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Noise resilient leaky 
integrate‑and‑fire neurons based 
on multi‑domain spintronic devices
Cheng Wang*, Chankyu Lee & Kaushik Roy

The capability of emulating neural functionalities efficiently in hardware is crucial for building 
neuromorphic computing systems. While various types of neuro‑mimetic devices have been 
investigated, it remains challenging to provide a compact device that can emulate spiking neurons. 
In this work, we propose a non‑volatile spin‑based device for efficiently emulating a leaky integrate‑
and‑fire neuron. By incorporating an exchange‑coupled composite free layer in spin‑orbit torque 
magnetic tunnel junctions, multi‑domain magnetization switching dynamics is exploited to realize 
gradual accumulation of membrane potential for a leaky integrate‑and‑fire neuron with compact 
footprints. The proposed device offers significantly improved scalability compared with previously 
proposed spin‑based neuro‑mimetic implementations while exhibiting high energy efficiency and 
good controllability. Moreover, the proposed neuron device exhibits a varying leak constant and a 
varying membrane resistance that are both dependent on the magnitude of the membrane potential. 
Interestingly, we demonstrate that such device‑inspired dynamic behaviors can be incorporated 
to construct more robust spiking neural network models, and find improved resiliency against 
various types of noise injection scenarios. The proposed spintronic neuro‑mimetic devices may 
potentially open up exciting opportunities for the development of efficient and robust neuro‑inspired 
computational hardware.

The significant advancements of deep artificial neural networks (ANNs) in various domains of artificial intel-
ligence (AI) such as image  classification1, autonomous  driving2, and natural language  processing3 are accom-
panied by an exponential increase in computational complexity. The high computational requirements from 
data-intensive AI algorithms have placed a pressing challenge for developing efficient AI hardware. At present, 
while ANNs have demonstrated human-level performance on various cognitive  tasks4, the power consump-
tion of most AI algorithms implemented in state-of-the-art hardware is still substantially higher than that of a 
human brain. Inspired by the ultra-high efficiency and robustness of brains, neuromorphic computing aims to 
emulate behaviors of biological systems in order to achieve high efficiency at cognitive processing. Spiking neural 
networks (SNNs), which incorporate temporal dynamics of spikes as inspired by biological neural systems, has 
become an emerging paradigm that could potentially provide efficient and reliable platforms for AI  processing5–7.

In order to construct efficient spike-based computational systems, it is imperative to provide compact and 
energy-efficient hardware emulation of key building blocks such as neurons and synapses. However, implement-
ing bio-plausible neuronal functionalities based on conventional CMOS circuits typically desires a large number 
of interconnected transistors, which can be both area expensive and power  hungry8. Emerging beyond-CMOS 
technologies, such as various non-volatile memories (NVM), are well-positioned for realizing neuromorphic 
building blocks efficiently with compact footprints. Prototypes of spiking neurons have been recently demon-
strated exploiting various NVM technologies such as Ag-oxide  memristor9 and phase change  material10, fer-
roelectric field-effect transistor(FeFET)11, as well as  spintronics12, 13. Among the various approaches based on 
emerging technologies, spintronic implementations provide the highest endurance thanks to the absence of ion 
motions in the writing  process14. Since the state of neurons are updated frequently during both inference and 
training, the inherent high endurance of spintronics makes it particularly appealing for emulating neurons. While 
implementations of binary or stochastic neurons can be directly achieved exploiting the bidirectional polarization 
of  magnetization13, mimicking analog-valued functionality (such as the accumulation of membrane potential 
in leaky integrate-and-fire neurons) remains challenging using spin-based technologies. Magnetic domain wall 
motions and skyrmions have been proposed to provide continuous modulation of states in spintronic devices, 
but large footprints (1 μm) and special designs of device geometry are  required12, 15. In addition, the motions of 

OPEN

Department of Electrical and Computer Engineering, Purdue University, West Lafayette 47907, IN, USA. *email: 
wang4700@purdue.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-12555-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8361  | https://doi.org/10.1038/s41598-022-12555-0

www.nature.com/scientificreports/

domain walls and skyrmions are unpredictable and difficult to control due to strong sensitivity to shape/defect-
related local pinning in fabricated devices, leading to undesirable device variability and repeatability issues that 
can significantly hinder large-scale system  implementations16.

