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Model‑based inference 
of metastatic seeding rates in de 
novo metastatic breast cancer 
reveals the impact of secondary 
seeding and molecular subtype
Noemi Vitos1 & Philip Gerlee2,3*

We present a stochastic network model of metastasis spread for de novo metastatic breast cancer, 
composed of tumor to metastasis (primary seeding) and metastasis to metastasis spread (secondary 
seeding), parameterized using the SEER (Surveillance, Epidemiology, and End Results) database. 
The model provides a quantification of tumor cell dissemination rates between the tumor and 
metastasis sites. These rates were used to estimate the probability of developing a metastasis for 
untreated patients. The model was validated using tenfold cross‑validation. We also investigated 
the effect of HER2 (Human Epidermal Growth Factor Receptor 2) status, estrogen receptor (ER) 
status and progesterone receptor (PR) status on the probability of metastatic spread. We found 
that dissemination rate through secondary seeding is up to 300 times higher than through primary 
seeding. Hormone receptor positivity promotes seeding to the bone and reduces seeding to the lungs 
and primary seeding to the liver, while HER2 expression increases dissemination to the bone, lungs 
and primary seeding to the liver. Secondary seeding from the lungs to the liver seems to be hormone 
receptor‑independent, while that from the lungs to the brain appears HER2‑independent.

The occurrence of distant metastasis for breast cancer is associated with a considerably worse prognosis, with a 
5-year survival rate of 28%1. Increased knowledge about the extent of metastasis could guide clinicians in choos-
ing effective therapies for different patients. Metastasis formation is a multi-step process which begins with the 
detachment of tumor cells from the primary tumor, making their way through the stroma to the bloodstream 
or lymphatic circulation, creating circulating tumor cells (CTCs)2. In the circulation, CTCs have to overcome 
challenges such as hemodynamic shear forces and the attack of the immune system, leading to a short survival 
time, estimated to be only several hours in breast cancer  patients3. Formation of metastatic foci presents further 
challenges, and out of tens of thousands of tumorogenic cells injected into mice, only 100 were able to form meta-
static  foci4. This leads us to the conclusion that micrometastasis formation in downstream organs is necessary 
for metastasis formation. These micrometastases in turn shed CTCS in a process known as secondary seeding.

Mathematical models can lead to clinically valuable predictions by providing quantitative understanding of 
metastasis spread. For instance Benzekry et al. present a mechanistic model of metastasis in neuroblastoma that 
can describe clinical data and provide a computational biomarker with a predictive power of overall survival 
that is better than clinical data  alone5. In contrast with the model mentioned above which are deterministic of 
nature, Newton et al. developed a stochastic model where the dissemination of cancer cells is modeled as an 
ensemble of random walkers on a  network6. The idea of modelling metastasis spread on a network where links 
are routes of spread and nodes are organs was first described by Scott et al.7. Building on the model by Newton 
et al.6, Gerlee et al.8 took into account secondary seeding and presented a model that quantifies the rate of cancer 
cell dissemination between different organs. This model was applied to tongue and ovarian cancer and was able 
to make predictions in good agreement with clinical  data9. In the present work we apply a similar framework to 
breast cancer, where we also model tumor growth in order to estimate tumor age. The model allows us to quantify 
dissemination rates between different organs and to predict the probability of developing bone, lung, liver and 
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brain metastasis a certain time after tumor initiation for undiagnosed and untreated patients. This could aid 
clinicians in choosing more intense treatment options for patients with higher risk of developing certain types 
of metastasis.

Methods
We model a natural course of tumor development with a growing primary tumor without clinical interventions. 
As the SEER database used to parameterize the model only provides metastasis information at diagnosis, our 
model effectively represent the development of de novo metastatic breast cancer. We assume that dissemination 
rates between primary tumor and metastases do not change with time and are the same for various tumor types. 
Our model allows us to quantify the dissemination rate between tumor, bone, lungs liver and brain connected 
by a seeding network displayed in Fig. 1. The routes of metastasis formation for breast cancer have been debated 
and are not yet  established10. The anatomical motivation behind our seeding network is presented in “Biologi-
cal motivation behind seeding network” section, and in following sections we explain the likely routes to each 
metastatic location. We also motivate why axillary lymph nodes are not included (“Role of lymph nodes” section).

