurately diagnose the sick case.

•	 We evaluate and compare the proposed methods against other state-of-the-art methods using nine chronic 
diseases datasets (partly with class imbalance) and extensive experimental results demonstrate that the pro-
posed two diagnostic models outperform state-of-the-art machine learning algorithms, and can achieve 
superior accuracy and recall.

The rest of the paper is organized as follows. We discuss related work in “Related work” section. “Diagnostic 
framework for chronic diseases” section presents the proposed algorithms, and experiment results are shown in 
“Experimental results” section. Finally, “Conclusion” section concludes this paper.

Related work
Early diagnosis of chronic diseases.  Several existing machine learning algorithms have been proposed 
to diagnose a certain chronic disease36–38. Heydari et al.36 compared the performance of various machine learn-
ing classification algorithms in the early diagnosis of type 2 diabetes. The simulation results showed that the 
performance of classification techniques depends on the nature and complexity of the dataset. Khan et  al.37 
developed a chronic disease risk prediction framework. To reduce the impact of outliers, Alirezaei et al.38 incor-
porated K-means clustering, SVM, and meta-heuristic algorithm to diagnose diabetes disease. However, they 
ignored the influence of data distribution and structural changes on model generalization performance. Under 
the premise of not changing the structure and distribution of data, the authors in13 proposed a diagnostic model 
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based on XGBoost for chronic kidney disease (CKD). Sekar et al.39 used a hierarchical neural network fusion 
method (FHNN) for the stratified diagnosis of cardiovascular disease (CVD). However, the impact of FHNN 
mainly depends on the optimal choice of the sub-neural network. Some tree-based ensemble learning tech-
niques applied to early diagnosis methods of diabetes were comprehensively studied by Tama et al.20, and the 
differential performance of different classification methods was evaluated through statistical significance tests. 
At the same time, Altan et  al.40 also compared various machine learning algorithms for the early diagnosis 
of chronic obstructive pulmonary disease and proposed a deep learning model to analyze multi-channel lung 
sounds using statistical features of Hilbert-Huang transform, which successfully achieved high classification 
performance of accuracy, sensitivity, and specificity of 93.67%, 91%, and 96.33%, respectively.

Class imbalance.  In medical datasets, the problem of class imbalance seriously affects the accuracy of 
classifiers27,24. In most cases, it directly leads to a high rate of misdiagnosis of the disease. This is because the 
class imbalance of the training data brings difficulties to the algorithm learning, and the algorithm pays more 
attention to the majority class41. However, the minority class in medical datasets (sick vs. healthy) is often more 
important from a data mining perspective, and it usually carries critical and useful knowledge. At present, many 
scholars have studied the class imbalance problem, among which there are three main methods to alleviate 
the class imbalance42,43. (1) Data-level methods: in the data preprocessing stage, re-sampling is used to reduce 
the size of the majority class or increase the size of the minority class (or both) to balance the training set and 
eliminate difference. (2) Algorithm-level methods: in the training phase, the learning algorithm is modified to 
be suitable for mining data with imbalanced distributions. (3) Hybrid methods: the advantages of the first two 
methods are combined to alleviate the adverse effects of class imbalance on the results.

Diagnostic framework for chronic diseases
Statement: I confirm that all methods were performed in accordance with the relevant guidelines and regulations.

In this section, we propose a universal and efficient diagnostic framework for diagnosing chronic diseases 
timely and accurately. The proposed framework consists of the NLPNN algorithm and AEPNN algorithm to 
alleviate the problems of feature hiding and class imbalance, respectively.

Network‑limited polynomial neural network.  The PNN algorithm is dedicated to learning the high-
level polynomial feature representation of the data through multi-layer network architecture, and finally, output 
features hierarchically32,33. Although the PNN algorithm has been proven to run in polynomial time, it still has 
a limitation, that is, the depth and width of the network cannot be controlled. Its network depth and width are 
both adaptive, and the criterion for depth stopping is until the training error is zero35. In the worst case, the net-
work depth can be infinitely deepened or the network width can be as large as the number of training samples 
n. This will lead to severe overfitting. Hence, we present an NLPNN algorithm for the early diagnosis of chronic 
diseases to avoid this issue. The structure of NLPNN is shown in Fig. 1a, and the details of the NLPNN algorithm 
applied to chronic diseases diagnosis be described below.