In this work, we propose a new spintronic device model to provide hardware emulation of leaky integrate-
and-fire (LIF) neurons by exploiting the magnetization dynamics of multi-granular structures. Leveraging the 
significant advances of magnetic storage medium over the past few decades, magnetic granular structures are 
capable of sustaining multiple domains in devices with critical dimensions well below 100  nm17, 18. By incorporat-
ing an exchange-coupled composite free layer into the magnetic tunnel junction (MTJ), we demonstrate through 
micromagnetic simulations that near-continuous resistive modulation can be achieved based on the partially 
switched magnetic domains in the composite MTJ with a lateral dimension of 75 nm x 75 nm. A spin-orbit 
torque (SOT) MTJ with the proposed free layer achieves continuous modulations of MTJ conductance under 
input spikes, enabling a direct representation of the analog-valued membrane potential in the LIF neuron dynam-
ics. Moreover, we observe from analyzing the micro-magnetic device simulations that the proposed spintronic 
neuronal device exhibits intriguing dynamics under spike excitation. In contrast to the standard LIF neuron 
model which has a constant leak time constant and a constant membrane resistance (defined as the sensitivity 
of membrane potential to input current magnitude), we find that the behavior of the proposed device can be 
characterized by a varying time constant and a varying membrane resistance. Specifically, both the membrane 
leak time constant and the membrane resistance are dependent on the transient membrane potential. Interest-
ingly, we find that training SNNs for image classifications on the CiFAR-10  dataset19 using the device-inspired 
neuronal behavior achieves comparable test accuracy within fewer training epochs in comparison to training 
with the baseline neuron model. Moreover, we observe that the SNN incorporating the behavior of the proposed 
spintronic neurons demonstrates improved robustness under various types of noise injection, and such noise 
resiliency maintains under realistic device variations.

Device and material fundamentals
Spin‑orbit torque magnetic tunnel junctions (SOT‑MTJs). The proposed neuromorphic neuronal 
device is based on the structure of an MTJ, which has been developed for magnetic random access memory 
(MRAM). As is shown in Fig.  1, an MTJ is comprised of a tunnel barrier (MgO) sandwiched between two 
layers of ferromagnetic thin films—a reference layer (RL) with fixed magnetization and a free layer (FL) with 
changeable magnetic orientations. Conventionally, the FL of a fabricated device with critical dimension < 200 

Figure 1.  (a) High and low resistance states of an MTJ under voltage sweeps. The MTJ switches between 
parallel state (P) and anti-parallel (AP) state due to STT. The MTJ current–voltage characteristics are from 
device conductance modeling based on non-equilibrium Green’s function (NEGF)  formalism28. (b) Device 
structure of the proposed MTJ with an exchange-coupled free layer. Multi-domain magnetization is induced by 
the granular layer in the composite free layer.
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nm has a uniform magnetic ordering due to the combined effect of ferromagnetic exchange interactions and 
magnetic anisotropy, providing bi-stable MTJ resistance states following the relative orientation of the FL and 
RL being parallel  (RP) or anti-parallel  (RAP). The tunneling magneto-resistance (TMR) ratio, defined as TMR = 
(RAP − RP)/RP , quantifies the range of an MTJ’s resistance variation and will be utilized as the reading mecha-
nism in our proposed device.

The magnetization of the FL in an MTJ can be switched by various types of stimuli such as external magnetic 
fields or spin (polarized) currents. Current-driven switching is preferred for scalable device  technologies20. 
Charge current is spin-polarized as it goes through an MTJ, and the FL can be switched by the spin transfer torque 
(STT) induced by the spin-polarized current. Depending on the polarity of the current, the FL can be switched 
between the P and AP directions with respect to the  RL21. Recently, it is found that in MTJ-heavy metal(HM) 
heterostructures, the FL can also be switched by spin-orbit torque (SOT) induced by a transverse electric current 
flowing in the adjacent heavy-metal  layer22. SOT switching provides the opportunity of separate read and write 
paths, and eliminates the issue of applying large currents through tunnel barriers during STT write operations. 
Note that an SOT-MTJ requires a larger area than an STT-MTJ due to the 3-terminal configuration, and an extra 
transistor may be required in addition to the 1T/1R STT-MTJ  cell23. But density requirement is less stringent for 
neuron activation compared to that for implementing synaptic weight storage, and SOT-MTJ may still achieve 
better density than CMOS-based implementations for emulating neurons.