Combinations of different metastasis locations are referred to as states. These create a network with transition 
possibilities between states (see Fig. 4), representing evolution of a metastasis spread, with dynamics described 
in “Mathematical model development” section.

From the SEER database we extract information on patients tumor size and presence/absence of metastases in 
the lung, bone, liver, brain at diagnosis. The characteristics of the data used from the SEER  database11 is presented 
in “Data” section. Finally, we will go through the mathematical framework behind the model in “Mathematical 
model development” section. When analyzing results we focus on how ER, PR and HER2 status influence dis-
semination rates, as these are the molecular properties recorded in the SEER  database11. A tumor found positive 
for either ER or PR (ER+/PR−, ER−/PR+, ER+/PR+) is considered hormone receptor (HR) positive and a tumor 
negative for both ER and PR receptors is HR negative, giving rise to four possible subtypes: HR−/HER2+, HR+/
HER2+, HR+/HER2− and HR−/HER2−.

Biological motivation behind seeding network. In order to construct a network model which repre-
sents a biologically plausible seeding pattern, we investigate the anatomical possibilities. The lymph drainage of 
the breast takes three main routes: to axillary lymph nodes, internal mammary lymph nodes and less frequently 
directly to the supraclavicular  nodes12, (see Fig. 2). The supraclavicular nodes drain the upper, superficial por-
tions of the  breast13. The axillary lymph nodes receive drainage from all quadrants of the breast in both the 
superficial and deep  portions14. The internal mammary nodes too, receive lymph from all quadrants and drain 
the deep portions of the  breast14,15. Lymph from these nodes can pass to the contralateral internal mammary 
nodes and mediastinal  nodes12. The internal mammary nodes can also receive drainage from the upper portions 
of the liver and deeper structures of the anterior abdominal  wall16. Finally, lymphatics from the breast can also 
drain to subdiaphragmatic nodes and to the nodes of the liver (Gerota’s paramammary route)13. Lymphatics 
from the left breast eventually drain into the thoracic duct and left subclavian vein, while those from the right 
breast drain into the right subclavian vein, both leading through the vena cava to the heart.

The venous drainage of the breast takes three major routes: to the internal thoracic vein, to the the posterior 
intercostal veins and to the axillary  vein17, displayed in Fig. 3. All these veins eventually drain into the superior 
vena cava and through the heart the first capillary bed they encounter is in the lungs. Posterior intercostal veins 
drain initially into the azygous vein which communicates with valveless system of veins located in the epidural 
space called Batson’s vertebral venous  plexus18. It regulates intracranial pressure with posture and drains the 
cerebral, abdominal and pelvic  cavities19. Due to the lack of valves, an increased pressure in the vena cava sys-
tem can result in backward flow of venous blood from the  breast20, proposing a possible pathway for metastatic 
spread via Batson’s vertebral venous plexus to the vertebrae, skull, pelvis bone and the central nervous system.

Figure 1.  Seeding network. Seeding pattern between different metastasis sites and the primary tumor. 
Dissemination rate from tumor to bone represented by parameter “tubo”, tumor to lung by “tulu”, tumor to liver 
by “tuli”, tumor to brain by “tubr”, lung to liver by “luli” and lung to brain represented by “lubr”. Green arrows 
indicate primarily lymphatic spread, blue arrows venous spread and red arrows hematogenous spread.
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Lungs. Thomas et al.21 performed necropsies on 26 individuals who died in disseminated breast cancer and 
compared the frequencies with which intralymphatic and intravascular tumors were found in the lung, visceral 
pleura and parietal pleura. Ratios between intralymphatic and intravascular were 2.6:1 for lung parenchyma, 7:1 
for visceral pleura and 11:1 for parietal pleura, implying that lymphatic spread is dominating. The most likely 
route of spread is from the ipsilateral internal mammary nodes by lymphatic communications to lymph node 
groups on both sides of the mediastinum and from there to the lung, pleura and mediastinum.