For the early diagnosis of chronic diseases, we denote the labeled training dataset as D = (X , y) , where 
X ∈ R

n×d is the set of n samples with d features; y =
(

y1, y2, . . . , yn
)T is a n-dimensional column vector and 

yi ∈ {−1, 1} , ∀i = 1, 2, . . . , n . Here, yi = 1 means that the i-th sample is labeled as a sick case, and yi = − 1 other-
wise. The M-order multivariate polynomial on the sample xi = (xi1, . . . , xid) ∈ X is written as

(1)p(xi) =
M
∑

j=0

∑

α
(j)

w
α
(j)

d
∏

s=1

xα
(j)
s

is ,

Figure 1.   Flowchart of the proposed algorithms: (a) NLPNN; (b) AEPNN.
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where α(j) is a d-dimensional vector composed of non-negative integers and 
∑d

s=1 α
(j)
s = j ; wα

(j) is a coefficient 
of monomial 

∏d
s=1 x

α
(j)
s

is  of degree j. Represent the value of each polynomial p on n samples by linear projection

According to linear algebra, there are n polynomials p1, . . . , pn , and 
{

(

pi(x1), . . . , pi(xn)
)T

}n

i=1
 form a basis of 

R
n  s p a c e .  T h e r e f o r e ,  t h e r e  i s  a  c o e f f i c i e n t  v e c t o r  ν = (ν1, . . . , νn) ,  s o  t h a t 

∑n
i=1 νipi

(

xj
)

= yj ,∀yj ∈ (y1, . . . , yn)
T ∈ R

n.
The network layer of PNN is constructed by solving the basis of polynomial hierarchically, and each node 

calculates a linear function or weighted product over its input. We denote the j-th node of the i-th layer as ηij(·) , 
which actually represents a feature (original or high-level) of the input data. For the first layer, the j-th node is 

the degree-1 polynomial (or linear) function η1j (x) = [1 x]wj , and the 
{

(

η1j (x1), . . . , η
1
j (xn)

)T
}d+1

j=1

 is the basis 

of all values obtained by a polynomial of degree 1 on the training dataset. They form the columns of matrix 
F1 ∈ R

n×(d+1) and F1i,j = η1j (xi) . So far, a single-layer network has been constructed, and its output spans all the 
values obtained by the linear function on the training sample.

Generally speaking, the basis of the degree-2,3,...M polynomial is also obtained in the same trick. However, we 
find that the basis of the degree-M multiple polynomials is composed of (d + 1)M vector elements. The scale of 
the basis of the polynomial increases exponentially with its degree, which will run into a computational problem.

The work in35 indicates that any degree-m polynomial can be regraded as

where g i(x) and hi(x) are degree-1 and degree-(m− 1) polynomials respectively; k(x) is a polynomial of degree 
not greater than m− 1 . Since all degree-1 polynomials are spanned by the nodes at the first layer of PNN, any 
degree-2 polynomial can be written as

where α(g i)j  , α(hi)
r  , α(k)

j  are scalar multipliers. (4) implies that the construction of the second layer of the network 
is based on the first layer. The matrix [F1F̃2] is formed by concatenating the columns of F1 , F̃2 , which spans all 
values attainable by degree-2 polynomials, and

where the symbol ◦ indicates the Hadamard product; F1 refers to the first column of F; |F| refers to the number of 
columns of F. Similar to degree-1 polynomial, the column subset F2 of F̃2 should be found, so that the column of 
[F1F2] are the basis of column of [F1F̃2] . The second layer of the PNN is constructed by the column of F2 , which 
is the product of two nodes η1i (·) and η1j (·) in the first layer.

The next step is to repeat the above process. Successively, the m = 3, 4, . . . ,M layers of the network are con-
structed. We represent the matrix, written as

Thus, we find a linearly independent column subset Fm of F̃m , which lets the columns of matrix [F Fm] are a 
basis of the columns of the augmented matrix [F F̃m] , where the columns of F =

[

F1 F2 . . . Fm−1
]

 can span the 
values attained by all polynomials for degree at most m− 1 over the training dataset. In addition, it needs to be 
explained that the conversion of F̃m to Fm is achieved by

where the projection matrix W ∈ R
|Fm−1|×|F1| and Wi(s),j(s) =

√
n/

∥

∥F̃ms
∥

∥ . Therefore, when the M-layer network of 
the PNN is constructed, all the values obtained by the polynomial of degree at most M over the training dataset 
can be spanned by the columns of the matrix F. In fact, F stores the high-level features of the input data, the 
deeper layer, the higher feature.

However, for the implementation of NLPNN, we use a parameter � = (d + 1, · · · , d + 1) ∈ Z
M to pre-limit 

the depth and width of the network, which represents that the network consists of M ( |�| ) non-output layers 
and each layer has d + 1 nodes at most. In the first non-output layer, we use singular value decomposition on the 
augmented data matrix [1 X] to obtain its partial orthogonal basis, which forms the d + 1 nodes (select the first 
d + 1 main singular vectors). In the next non-output layer, a standard Orthogonal Least Squares (OLS) procedure 
is utilized to greedily select the partial orthogonal basis which are the first d + 1 relevant features for diagnosis of 
chronic disease according to the established high-level feature set F̃m . Finally, a simple linear classifier νm with 
input data F =

[

F1 F2 . . . Fm
]

 is trained. Therefore, there are M linear classifiers in the output layer. It should 

(2)p  →
(

p(x1), . . . , p(xn)
)T

.