Multi‑domain granular magnetic structure. In order to emulate the integration of membrane poten-
tial in a LIF neuron, it is desirable to provide reliable devices with continuous conductance modulation. In 
this work, we consider magnetic granular nanostructures for generating multiple states based on the switch-
ing dynamics of multi-domain magnetizations. The advances of magnetic multi-granular materials have been 
one of the major driving forces behind the recent progress of magnetic data storage in hard disk drive (HDD) 
industry, reaching an ultrahigh areal density of over terabytes per square inch (Tb/in2) with the averaged grain 
size below 10  nm24, 25. In a typical HDD granular storage medium, weakly coupled magnetic cores formed by 
Co-rich alloys are segregated by non-magnetic materials as grain boundaries. Since bits of information (“0” or 
“1”) are recorded as magnetic flux transitions across adjacent magnetic domains, granular boundaries play the 
critical role of reducing inter-granular exchange coupling and thus bringing down the magnetic cluster sizes. In 
the state-of-the-art multi-granular recording medium, it is observed that the domain widths in the down-track 
direction are reduced to 10–30 nm (in contrast to the domain size of 500–1000 nm in continuous ferromagnetic 
thin  films26), providing a cost-effective mechanism for high-density data storage without involving complex pro-
cesses of lithography. Note that granular materials with both in-plane and perpendicular magnetic anisotropy 
have been developed over the past decades. Depending on the material synthesis processes, magnetizations in 
the grains can be oriented following a uniaxial anisotropy direction with some distributions in the energy of 
magnetic anisotropy and the grain  size17, 25.

By exploiting the nano-scale magnetic domains enabled by granular thin films, a multi-state MTJ can be 
made with a composite FL block based on exchange-coupled continuous/granular  bilayer27. As is illustrated in 
Fig. 1, the continuous CoFeB layer of a regular MTJ is placed in proximity of a granular layer. The inter-layer 
magnetic coupling between the top continuous and bottom granular layers can be controlled by a thin non-
magnetic exchange-coupling layer (typically made from Ru-rich alloy). The top continuous layer now serves as 
the sensing block to utilize the TMR reading mechanism, while the bottom granular layer serves as the block for 
information storage. In order to induce “fractured” magnetic domains, in addition to the binary “P” and “AP” 
configurations in the top block, a strong exchange-coupling is desired between the continuous and granular 
blocks. Therefore, when a varying fraction of the grains are aligned with the RL, intermediate magnetization 
states will emerge, leading to resistance modulation in such magneto-resistive devices. Although the usage of 
multi-granular systems has been widely applied for magnetic HDD industry, the potential of exploiting such 
scalable multi-domain magnetic structures for neuromorphic hardware is largely unexplored. In the following 
subsection, we will elaborate on the idea of leveraging the characteristics of magnetic granular nanostructures 
for building non-volatile spiking neurons.

Non‑volatile LIF neuron based on multi‑state SOT‑MTJ
Multi‑state SOT‑MTJ. As is illustrated in Fig. 2, a multi-state SOT-MTJ is proposed exploiting the multi-
domain magnetization in the composite FL. The sensing of the resistive states is done by monitoring the voltage 
across MTJ, utilizing the TMR mechanism. The MTJ conductance can be modeled by parallel conductance 
channels  GP and  GAP, where the proportions of channels are determined by the magnetic domain configura-
tion of intermediate states. As for write operation, we propose to use MTJ with SOT writing (SOT-MTJ) in our 
spin-based neurons for improved writing endurance and speed. Since it is desirable for neuronal hardware to 
have frequent and fast updates of the activation values, SOT-MTJ with the write current flowing through the 
HM layer, unlike a standard MTJ where the write current tunnels through the MgO, is preferred for endur-
ance concerns. Depending on the duration and magnitude of input charge currents in the heavy metal layer 
 (IHM), the composite FL can be partially switched. Conceptually, an inactive neuron has most of the device area 
unswitched, and a larger portion of the total device area being aligned to RL indicates that the neuron is closer to 
saturation under the input stimuli, as shown in the transition from point A to point D in Fig. 2. In the illustrated 
device, the magnetic granular structure has an in-plane uniaxial anistropy along the X direction. Note that both 
in-plane and perpendicular anisotropy can be exploited to construct an MTJ with exchange-coupled free layer. 
We choose to focus on in-plane anisotropy in the rest of the discussions, since deterministic SOT-switching 
of in-plane magnetization can be realized without the assistance of an external field or additional symmetry-
breaking  methods29.
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We investigate the magnetization dynamics of the proposed multi-level device based on  MuMax3  simulation30. 
 MuMax3 is an open-source GPU-accelerated micromagnetic simulation program, where nano-scale temporal 
and spatial magnetization evolution is solved using a finite-difference discretization. Bilayer structures with 
lateral dimensions of 75–100 nm comprising the continuous cap layer and granular bottom layer are modeled. 
The thickness of the top layer is kept at 1 nm to make sure that the top layer can be fully controlled by the bot-
tom layer, while the granular layer is set at 6–10 nm in order to provide sufficient thermal stability based on 
realistic magnetic anisotropy energy  Ku = 0.4e6 J/m3. The inter-layer Ruderman–Kittel–Kasuya–Yosida (RKKY) 
exchange coupling coefficient is set to be strong between the top and bottom (see “Methods” for more details). 
Granular configurations with an average grain size of 8–10 nm are introduced by utilizing the built-in extension 
of Voronoi tessellation in MuMax. The variance of magnetic properties among grains is introduced by adding a 
Gaussian distribution to the Ku at initialization, approximating a 20–25% switching field distribution as observed 
in experiments on magnetic granular structures. Further details can be found in “Methods” Section.