Genomic analysis and parsimonious reconstruction of the metastatic cascade of two patient cases by Cress-
well et al.22 revealed seeding from the primary to the lung, from lung to the liver and from the liver to the ovary. 
El-Kebir et al.23 analyzed one of the same patient case and suggested a single-source monoclonal pattern of dis-
semination from the primary to the lungs and from the lungs to the liver, brain, rib and ovary. Both dissemination 
patterns suggest that there is a direct seeding route between the lungs and the breast.

Echeverria et al.24 used xenografts from triple-negative breast cancer patients with multiple metastasis in 
mouse models. They found that lung, liver, and brain metastases are enriched for an identical population of 
high-abundance subclones and share a genomic lineage. This suggests that either these three organs seed each 
other or that each one of them is seeded from the same primary tumor clone.

The above findings seem to support a direct seeding from the primary tumor to the lung, anatomically 
explained by spread from the internal mammary nodes via mediastinal lymph node groups to the lungs. Hema-
togenous spread from the veins draining the breast through the heart and to the lungs is also plausible.

Liver. Stutte et al.25 examined 9 lymph node regions along the chest wall and the liver in 312 breast cancer 
patients sonographically. They found that liver metastases often occurred with internal mammary lymph node 
metastases, and that liver metastases were the only manifestation of distant metastasis in three patients with 
internal mammary lymph node metastases. This suggests that liver metastases of breast cancer can spread lym-
phatically from internal mammary lymph node metastases.

Thomas et al.21 investigated necropsies on 26 individuals who had died of disseminated breast carcinoma, and 
found that in a number of cases tumor metastasis were confined to the lower chest wall and diaphragm. These 
could be explained by lymphatic communications between the breast and liver via lymph nodes on the anterior 

Figure 2.  Lymphatic drainage of the breast. The lymph drainage of the breast takes three main routes: to 
axillary lymph nodes, internal mammary lymph nodes and less frequently directly to the supraclavicular nodes. 
The internal mammary nodes may receive drainage from the upper portions of the liver and deeper structures 
of the anterior abdominal wall. Lymph from these nodes can pass to the contralateral internal mammary nodes 
and mediastinal nodes. Lymphatics from the breast can also drain to subdiaphragmatic nodes and to the nodes 
of the liver (Gerota’s paramammary route).
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Figure 3.  Venous drainage of the breast. The three major routes are to the internal thoracic vein, to the the 
posterior intercostal veins and to the axillary vein. Posterior intercostal veins drain into the azygous vein which 
communicates with Batson’s plexus displayed as a network of veins surrounding the spinal cord.

Figure 4.  Network of states and transitions between them. Dissemination rates between states are represented 
by the six parameters tubo (tumor to bone), tulu (tumor to lung), tuli (tumor to liver), tubr (tumor to brain), luli 
(lung to liver), lubr (lung to brain), as follows: 1 → 2 tuli, 1 → 3 tubr, 1 → 4 tulu, 1 → 5 tubo, 2 → 6 tulu, 2 → 
10 tubo, 2 → 11 tubr, 3 → 7 tubo, 3 → 9 tulu, 3 → 11 tuli, 4 → 6 tuli + luli, 4 → 8 tubo, 4 → 9 tubr + lubr, 5 → 7 
tubr, 5 → 8 tulu, 5 → 10 tuli, 6 → 13 tubo, 6 → 15 tubr + lubr, 7 → 12 tuli, 7 → 14 tulu, 8 → 13, tuli + luli, 8 → 14 
tubr + lubr, 9 → 14 tubo, 9 → 15 tuli + luli, 10 → 12 tubr, 10 → 13 tuli + luli, 11 → 12 tubo, 11 → 15, tulu, 12 → 
16 tulu, 13 → 16 tubr + lubr, 14 → 16 tuli + luli, 15 → 16 lubo.
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surface of the diaphragm and lymphatic drainage of the upper surface of the liver to the internal mammary nodes. 
Backflow in these vessels could allow tumor cells to spread from the breast to the liver.