(3)
∑

i

g i(x)hi(x)+ k(x),

(4)
�

i





�

j

α
(g i)
j η1j (x)





�

�

r

α(hi)
r η1r (x)

�

+





�

j

α
(k)
j η1j (x)



,

(5)F̃2 = [
(

F11 ◦ F11
)

· · ·
(

F11 ◦ F1|F1|
)

· · ·
(

F1|F1| ◦ F
1
1

)

· · ·
(

F1|F1| ◦ F
1
|F1|

)

],

(6)F̃m = [
(

Fm−1
1 ◦ F11

)

· · ·
(

Fm−1
1 ◦ F1|F1|

)

· · ·
(

Fm−1
|Fm−1| ◦ F

1
1

)

· · ·
(

Fm−1
|Fm−1| ◦ F

1
|F1|

)

].

(7)Fms := Wi(s),j(s)F
m−1
i(s) ◦ F1j(s), s = 1, . . . , |Fm|,
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be pointed out that each linear classifier νm is trained by a stochastic gradient descent method, which is utilized 
to solve the L2 regularization problem

where ℓi
(

Fmi· · ν, yi
)

= max(0, 1− (Fmi· · ν) · yi) is a hinge loss and Fmi·  represents the i-th row of matrix Fm ; 
�m ∈ � is the regularization factor. Then combined with the value set � of the regularization factor, we check 
the network performance layer by layer on the verification dataset to find the optimal network layer and the best 
regularization factor. Finally, an optimal linear classifier ν∗ is obtained by

and the output is this optimal classifier. The purpose of NLPNN is to adaptively find features related to diagno-
sis from the augmented data that is augmented in terms of its feature space. The detailed process of NLPNN is 
shown in Algorithm 1, which briefly describes the entire process from the establishment of the network layer to 
the acquisition of the output layer.

Algorithm 1: NLPNN Algorithm.
Input: D = (X,y); Ω; Λ.
Output: An optimal linear classifier ν∗.

1 Initialization: F := [ ] and F̃ 1 := [1 X];
2 Solve SVD of F̃ 1: F̃ 1 = UΣWT ;
3 W := [w1 w2 · · · wd+1]; F 1 := F̃ 1W ;
4 for i = 1, · · · , |W | do
5 F 1

i :=
√

nF1
i

‖F1
i ‖

;Wi :=
√

nWi

‖F1
i ‖

;

6 end
7 F := F 1;
8 (ν1, λ1) = argminν,λ

1
n

∑n
i=1 �i (Fi· · ν, yi) + λ‖ν‖2;

9 for m = 2, . . . , |Ω| do
10 Pick a partial orthonormal basis OF of F ’s columns based supervised OLS procedure;
11 y := y −OF (OF )Ty;
12 F̃m

s := Fm−1
i(s) ◦ F 1

j(s), s = 1, . . . , |F̃m|;
13 C := F̃m −OF (OF )T F̃m;
14 Ci =

Ci

‖F1
i ‖

for all i = 1, · · · , |C|;
15 Compute orthonormal basis Oy of y’s columns;
16 Select the first b indices i(1), · · · , i(b) from sort(

∥∥(Oy)TC
∥∥
2 ≥ 0, ‘descend’), where

b ≤ Ω(m);
17 for s = i(1), · · · , i(b) do
18 Wi(s),j(s) =

√
n

‖F̃m
s ‖ ; F

m
s := Wi(s),j(s)F̃

m
s ;

19 Compute orthonormal basis OC of columns of [Ci(1) Ci(2) · · · Ci(b)];
20 OF := [OF OC ];
21 y := y −OC(OC)Ty;
22 end
23 F := [F Fm];
24 (νm, λm)=argminν,λ

1
n

∑n
i=1�i(Fi· ·ν, yi)+λ‖ν‖2;

25 end
26 (ν∗, λ∗) := argminm minνm,λm

1
n

∑n
i=1 �i [F 1 · · ·Fm]i· · νm, yi

)
+ λm‖νm‖2;

(8)min
νm ,�m

1

n

n
∑

i=1

ℓi
(

[F1 · · · Fm]i· · νm, yi
)

+ �m�νm�2,

(9)min
m

min
νm ,�m

1

n

n
∑

i=1

ℓi
(

[F1 · · · Fm]i· · νm, yi
)