As shown in Fig. 2b The normalized magnetization shows gradual switching from completely AP (normal-
ized  Mx = − 1) to P (normalized  Mx = 1) over time under repetitive pulses of input current. The observed sloped 
switching of the magnetization, instead of a step-like reversal, validates the feasibility of utilizing the magnetic 
switching to represent a continuously varying membrane potential. Different mechanisms can contribute to 
the observed gradual magnetization switching. First, the stochastic nature of magnetization dynamics under 
thermal agitation could lead to the non-uniform onset of switching of individual grains under the input cur-
rents. Moreover, our simulations include distributions of switching energy as well as the role of magneto-static 
interactions among the grains. It is found that reproducible non-coherent partial switching can be achieved when 
monitoring an ensemble of more than 50 nano-grains, corresponding to a lateral dimension of 75 nm with the 
averaged grain size of 8–10 nm.

Noticeably, during the process of switching under current pulses, the total magnetization always shows some 
decaying at the end of each pulse. The decay is caused by the switching of local magnetic moments under the 
combined influence of thermal agitation, inter-granular exchange coupling, and the demagnetizing field due 
to magnetic dipole interaction. When the input pulse is gone, some of the switched grains may flip due to the 
combined force of thermal attempt and local dipole interactions. As discussed further in the following section, 
the observed decay of magnetic signal can be exploited to imitate the leak effect for a LIF neuron model. Note 
that most of the decay in magnetization occurs within the first few nanoseconds after input pulses, and the 
intermediate states with partially switched domains stabilize, thanks to sufficient average thermal stability of 
the magnetic grains. The stability of intermediate states enables non-volatility in these analog neuronal devices, 
potentially leading to high energy efficiency by reducing the need to offload the intermediate neuronal states 
to off-chip memory.

Figure 2.  Mumax simulation of spin current driven multi-domain switching. (a) Device structure of a 
spin-orbit-torque driven MTJ with the exchange-coupled FL. (b) Evolution of the normalized  MX dynamics 
under input spikes. The spikes have a magnitude of 3.3e11 A/m2 with duration of 0.25 ns. (c) Snapshots of the 
magnetization during the progressive switching process. The transitions from blue to red represent the switching 
of local magnetic moments from  MX/Ms = − 1 to  MX/Ms = 1.
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LIF non‑volatile neuron circuit block and firing dynamics. The key components in hardware emu-
lation of the LIF neuronal dynamics are membrane potential and leak. We use magneto-resistive states of the 
analog MTJ to represent a (normalized) membrane potential, which can be linearly mapped to the magnetiza-
tion  Mx (ranged between -Ms and  Ms). The integration process of membrane potential can be emulated by the 
gradual non-coherent multi-domain magnetization switching demonstrated in the earlier section. As for the 
leak, we rely on the observed relaxation of local magnetic moments under the influence of thermal agitation and 
dipole interaction. The LIF neuron model can now be mathematically expressed as the following: 

 where Vmem is the membrane potential, I represents the input current obtained from the weighted summation 
of spiking inputs from pre-neurons, τ denotes the time constant for membrane potential leak, and Rmem is the 
effective neuron membrane resistance which characterizes the sensitivity of membrane potential to input cur-
rents. Vrest is resting potential and set to zero throughout our simulation.