Genomic analysis by Cresswell et al.22 and El-Kebir et al.23 discussed in “Lungs” section support seeding from 
the lungs to the liver. We therefore model both a direct path between primary and the liver and a hematogenous 
spread via the lungs to the liver. The former represents lymph drainage of the breast to the liver as well as pos-
sible backflow in the lymphatics from the liver to the internal mammary nodes, under pathologic conditions.

Bone. Hoadley et  al.10 performed DNA whole genome and mRNA sequencing on primary tumors from 
two individuals with triple-negative/basal-like breast cancers. Their results suggested a direct seeding from the 
primary to the bone, while later analysis of the same patient  data23 implied spread to the lungs and from there 
to the bone.

Venn diagrams of our patient data in Fig. S2 show that 54% of the lung metastasis patients have bone metas-
tasis, while only 26% of the bone metastasis patients have lung metastasis. This simple comparison makes it seem 
unlikely that the spread would be from the lung to the bone. Hypothesizing that all cancer types make use of the 
same dissemination routes, we can compare the metastasis occurrence in breast and lung cancers. Wilson et al. 
found a similar incidence of bone metastasis in lung and breast cancer and the regional distribution of metastasis 
was the  same26. According to Macedo et al. the relative incidence of bone metastasis in patients with advanced 
metastatic disease is 65–75% in breast cancer and 30–40% in lung  cancer27. Thus, metastases to the bone are at 
least as frequent in breast cancer as in lung cancer.

The simplest explanation to the above presented statistics is that bone metastasis is not primarily seeded from 
the lung. Therefore we will have a separate direct dissemination paths from the primary to the bone, representing 
metastasis spread through the venous system, including Batson’s venous  plexus18.

Brain. Experiments on mice have shown that under pathological conditions, such as increased abdominal 
pressure, tumor cells can spread to the brain via the venous  system19. This supports the hypothesis that Batson’s 
venous plexus serves as a venous channel connecting the cerebral, abdominal, and pelvic cavities.

According to Heitz et al. lung metastasis is the cancer type metastasizing most frequently to the brain indicat-
ing a functional pathway from the lungs to the  brain28. As mentioned earlier, Echeverria et al. found that lung, 
liver, and brain metastases are enriched for an identical population of high-abundance subclones and share a 
genomic  lineage24. This is further supported by the migration histories proposed by El-Kebir et al. based on 
genetic  analysis23. In an autopsy study of central nervous system metastasis (including the dura matter and the 
brain) in breast cancer patients, it was found that the lungs seem to be seeding cancer  spread29. In a later autopsy 
study they differentiated between the dura matter and the  brain30. This study implied that dura matter metastases 
were seeded by the vertebral veins, while brain metastases were more likely to be seeded by lung metastasis.

Based on the above, we include two paths of dissemination to the brain; through homogeneous spread from 
the primary, via the lung to the brain or via a direct route through Batson’s venous plexus.

Role of lymph nodes. Ullah et al.31 investigated the evolutionary history of metastatic breast caner in 20 
patients and found that axillary lymph node metastasis was not involved in seeding the distant metastasis. Carter 
et al.32 investigated the relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases using 
the SEER database, concluding that axillary lymph node status only serves as an indicator of the tumor’s ability 
to spread, rather than a central source of metastasis spread. Recent research also supports that axillary lymph 
nodes do not seed distant metastasis, but rather only have a prognostic value by reflecting the capability of cancer 
cells to  metastasize22,33.

Above research suggests that the routinely tested axillary lymph nodes, presented in SEER database, do not 
have a key role in seeding metastasis, and thus we omit these from our model. Evidence for tumor seeding to 
the lungs and liver discussed above (“Lungs” and “Liver” sections), suggests that the internal mammary lymph 
nodes play a role in metastasis spread. In the USA however, no routine biopsy is done in these mammary glands, 
and thus no information is registered in the SEER database.

Model overview. Based on the above anatomical motivations, we present a network displaying the allowed 
dissemination routes between tumor, bone, lung, liver and brain shown in Fig. 1. We assume a constant dis-
semination rate between organs; “tubo” (dissemination rate from tumor to bone), “tulu” (tumor to lung), “tuli” 
(tumor to liver), “tubr” (tumor to brain), “luli” (lung to liver) and “lubr” (lung to brain). These dissemination rate 
parameters represent the combination of; the rate of release of CTCs, their survival probability in the circulatory 
system and the probability of forming a metastasis in a downstream site.