+ �m�νm�2,
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Attention‑empowered NLPNN.  Some chronic disease datasets exist the class imbalance problem, where 
sick cases are generally scarce compared to healthy cases. However, the correct diagnosis of the minority sick 
cases among all cases is vital in a healthcare system. The reason is that the cost of misdiagnosing sick cases is 
much higher than healthy cases, where the latter only requires further examination and the former carries a 
life-threatening risk. During the training phase of NLPNN, since the samples of each class in the imbalanced 
dataset are utilized equally, the trained model tends to bias towards the majority class and ignore the samples 
(sick cases) in the minority class. Thus, NLPNN does not perform well in dealing with class imbalance problems 
and causes serious misdiagnosis of minority sick cases. Furthermore, for the early diagnosis of chronic diseases, 
although we are more concerned with the accurate diagnosis of sick cases, we cannot ignore the overall diag-
nostic accuracy. To alleviate the class imbalance problem, we empower the cases with attention (i.e., weight) and 
propose an AEPNN algorithm. AEPNN pays more attention to the cases misdiagnosed by NLPNN by changing 
the importance of these cases. Motivated by committee-based learning25, AEPNN trains and combines multiple 
complementary NLPNN to further improve the performance of NLPNN in alleviating the class imbalance prob-
lem. The structure of AEPNN is shown in Fig. 1b.

For the implementation of AEPNN, we first assign an identical initial weight D1(x) = 1
n to each sample x in 

the training dataset. An NLPNN classifier h1 is trained from the training dataset D1 with the initialized weight 
distribution D1 and h1 ’s error ǫ1 is fed back to the training sample, so that the training sample’s distribution is 
adjusted by D2(x) . Then, the second NLPNN classifier h2 is trained from the training dataset D2 with the weight 
distribution D2 , where the weights of samples misdiagnosed by h1 are increased in D2 to make h2 pay more 
attention to the samples that are misdiagnosed by h1 . This process is repeated until hL is trained after L iterations. 
Finally, the predicted label is obtained through the weighted combination of all NLPNN classifiers. The main 
process is shown in Algorithm 2.

Algorithm 2: AEPNN Algorithm.
Input: D = (X,y); Ω; Λ ; NLPNN algorithm; Number of iterations L.

Output: HL(x) = sign
(∑L

l=1 αlhl(x)
)
.

1 Initialize: the sample weight distribution D1(x) = 1
n
;

2 for l = 1, 2, . . . , L do
3 hl = NLPNN (D,Dl);
4 εl =

∫
x∼Dl

e−f(x)h(x)p(x)dx;
5 if εl > 0.5 then
6 break
7 end

8 αl = 1
2 ln

(
1−εl
εl

)
;

9 Dl+1(x) =
Dl(x)e−αlhl(x)f(x)

Zl
;

10 end

Specifically, we denote the true label corresponding to sample x as f (x) , and the predicted label obtained by 
the NLPNN classifier as h(x) . Obviously, the loss function ǫ is defined as

where p(x) represents the probability density function of x following the data distribution D . However, ǫ has poor 
mathematical properties (non-convex and non-continuous), which makes it very difficult to be solved directly. 
To optimize the loss function more conveniently, we select a convex and continuously differentiable exponential 
loss function (11) to replace the loss function (10). Lemma 1 proves that ℓexp(h | D) is the consistent replacement 
of the loss function ǫ , which means that (11) can replace (10) to update the weight Dl(x) of the sample and the 
weight αl of the classifier in Algorithm 2.

Lemma 1  The consistent replacement of the loss function ǫ is the exponential loss function

Proof  Please see Appendix 1. 	�  �

In Algorithm 2, the h1 is obtained by applying the NLPNN classifier to the initial samples distribution D1 . 
When hl is generated based on distribution Dl , the weight αl of the classifier hl is obtained iteratively by minimize 
the exponential loss function ℓexp(αlhl | Dl) . From Lemma 2, we know that αl = 1

2 ln
(

1−ǫl
ǫl

)

 is a necessary and 

(10)ǫ =
∫

x∼D

I
(

f (x) �= h(x)
)

p(x)dx,

(11)ℓexp(h | D) =
∫

x∼D

e−f (x)h(x)p(x)dx.
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sufficient condition for the exponential loss function ℓexp(αlhl | Dl) to obtain the minimum value. It means that, 
under the encouragement of the weight αl , the classifier hl can achieve the best performance on the dataset Dl 
with distribution Dl.

Lemma 2  The exponential loss function ℓexp(αlhl | Dl) at α∗
l hl obtain the minimum value, where α∗

l = 1
2 ln

(

1−ǫl
ǫl

)

 
and ǫl =

∫

x∼Dl
I(f (x) �= hl(x))p(x)dx.