We first investigate the simulated device dynamics under the excitation of input currents in more detail. 
As shown in Fig. 3a, the membrane potential Vmem grows gradually from 0 to 1 under evenly spaced spikes of 
identical magnitudes (similar to the case of Fig. 2). The membrane potential grows when input spikes are pre-
sent, and decays (leaks) during the intervals between spikes. Interesting detailed features can be observed from 
the membrane potential versus time curve in Fig. 3a. Specifically, the “peaks” in Vmem are sharper at the initial 
stage when Vmem is small, while the whole curve becomes less spiky as Vmem gradually grows towards satura-
tion. Mathematically such modulation of Vmem can be described by a combination of an increasing leaky-time 
constant τ , and a decreasing differential membrane resistance Rmem . The highlighted low (high) Vmem regimes in 
Fig. 3a correspond to large (small) leak and large (small) differential resistance. We further find that the depend-
ence of decay time constant τ on the Vmem as shown in the micromagnetic simulation approximately follows an 
exponential increase, as is illustrated in Fig. 3b. Such leaky behavior can be contributed to the interaction of the 
exchange-coupled multi-granular system. Intuitively the exchange coupling among grains tends to form ferro-
magnetic clusters among neighbors and inhibit partial switching at the initial stage of excitation. Moreover, it is 
also found that the membrane potential Rmem , which represents the sensitivity of Vmem to input current, decreases 
as the initial Vmem increases (see Fig. 3c). The varying Rmem is also originated from the interactions among grains 
with switching field distribution. Such reduction of sensitivity is conceptually similar to the phenomena of fatigue 

(1)
dVmem(t)

dt
=

1

τ
(−(Vmem − Vrest)+ Rmem · I)

(2)Vmem =
Mx/Ms + 1

2

Figure 3.  Detailed analysis of the dynamic behavior of the simulated device. (a) The magnetization versus time 
under the stimulus of input spike sequence. (b) Leak time constant τ versus the instantaneous Vmem . Data points 
(blue squares) are extracted from the plot in (a), and numerically fitted by Eq. (3). (c) Normalized membrane 
resistance Rmem versus the instantaneous Vmem . Data points (red dots) are extracted from the plot in (a), and 
numerically fitted by Eq. (4).
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and homeostasis observed in biological neurons. We incorporate the observed varying τ and varying Rmem into 
the LIF neuron behavior model based on numerical fitting of the micromagnetic dynamics in the following: 

 where τ0 and R0 represent the initial leak time constant and membrane channel resistance respectively, and other 
parameters are numerical fitting parameters. Based on the device simulation and numerical fitting, a compact 
behavior model with details including the Vmem-dependent τ and Rmem is constructed and validated for repro-
ducing the functionality of membrane potential accumulation and spike firing.

Leveraging the multi-domain device dynamics, an exemplary circuit implementation of SOT-MTJ spiking 
neuron is proposed and illustrated in Fig. 4. The neuron MTJ connected in series with a reference MTJ is placed 
on top of a heavy metal layer. Input spikes are supplied as electrical currents flowing in the HM layer to drive 
the switching of the adjacent  MTJNeuron. Reference MTJ is set to a fixed configuration and remains unchanged 
while the neuron device is being excited. As an increasing portion of magnetic domains in the FL of  MTJNeuron are 
switched under input currents, the voltage across the  MTJNeuron changes proportionately. The varying voltage over 
 MTJNeuron is connected as an input to the inverter, forming a resistive divider network. Resetting of the SOT-MTJ 
neuron is done by applying currents with the opposite polarity of the input spikes. It has been demonstrated that 
the timing of iterative read/write and reset can be achieved by incorporating only 2–3 access transistors, leading 
to a compact design for generating spiking output based on such resistive divider  circuitry13, 31. Based on the 
proposed device and circuit, we simulate the magnetization dynamics of the multi-state MTJ with the inclusion of 
the firing and reset operations. We build a behavior model to emulate the magnetization dynamics, and validate 
the neuronal behavior model by reproducing the firing dynamics obtained from the micromagnetic simulation. 
In the validation, we consider input currents with varying amplitudes to reflect the scenario that neurons in a 
multi-layer SNN will receive weighted input spikes of varying magnitudes. As is shown in Fig. 4, the behavior 
model (green line) approximately follows the trace of the micro-magnetic simulation (black dots), and both of 
simulation and behavior model demonstrate Vmem accumulation leading to output spikes. The comparison also 
shows that the spiking rate averaged over extended time steps is quantitatively captured by the behavior model 
(although some small deviation in the timing of spikes may occur due to the error of the behavior model com-
bined with inherent stochasticity in magnetization switching).