In our model, the four metastatic sites: bone, lung, liver and brain are represented as nodes which can take 
values 0 if no metastasis is present, and 1 if metastasis is present. Once a node has become positive it remains 
so, since metastasis are very unlikely to spontaneously regress. We refer to different metastatic combinations 
as states. Four nodes allows for 24 states, however we only retain the 16 states allowed to form according to the 
seeding patterns in Fig. 1. We display all states and dissemination routes between them in Fig. 4. For example, 
having metastasis in the bone and the brain corresponds to state 7 (1001). One can arrive at this state in two 
different ways; direct dissemination from the tumor to the bone with dissemination rate ‘tubo’ and then from 
the tumor to the brain, with dissemination rate ‘tubr’ or in the reverse order.

In summary, we model a natural tumor development for de novo metastatic breast cancer with the following 
model assumptions:
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• we take into account four metastatic locations; bone, lung, liver, brain and these are represented as nodes 
which can take values 1 or 0

• the dissemination rates between the primary and metastases are constant in time and the same for all molecu-
lar subtypes

• we assume a constant volume of metastases which implies a constant rate of secondary seeding
• the primary tumor has Gompertzian growth (see “Estimating time since tumor initiation” section) with no 

therapeutic interventions, and with parameters that are identical for all subtypes

Data. We used data from the SEER*Stat case listing database Incidence—SEER 18 Regs Research Data + Hur-
ricane Katrina Impacted Louisiana Cases, Nov 2017 Sub (1973–2015) with the following inclusion criteria: (I) 
female; (II) older than 18 years; (III) diagnosis confirmed by positive histology other than by other methods; 
(IV) breast cancer according to Site Recode ICD-O-3/WHO 2008 between 2010-2015; (V) belonging to 1 of the 
4 subtypes: HR+/HER2−, HR+/HER2+, HR−/HER2+, and HR−/HER2−; and (VII) either positive or negative 
metastasis status at diagnosis in lung, bone, liver, brain; (VIII) histopathological information on tumor size (IX) 
maximum tumor diameter of 100 mm. A maximum tumor diameter of 100 mm ( ≈ 1012 cells) was chosen, as 
this was estimated to be lethal tumor size by  others34,35, and therefore 4010 patients were excluded.

In Table 1 we display the characteristics of the 317,166 patients that met our selection criteria with characteris-
tics displayed in Table 1. Patient characteristics used are obtained at the time of diagnosis. For example, a patient 
with bone metastasis means: a patient that was found to have bone metastasis when diagnosed. For patients with 
multiple metastasis, we do not know what order they appeared from the data. All patients could be placed into 
one of the 16 states shown in Fig. 4, as all metastasis combinations are allowed. The majority of patients (98%) 
belong to state 1 (see Fig. S1). A comparison between the characteristics of subtype groups in our data selection 
and other published works is presented in Section S1.1.

Mathematical model development. Every patient is assigned a tumor age (time since tumor initiation) 
and a state. Tumor age is estimated from tumor diameter by modelling tumor growth as described in “Estimat-
ing time since tumor initiation” section. The state of a patient is determined by their metastasis combination. 
The model assigns a probability to every patient, given their state and tumor age as described in “Calculating 
dissemination rates” section, for a range of different dissemination rate parameters. The likelihood of the whole 
data set is calculated for this range and dissemination rates corresponding to the highest likelihood are chosen.

Estimating time since tumor initiation. Breast tumor growth has been investigated with mathematical 
models using both experimental and human data. The smallest detectable tumor size is around 2 mm in diam-
eter ( ∼ 107 cells) and a lethal tumor volume is considered to be 100 mm in diameter (1012 cells)34,35. We require 
a growth model that represents characteristics of tumor growth over this range and captures growth close to the 
maximum diameter; and therefore choose the Gompertz  model36.