Proof  Please see Appendix 2. 	�  �

Hl is the voting result of the first l NLPNN classifier {hi}l1 with weights {αi}l1 , and its error can be corrected by 
the next classifier hl+1 . Ideally, hl+1 can correct all errors of Hl by minimizing the exponential loss 
ℓexp(Hl + h | D) . From Lemma 3, all errors of Hl can be corrected by the NLPNN classifier hl+1 which is trained 

based on the sample weight distribution Dl+1(x) = Dl(x)
e−αl f (x)hl (x)

Zl
 , where 1Zl =

∫

x∼D

[

e−f (x)Hl−1(x)
]

p(x)dx
∫

x∼D

[

e−f (x)Hl (x)
]

p(x)dx
 is the 

normalization factor to ensure that Dl+1 is a distribution.

Lemma 3  Assume that the base classifier h1 is generated based on the data distribution D1 , and αi is the weight of 
the classifier hi , Hl(x) = sign

(

∑l
i=1 αihi(x)

)

 , l = 1, 2, . . . , then all the false predictions of Hl can be corrected 
through the ideal base classifier hl+1 , which is generated based on the data distribution

Proof  Please see Appendix 3. 	�  �

In summary, we iteratively optimize the exponential loss function by introducing two kinds of attention ( D 
and α ) to achieve the superiority of AEPNN on class-imbalanced datasets.

Experimental results
Some DNN models are not suitable for classification tasks with the small-scale dataset due to the over-fitting 
problem. However, the PNN-based deep learning algorithm performs well for the early diagnosis of chronic 
diseases with the small-scale dataset, due to its unique network structure. We select five state-of-the-art machine 
learning algorithms as the baseline algorithms, i.e. SVM44, LR45, KNN46, DT47, and multi-layer perceptron 
(MLP)48.

Chornic disease datasets.  To verify the effectiveness of the proposed algorithm in the early diagnosis 
of chronic diseases, we select nine public and two private chronic disease datasets for experiments. Nine pub-
lic chronic disease datasets (i.e., http://​archi​ve.​ics.​uci.​edu/​ml, https://​www.​kaggle.​com/​datas​ets) include CKD, 
Pima Indian diabetes dataset (PIMA), CVD, Heart Disease Dataset (Heart), Framingham Heart Disease data-
set (Fra_Heart), Hepatitis dataset (Hep), Breast Cancer Wisconsin dataset (BCW) in UCI Machine Learning 
Repository, Type 2 Diabetes Mellitus Dataset (T2DM) and Gestational Diabetes Mellitus dataset (GDM) in the 
Tianchi Precision Medicine Competition. They are scarce and precious, but some of them have problems, such 
as small size, class imbalance, and missing value. Two private chronic disease datasets (Pri_hyper dataset and 
Pri_diab dataset) are collected from a district in Chongqing, China. The Pri_hyper dataset consists of the health 
records of hypertensive patients and healthy people. The Pri_diab dataset consists of the health records of dia-
betic patients and healthy people. The composition details of the selected datasets are listed by Table 1, in which 

(12)Dl+1(x) = Dl(x)e
−f (x)αlhl(x)

∫

x∼D
e−f (x)Hl−1(x)p(x)dx

∫

x∼D
e−f (x)Hl(x)p(x)dx

.

Table 1.   The composition details of chronic disease datasets.

Datasets Features Samples Positive:Negative Missing

CKD 24 400 1:0.6 No

PIDD 8 768 1:1.87 No

T2DM 40 5642 1:11.19 Yes

CVD 11 70000 1:1.001 No

Heart 13 1025 1:0.95 No

GDM 83 1000 1:1.13 Yes

Fra_Heart 15 4240 1:5.58 Yes

Hep 19 155 1:0.24 Yes

BCW 10 699 1:1.9 Yes

Pri_hyper 33 9091 1:1.13 No

Pri_diab 28 14,525 1:12.78 No

http://archive.ics.uci.edu/ml
https://www.kaggle.com/datasets
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column Datasets is shorthand for the name of the dataset; column Features represents the number of features; 
column Samples represents the number of samples; column Positive: Negative represents the ratio of the number 
of positive and negative samples; column Missing shows whether there are missing values in the corresponding 
dataset. Consistently, we split each chronic disease dataset randomly into a training dataset and testing dataset 
with 8:2, and maintain the distribution of the class before the split. For baseline algorithms that have to process 
missing values and regularize data, we fill the missing values with zeros and regularize the data. The implementa-
tion of proposed algorithms does not require any other data preprocessing technology.