The above simulations demonstrate that the functionality of LIF neurons can be realized directly in the 
proposed analog SOT-MTJ devices in a very compact fashion. In the following, we discuss the achieved energy 
efficiency of the proposed spiking spintronic neuron in comparison with CMOS neurons. Since the write and 
reset of the  MTJNeuron is done by applying the HM metal, we can estimate the device-level energy consumption 

(3)τ = τ0exp(k · Vmem)

(4)Rmem =
R0

exp(a · Vmem − b)+ 1

Figure 4.  (a) The spiking neuron circuit block incorporating the proposed multi-domain SOT-MTJ. (b) 
Demonstration of leaky integrate and fire dynamics in micro-magnetic simulation. The spiking dynamics is also 
reproduced by the behavior model. The firing threshold of Vmem is set at 0.75.
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by calculating I2 ∗ RHM ∗ tWR . Based on the device parameters used in the micromagnetic simulations, we can 
obtain a charge current on the order of 25–61 μA with spin-charge conversion efficiency �SH = 0.3 and  RHM = 
830 � using Ta as the HM layer. The energy per spike generation following the device dynamics as illustrated 
in Fig. 4 is estimated to be 0.22 pJ based on summing the energy consumed over integrated time steps (0.16 
pJ) and the reset energy (0.06 pJ). In contrast, the state-of-the-art design of CMOS neurons is reported to have 
energy consumption at 41.3  pJ8 while requiring a large number of transistors. Moreover, the proposed spin-based 
device provides non-volatile analog states, which could lead to significant energy saving by eliminating the need 
of off-chip memory access to store and load the intermediate activation states throughout the accumulation 
and update of membrane potential in the neuron. The energy and area advantages offered by the spin-based 
non-volatile spiking neuron can potentially lead to massive improvement in the computational efficiency of 
neuromorphic hardware.

Improved noise resiliency
In this section, we will explore the algorithm-level performance of the proposed neuron when deployed in a 
deep spiking neural network. The behavior model illustrated in Fig. 4 is incorporated into large spiking neural 
network architecture for image classification. An exemplary SNN architecture is illustrated in Fig. 5a, where the 
pixel intensity of input images is converted to Poisson spike trains and fed into a multi-layer neural network 
composed of spiking neurons. We leverage the recent development on the training of convolutional SNN as 
presented in recent  literature32. In our approach, spike-based backpropagation algorithm is enabled for training 
deep SNNs with LIF neurons following an approximate derivative method that accounts for the leaky behavior 
of LIF neurons.

We start with the baseline spiking VGG9 model with regular LIF neurons having a constant leak rate τ=100, 
and then retrain two modified SNN models where the conventional LIF neurons are replaced by the modified 
neurons after each convolution layer. Both varying leaking rates ( τ ) and the varying sensitivity of membrane 
potential to input currents ( Rmem ) are incorporated in the behavior neuron model in the modified SNN. The 
parameters used in the baseline LIF neuron model have shown satisfactory  results7 for image classifications on 
CiFAR-10 dataset, providing a good reference starting point for the algorithm-level demonstration. Details such 
as the setting of hyper-parameters for training are included in “Methods” Section. We first analyze the impact of 
introducing only the varying leak τ into the neurons, and then further investigate the total effect of having both 
a varying τ and a varying membrane resistance Rmem . As is shown in Fig. 5b, all models trained with modified 
LIF neurons can reach an accuracy of 89–90% on Cifar-10 dataset after training. This observation confirms that 
it is feasible to reach near-ideal test accuracy when realistic device characteristics of the proposed SOT-MTJ are 
taken into account. Particularly, the neuron model that captures the device characteristics most accurately by 

Figure 5.  (a) Illustration of the SNN architecture of VGG-type convolutional neural network. (b) Test accuracy 
versus training epoch for the SNNs using various neuron models. (c) Plot of test error versus training error for 
the SNNs using various neuron models.
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including both varying τ and varying Rmem , achieves the best test accuracy with the smallest number of epochs 
needed. Moreover, we also plot the trend of testing error versus training error. Conceptually, reaching a lower 
testing error at the same training error implies superior algorithmic capability, which can contribute to faster 
convergence and better generalization. As is shown in Fig. 5c, a trend of the data cloud shifting towards the 
bottom right indicates that the modified proposed device-inspired neuron model can help to reduce the testing 
error at a fixed training error. Such reduction in testing error reflects the potential of improvement using neuron 
models with varying τ and Rmem . We will demonstrate the impact of the introduced neuron characteristics on 
boosting the algorithm-level noise resiliency.