Tumor volume V(t) governed by Gompertzian growth can be described at any time t  as

Table 1.  Data characteristics. Number of patients within each subtype group with a given characteristic 
specified in the left column. The numbers in parenthesis show the parentage of patients relative to respective 
subtype group.

Characteristics

Subtype

All HR−/HER2+ HR+/HER2+ HR+/HER2− HR−/HER2−

No. of patients 317,166 (100) 13,406 (100) 32,504 (100) 235,828 (100) 35,428 (100)

Diameter (mm)

0 ≤ d < 20 182,074 (57.4) 5562 (41.5) 15,239 (46.9) 146,431 (62.1) 14,842 (41.9)

20 ≤ d < 40 82,290 (25.9) 4352 (32.5) 10,291 (31.7) 55,281 (23.4) 12,366 (34.9)

40 ≤ d < 60 19,576 (6.2) 1387 (10.3) 2758 (8.5) 12,180 (5.2) 3251 (9.2)

60 ≤ d < 80 7073 (2.2) 551 (4.1) 936 (2.9) 4423 (1.9) 1163 (3.3)

80 ≤ d < 100 2755 (0.9) 233 (1.7) 372 (1.1) 1628 (0.7) 522 (1.5)

Metastasis

Bone 7094 (2.2) 401 (3.0) 1164 (3.6) 4918 (2.1) 611 (1.7)

Lung 3109 (0.98) 334 (2.5) 536 (1.6) 1682 (0.71) 557 (1.6)

Liver 2649 (0.83) 407 (3.0) 650 (2.0) 1178 (0.5) 414 (1.1)

Brain 677 (0.21) 85 (0.63) 114 (0.35) 323 (0.14) 155 (0.44)

Receptor status

HER2 45,910 (14.5) 13,406 (100) 32,504 (100) 0 0

ER 265,194 (83.6) 0 31,603 (97.2) 233,591 (99.1) 0

PR 231,177 (72.9) 0 23,881 (73.5) 207,296 (87.9) 0
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where V(0) is the volume of the tumor at initiation, time t  is time since initiation, α is the initial instantaneous 
growth rate, β is the exponential rate of decrease of the growth rate. The Gompertz model has been shown to 
describe tumor growth in animal models  well37–39. Norton et al. established a good fit of Gompertz model even 
on human breast cancer growth allowing for variability in β , resulting in a mean value of 0.0018 d−140.

The time it takes for a breast tumor to double in size was found to range between 105 and 270 days, with a 
weighted mean of 150  days34. The variation in different breast cancer subtypes measured by ultrasound yielded 
103± 43 days for triple-negative, 162± 60 days for ER-positive and 241± 166 days for HER2-positive tumors, 
 respectively41. This is in line with the average of 150  days34.

Assuming the time it takes for a tumor to double in size is constant and is 150  days34, then the time it takes for 
a tumor to reach lethal size will be 16.4 years. A Gompertz model with β = 0.0013 d−1 describes the system well. 
This value is in line with the mean value of β = 0.0018 d−1 found  by40. In order to obtain lethal tumor diameter 
of 100 mm and initial tumor size corresponding to a single cell with diameter 10 µm , we choose α = 0.0359 d−1 . 
Rearranging Eq. (1) we can calculate the time since tumor initiation (tumor age) for each patient, obtaining a 
distribution displayed in Fig. S3.

Calculating dissemination rates. Transition rates between states described in Fig. 4 depend only on the 
present state of the system, so the network can be described as a continuous-time Markov chain. Only one of the 
nodes is allowed to become positive during a single transition. The transition rates between states depend on the 
sum of flow rates from all upstream sites (positive) and the sum of flow rates from downstream sites (negative) at 
that time. The master equation which describes the probability of being in state i at time t  evolves according to:

where time t  is the time that has passed since tumor initiation, Pi is the probability of being in state i , Qii is the 
rate of leaving state i , Qij is the rate of moving from state i to j and the sum is over a total of 16 states displayed 
in Fig. 4. For example the probability of being in state 7 changes depending on the parameters tubo, tubr and 
tuli, tulu according to

We can rewrite Eq. (2) in matrix form

where P(t) = [P1(t),P2(t),P3(t), . . . ] is a vector of probabilities and Q is the transition matrix. Assuming that 
at tumor initiation the patient has only a primary tumor and no metastasis; i.e. P1(0) = 1 and Pi(0) = 0 for 
i > 0 , we can solve the equation numerically using the Euler forward method. We obtain a matrix P̂ where the 
elements in a column represent the probability of being in a certain state at time t  and there is one time step �t 
between neighbouring columns.