Evaluation measurements.  For the early diagnosis of chronic diseases, the generalization performance 
can be estimated on the test dataset. In addition to using the area under the receiver operating characteristic 
curve (AUC) to evaluate the performance of the model, we also selected the following evaluation indicators to 
evaluate the proposed algorithm:

•	 Accuracy = TP+TN
TP+TN+FP+FN  represents the ratio of the number of correctly predicted specific classes to the 

total number of samples.
•	 Specificity = TN

TN+FP represents the ratio of the number of correctly predicted healthy cases to the total healthy 
cases.

•	 Precision = TP
TP+FP represents the ratio of the number of correctly predicted sick cases to the total predicted 

sick case.
•	 Recall = TP

TP+FN  represents the ratio of the number of correctly predicted sick cases to the total number of 
sick cases.

•	 F1_score = 2∗Precision∗Recall
Precision+Recall = 2∗TP

N+TP−TN  is defined based on the harmonic average of precision and recall.

where TP, FP, TN, and FN represent true positive, false positive, true negative and false negative respectively; N 
is the total number of samples.

Comparison of performance.  We investigate the impact of different network depths � and regularization 
factor � in the NLPNN model for the diagnostic performance of eleven chronic diseases, where � ∈ {2, 3, 4, 5} 
(network layer plus output layer) and � ∈ � = {10−3, 10−2, 10−1, 100, 101} . To visually find the most suit-
able � and � , we combine them into a binary set (�, �) , and establish a bijection function between (�, �) and 
� ∈ {1, 2, · · · , 20} described in Table 2. We set � as the horizontal axis to indirectly draw the generalization per-
formance curve of NLPNN with network depth and regularization factor. From Fig. 2, we can see that NLPNN 
has two advantages in the diagnosis of all chronic diseases, that is, there is no over-fitting phenomenon; the 
training accuracy is increasing with the increase of the number of network layers (it can be observed that when 
�=1,6, 11,...). However, different � values will affect the performance of the NLPNN algorithm, the impact on 
different chronic disease datasets is different.

Figure 2a shows that NLPNN can achieve 100% generalization performance on the CKD dataset when 
� = {1, 2} . Then, with the increase of � and the change of � , the test performance decreases somewhat, but both 
fluctuate within the range of 5%. It means that only a shallow polynomial neural network model can accurately 
diagnose chronic kidney disease. We can see from Fig. 2b, c, g and k that the � value has almost no effect for the 
diagnostic accuracy of diabetes and heart disease. In particular, for the diagnosis of hepatitis B disease (Fig. 2h), 
although the accuracy of the NLPNN model does not vary greatly, its specificity is unstable with the change of 
� value. This reason is that the Hep dataset has only 155 samples and the negative samples only account for 24% 
of the total samples. In addition, we can find the best output performance P∗ of NLPNN and the corresponding 
value �∗ on eleven chronic disease datasets from the Fig. 2. Therefore, according to Table 2, we can find the 
network structure �∗ and the regularization factor �∗ when NLPNN achieves the best performance, as shown 
in Table 3.

The generalization performance comparison of baseline algorithms and NLPNN algorithm on eleven chronic 
disease datasets are shown in Table 4, which lists the test performance results under the unified standard. In gen-
eral, the diagnostic accuracy of NLPNN on the eleven chronic disease datasets is better than baseline algorithms. 
Especially for the diagnosis of chronic kidney disease and breast cancer, NLPNN can achieve a generalization 
accuracy, recall, and F1_score, of 1.0000, 1.0000, and 1.0000, respectively. In addition, NLPNN also shows sig-
nificant advantages in the diagnosis of Hepatitis disease, and its generalization accuracy is about 10% better than 
the baseline algorithms (SVM:0.8000, LR: 0.8333, KNN: 0.8000, DT: 0.8333, MLP: 0.8000).

Table 2.   The bijective relationship between (�, �) and �.

Regularization factor (�)

10
−3

10
−2

10
−1

10
0

10
1

 Depth (�)

2 1 2 3 4 5

3 6 7 8 9 10

4 11 12 13 14 15

5 16 17 18 19 20
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Figure 3 plots the ROC curves to further compare the performance of the NLPNN algorithm and the baseline 
algorithms. The AUC value of the proposed algorithm is generally better than baseline algorithms. It is also worth 

Figure 2.   Training and test performance versus (�, �) on eleven chronic disease datasets.
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Table 3.   Optimal parameter settings for different datasets.

Network parameter

�
∗ �

∗

 Dataset

CKD
[

24
]

10−3

PIMA
[

9 9 9 9
]

10−2

T2DM
[

32 32 32
]

10−3

CVD
[

12 12 12 12
]

10−3

Heart
[

13 13
]

10−2

GDM
[

84
]

10−2

Fra_Heart
[

14 14 14 14
]

10−2

Hep
[

14 14 14 14
]

10 0

BCW
[

11 11 11 11
]

10−2

Pri_hyper
[

32 32
]

10−2

Pri_diab
[

29 29 29
]

10−1

Table 4.   Performance of different algorithms. The best results for each dataset are marked in bold.