In the following noise experiments, we explicitly show that the neuron models with varying τ and Rmem pro-
vide remarkable improvement in resiliency against various types of noises. We evaluate the model with varying 
τ only, and the model with both varying both τ and Rmem , in comparison with the baseline model using constant 
leak LIF neurons with τ=100. We run experiments to see the capability of maintaining a certain prediction accu-
racy under stochastic perturbations to the input of deep SNN. Two types of random noises, Gaussian noise and 
impulse  noise33, are considered. For each type of noise pattern, we look into two scenarios of noise injection to 
the  input7. In scenario-1, random noise is added to image pixels at each time step before the generation of Poisson 
spike trains, which leads to possible modification of the timing and spiking frequency of spike trains, while the 
resultant spikes are still binary. In scenario-2, random noise is added at each time step to the already generated 
spike trains so that the magnitude of spikes is no longer binary due to the addition of noises, although the timing 
of the spike trains is intact. As is shown in Fig. 6, accuracy degradation with increasing noise severity defined by 
the averaged magnitude of the injected noise is observed for all types of noise perturbations. Moreover, with a 
similar clean testing accuracy for the models with different neuronal dynamics, the noise-injecting experiments 
clearly show that SNNs with Vmem-dependent τ and Rmem (blue, red) achieve improved robustness. Across all 4 
scenarios of noise perturbations, LIF neurons with both τ and Rmem being Vmem-dependent perform the best, 
showing about 5% improvement at the maximal noise severity compared to the baseline model. Intuitively, the 
varying leak behavior in our proposed devices exhibits faster leak (small τ ) at the initial stage of switching, which 
could help to filter out small input noises added to inputs and only have substantial accumulations of Vmem when 
input is strong enough. On the other hand, the Rmem reduces as Vmem accumulates, which indicates that the neu-
rons have growing fatigue under further stimuli. Such reduction in sensitivity resembles a homeostasis process 
and prevents the stimulated neuron from generating output spikes too frequently. As is illustrated in Fig. 5c, 
incorporating the varying Rmem significantly shifted down the testing error at the same training error, indicat-
ing a model of stronger generalization capability and less overfitting of the training dataset. It is worthwhile to 

Figure 6.  Testing accuracy vs noise severity Spiking VGG9 on Cifar10. (a) Gaussian noise injected to input 
before Poisson spiking train generation (scenario-1). (b) Gaussian noise injected after Poisson spiking train 
generation (scenario-2). (c) Impulse noise injected to input before Poisson spiking train generation (scenario-1). 
(d) Impulse noise injected after Poisson spiking train generation (scenario-2)
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mention that the baseline LIF neurons with constant τ have already been demonstrated to have improved noise 
resiliency compared to IF neurons without  leak7. Our observation demonstrates that incorporating the more 
complex leaking behavior and membrane potential sensitivity inspired by the characteristics of multi-domain 
spin devices can further enhance the robustness of spiking neurons against noisy inputs. Note that the tested SNN 
models are all trained with clean input and have no prior knowledge of the various types of noise injection, and 
yet the improvement in noise resiliency is clearly observed for all the scenarios. Therefore, implementation of 
the proposed spintronic analog neuron provides an efficient pathway for gaining robustness from the underlying 
device technology in hardware implementation, in contrast with the approach of retraining with various types 
of noisy perturbation, which typically consumes significant additional computational resources.

As with all kinds of analog devices, noises associated with device variability can be a concern for practical 
implementations. We demonstrate the impact of realistic device variation on the performance of deep SNNs 
incorporating the proposed spintronic neuronal devices. The major contribution to the device variation in this 
multi-granular MTJ-based design is the stochasticity of the switching of magnetic moments in combination with 
the switching field distribution among the grains. Fig. 7a illustrates 100 simulated traces of the Vmem dynamics 
of the proposed multi-domain devices with different random initialization. As is shown in Fig. 7b, we observe 
clear variations in both τ and Rmem for the given device specification (lateral dimension of 75 nm × 75 nm, 
with an averaged grain size of 8 nm and switching field distribution of 25% among the grains). Subsequently, 
we incorporate the observed variation as Gaussian noise to the neuron parameters of the behavior model, and 
evaluate the SNN inference accuracy in presence of such non-ideality. We find that the clean SNN inference 
accuracy based on the non-ideal neurons sees negligible degradation compared to references, corroborating the 
improved robustness of the proposed neuron. As is summarized in Fig. 7c, under the noise injections, the test 
accuracy with the non-ideal neurons shows slight drops compared with the performance of ideal models, but the 
model with non-ideal neurons still outperforms the baseline SNN with simple LIF neurons. Our demonstration 
confirms the feasibility of implementing the proposed spin-based neuron device under practical device vari-
ability in hardware implementation.

Conclusion
We propose a novel spintronic neuro-mimetic device that can emulate the leaky integrate-and-fire neuron 
dynamics with high energy efficiency and compact footprints. Based on the proposed free layer with continuous-
granular composite structure, we achieve gradual switching of the magnetization, which is utilized to emulate 
both accumulation and leak of membrane potential. Furthermore, we observe unique characteristics of a vary-
ing leak rate and a varying membrane channel resistance from the micromagnetic simulations of the proposed 
device. After incorporating the observed device behavior into the spiking neuron models, we demonstrate 
improved robustness against various types of input noise injection for image classifications. The proposed analog 
magneto-resistive devices leveraging memory and storage technologies could open up exciting new avenues for 

Figure 7.  Noise Resiliency of Neuron Models with non-ideal device variations. (a) Traces of membrane 
potential accumulation under input spikes for 100 runs with different initialization of the multi-granular 
configuration. (b) Statistics of the model parameters under device variation. (c) Summary of SNN model 
performance in presence of device variation in comparisons with baseline models
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developing emerging neuromorphic hardware. Moreover, our cross-layer exploration suggests that the tuning of 
the leak and membrane resistance of spiking neurons may lead to an interesting pathway towards efficient and 
robust bio-plausible learning algorithms.

Methods
MuMax simulation details. The magnetization dynamics of composite free layer is simulated in MuMax3 
as a bilayer magnetic structure of distinctive magnetic properties in each layer. The top continuous capping layer 
represents CoFeB, which is most commonly used in MTJ stacks. The capping layer is set as a soft ferromagnetic 
layer with negligible magneto-crystalline anisotropy and strong lateral exchange coupling. The bottom granular 
layer setting is based on Cobalt-based granular magnetic medium utilized in mass production of magnetic hard 
disk drives. Voronoii tessellation as provided by MuMax is used to generate initial granular configuration fol-
lowing a specified random seed. Considering the segregation of non-magnetic materials in granular structures, 
inter-granular coupling is reduced to 1–10% of the coupling strength in a continuous film. Such reduced inter-
granular coupling will enable the occurrence of multi-domain intermediate states during magnetic switching. 
For the specific data analyzed in the paper, the Gilbert damping constant is set at 0.01 for both top and bottom 
layers. The continuous top layer has large saturation magnetization  Mstop = 400e3 A/m with large exchange 
coupling Aex = 1e–11 J/m, while the granular layer has lower magnetiztion  Msbottom = 250e3 A/m with inter-
granular coupling of 1e–13 J/m. The grains in the bottom layer have an averaged in-plane uni-axial magnetic 
anisotropy of  Ku = 0.4 e6 J/m3 with 20–25% grain-to-grain variation as is observed in actual storage medium. The 
thicknesses of the top and bottom layers are 1 and 6 nm, respectively, so that grains in the bottom layer can reach 
a thermal stability factor KuV/kT = 37 at room temperature for grain size = 9 nm and thus maintain thermally 
stable during the sub-μs neuron dynamics. The inter-layer RKKY exchange coupling is set to be as high as 50% 
of the lateral exchange coupling  (ARKKY = 5e–12 J/m) to ensure a strong coupling so that local magnetic moments 
from the top layer will follow the local magnetization in the grains of the bottom layer.

SNN training. The SNN models are trained with clean data following the approach of spike-based back-
propagation as proposed  in32 with a batch size of 16–32. Each model is trained with 150 epochs, where the learn-
ing rate reduces at the 70th and 100th epochs. Input encoding to Poisson spike trains of 100 time steps is done 
after normalization of pixel intensity of input images to the range of [–1, 1] with a mean of 0. For evaluations 
of those device-based neuron models, the last fully-connected layer uses regular LIF neuron, as it is observed 
in our experiment that when neurons with varying leakage are used, the last layer of SNN models is required to 
have LIF neurons with small leak ( τ ∼ 100) in order to reach convergence. The VGG-based multi-layer spiking 
model is constructed using Pytorch.
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