Abbreviation Acc Re F1_score Abbreviation Acc Re F1_score

CKD

SVM 0.9875 0.9800 0.9899

Fra_Heart

SVM 0.8349 0.0000 0.0000

LR 0.9875 0.9800 0.9899 LR 0.8420 0.1000 0.1728

KNN 0.9500 0.9200 0.9583 KNN 0.8337 0.0357 0.0662

DT 0.9750 0.9600 0.9796 DT 0.8361 0.0643 0.1146

MLP 0.9875 0.9800 0.9899 MLP 0.8314 0.1357 0.2099

NLPNN 1.0000 1.0000 1.0000 NLPNN 0.8726 0.0614 0.1148

PIDD

SVM 0.7792 0.5517 0.6531

Hep

SVM 0.8000 1.0000 0.8846

LR 0.7987 0.6207 0.6990 LR 0.8333 0.9565 0.8979

KNN 0.7662 0.4827 0.6086 KNN 0.8000 0.9130 0.8749

DT 0.7468 0.4310 0.5618 DT 0.8333 1.0000 0.9019

MLP 0.6559 0.2414 0.3457 MLP 0.8000 0.9130 0.8749

NLPNN 0.8247 0.6774 0.7568 NLPNN 0.9310 1.0000 0.9565

T2DM

SVM 0.9179 0.0000 0.0000

BCW

SVM 0.9714 0.9545 0.9545

LR 0.9202 0.0733 0.1311 LR 0.9714 0.9545 0.9545

KNN 0.9164 0.0092 0.0176 KNN 0.9714 0.9545 0.9545

DT 0.9187 0.0092 0.0182 DT 0.9500 0.9545 0.9231

MLP 0.9179 0.0092 0.0180 MLP 0.3143 1.0000 0.4783

NLPNN 0.9232 0.0097 0.0192 NLPNN 1.0000 1.0000 1.0000

CVD

SVM 0.7244 0.6401 0.6977

Pri_hyper

SVM 0.7372 0.6162 0.6859

LR 0.7249 0.6858 0.7125 LR 0.7350 0.6494 0.6953

KNN 0.6354 0.5389 0.5950 KNN 0.7570 0.6765 0.7216

DT 0.7247 0.6730 0.7085 DT 0.7224 0.4663 0.6100

MLP 0.5385 0.9815 0.6789 MLP 0.7009 0.6210 0.6591

NLPNN 0.7265 0.6847 0.7161 NLPNN 0.7624 0.6706 0.7266

Heart

SVM 0.8780 0.9307 0.8826

Pri_diab

SVM 0.9280 0.0000 0.0000

LR 0.8780 0.9109 0.8804 LR 0.9315 0.0478 0.0913

KNN 0.9024 0.8911 0.9000 KNN 0.9294 0.1244 0.2023

DT 0.8488 0.8317 0.8442 DT 0.9325 0.0718 0.1327

MLP 0.8878 0.8911 0.8866 MLP 0.9322 0.0861 0.1545

NLPNN 0.9073 0.9320 0.9100 NLPNN 0.9360 0.0053 0.0106

GDM

SVM 0.6500 0.5591 0.5977

LR 0.6150 0.5376 0.5649

KNN 0.6200 0.4194 0.5064

DT 0.6950 0.5269 0.6164

MLP 0.6250 0.4839 0.5455

NLPNN 0.7300 0.7021 0.7097
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noting that in the diagnosis task of chronic kidney disease and breast cancer, the NLPNN model is an “ideal 
model” with an AUC value of 1 (Fig. 3a, i).

Figure 3.   ROC curves of different algorithms with the corresponding AUC values on chronic disease datasets.
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In this paper, we not only pay attention to the overall accuracy of the model in the diagnosis of chronic dis-
eases but also pay more attention to whether the model can accurately diagnose sick cases (positive samples). 
That is, we hope that the recall of the model is as high as possible on the premise that the overall accuracy is 
high. For T2DM, CVD, Fra_Heart, and Pri_diab datasets, we observe that the ratio of the number of correctly 
predicted sick cases to the total number of sick cases is low, that is, the recall rate is low. The reason is that there 
is a class imbalance problem in these datasets. To solve this problem, the AEPNN algorithm 2 is proposed in 
“Diagnostic framework for chronic diseases” section. Because the NLPNN algorithm is a strong classifier, we do 
not need too many individual classifiers, whose number is equal to the number of iterations. The test performance 
will change with the increase of the number of training rounds of the NLPNN algorithm. Although the overall 
diagnostic accuracy decreases slightly, the diagnostic accuracy of sick cases has been significantly improved. We 
choose the number of iterations corresponding to the maximum value of the difference between the growth rate 
of recall and the decrease rate of accuracy as the final number of training rounds of the NLPNN algorithm to 
obtain the best performance. Figures 4, 5, 6, 7 show the performance of the proposed algorithm when applied to 
the Fra_Heart, T2DM, Pri_diab, and CVD datasets at different iterations of NLPNN, respectively. Comprehen-
sive analysis with Table 1, we can see that the higher the class imbalance ratio of chronic disease data, the more 
obvious AEPNN improves the recall.

Figure 4.   The test performance versus number of iteration on Fra_Heart dataset: (a) generalization 
performance; (b) performance growth rate.

Figure 5.   The test performance versus number of iteration on T2DM dataset: (a) generalization performance; 
(b) performance growth rate.
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The generalization performance of AEPNN on the Fra_Heart dataset is shown in Fig. 4a. The performance 
growth rate is calculated based on the number of NLPNN classifiers being one. From Fig. 4b, we observe that the 
recall has a growth rate of close to 300% when the number of NLPNN classifiers is six, which is chosen as the best 
number of NLPNN classifiers for the diagnosis of heart disease. The most surprising thing is the performance 
of AEPNN on the T2DM and Pri_diab datasets. As it can be seen from Figs. 5a and 6a, when the number of 
NLPNN is greater than four, the recall is significantly improved. When the number of NLPNN reaches ten, the 
growth rate of the recall approaches 4000% on the T2DM dataset and 6000% on the Pri_diab dataset. We can 
also know that the growth rate of recall is much higher than the decreased rate of accuracy from Figs. 5b and 6b.

From Fig. 7, we can see that although the performance of AEPNN on the CVD dataset is not significantly 
improved, the growth rate of recall is still higher than the decreased rate of accuracy. It indicates that the pro-
posed algorithm is effective for the improvement of recall. The advantage it brings is that it can reduce the missed 
diagnosis rate for sick cases so that more patients with chronic diseases can treat and control the development 
of the disease in time. We also quantitatively compare the generalization performance of AEPNN and NLPNN 
algorithms by introducing G_mean =

√

Recall ∗ Specificity , which is a powerful indicator to evaluate the clas-
sification accuracy for class imbalanced datasets49. From Table 5, we can see that AEPNN can effectively improve 

Figure 6.   The test performance versus number of iteration on Pri_diab dataset: (a) generalization performance; 
(b) performance growth rate.

Figure 7.   The test performance versus number of iteration on CVD dataset: (a) generalization performance; (b) 
performance growth rate.
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G_mean by combining multiple NLPNNs. In particular, AEPNN can increase the G_mean from 0.0985 to 0.5728 
on the T2DM dataset and from 0.0731 to 0.5385 on the Pri_diab dataset by combining ten NLPNNs.

Conclusion
In this paper, we have investigated a universal learning algorithm based on PNN for the early diagnosis of chronic 
diseases. Five state-of-the-art baseline algorithms are selected to compare with the NLPNN algorithm. Experi-
ment results show that NLPNN achieves the best accuracy on the nine chronic disease datasets. In particular, 
for the early diagnosis of chronic kidney disease and breast cancer disease, the generalization accuracy, recall, 
specificity, and AUC value of this model have achieved 1.000, 1.000, 1.000, and 1.000, respectively. Furthermore, 
an AEPNN algorithm is further proposed to alleviate the class imbalance problem in chronic disease datasets. 
We aim to increase the probability of the sick cases being accurately diagnosed, that is, to increase the recall value 
of the model. Experiments on the four chronic disease datasets with class imbalance problems have confirmed 
the effectiveness of our model. It is noted that the AEPNN model performs best on the Pri_diab dataset with a 
positive-negative sample ratio of 1:12.78, and the growth rate of its recall is close to 6000%. The proposed algo-
rithm can effectively assist chronic disease experts in quickly screening patients with chronic diseases, and save 
the cost of further testing for patients. It should be pointed out that although our algorithm performs better on 
small-scale datasets, the PNN-based model also shows great application potential on large-scale datasets, such 
as protein-protein interaction prediction and disease diagnosis based on medical images.

In future work, we will further investigate the PNN-based model in disease diagnosis. Although PNN can 
effectively capture hidden features parameter-free, there is still a problem with how to adaptively select the best-
hidden features from the network architecture of PNN to achieve competitive performance. Thus, we consider 
combining PNN with computational intelligence algorithms (such as monarch butterfly optimization (MBO), 
earthworm optimization algorithm (EWA), and elephant herding optimization (EHO)) to improve the perfor-
mance of disease diagnosis.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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