θ represents the vector of dissemination rate parameters θ = {tubo, tulu, tuli, tubr, luli, lubr}.
We use the maximum likelihood method to estimate the parameters. We can express the likelihood of the 

data set as

where sj is the state of patient j and tj is the time since initiation until diagnosis for patient j . We minimize the 
logarithm of the negative of the likelihood function using the MATLAB function fminsearchbnd, and 
thereby obtain the most likely set of parameters given the data. We obtain these optimal parameters for the whole 
data set and also for each subtype group separately. For each parameter set we calculate the confidence intervals 
(CI) using parametric  bootstraping42 with 50 samples, see Section S1.2.

Results
Dissemination rates. In Fig. 5 we present the dissemination rates when parameterizing using the whole 
data set as well as different subtype groups. Numerical values are displayed in Table S1.

(1)V(t) = V(0)e
α
β

(
1−e−βt

)

(2)
dPi(t)

dt
= QiiPi(t)+

16∑

j=1
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(3)
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Model validation. We use tenfold cross-validation to validate our model by first randomly dividing our 
data into 10 equal groups, with D number of patients in each group. Excluding one of the groups, referred to as 
the validation group, we use the remainder of the data to obtain model parameters. We use these parameters in 
our model to predict the cumulative number of patients within the validation group, with bone, lung, liver or 
brain metastasis at a tumor age tk or younger. Calculations on cumulative number of patients are described in 
Section S1.3. We repeat this procedure, excluding one of the 10 groups each time, comparing model predictions 
with the validation group by calculating the mean absolute percentage error (MAPE):

where M is number of data points, tk is time at the beginning of time increment k, T is the maximum tumor age, 
xdata is patient number according to data and xmodel is patient number predicted by model. We then take the 
average MAPE for the 10 cases. This is done for the whole data set as well as each subtype group with average 
MAPE values summarized in Table S2. One of these 10 comparisons for the whole data set is displayed in Fig. 6.

Probability of developing metastasis. The model makes it possible to estimate the probability of devel-
oping a certain metastatic combination for patients who have not received any treatment, a certain time after 
tumor initiation. We assumed that a tumor of a given diameter represents an average tumor a certain time 
after tumor initiation and then used Gompertzian growth model to convert from tumor size to tumor age. For 
instance, P12(2) gives us the probability of developing a metastasis in the lung, liver and brain within 2 years 
since tumor initiation. Adding up all metastasis containing states we obtain the probability of developing any 
metastasis within a certain time (Fig. S4).

(7)MAPE =

100

M

tk=T∑

tk=0

∣∣∣∣
xdatatk

− xmodel
tk

xmodel
tk

∣∣∣∣

Figure 5.  Dissemination rates and their 95% confidence intervals for each parameter. ‘All’ stands for the whole 
data set, while ‘−/+’ indicates HR−/HER2+, ‘+/+’ indicates HR+/HER2+, ‘+/−’ indicaates HR+/HER2−, ‘−/−’ 
indicates HR−/HER2− subtypes.
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Discussion
We have parameterized a continuous-time Markov chain network model that describes the formation of metas-
tases with the help of patient data from the SEER register, thereby quantifying the relative tumor cell dissemina-
tion rates between metastasis stations. We investigated how the dissemination rates changed in different subtype 
groups and metastasis types. Using these values, the model can predict the probability of developing a metastasis 
a certain time after estimated tumor initiation for untreated patients.

Model error. As displayed in Table S2 the best match seems to be for brain metastasis, while worst is for liver 
metastasis. The model is best at describing the HR−/HER2− subtype and worst at describing the HR+/HER2+ 
subtype group.

Dissemination rates. Estimated tumor cell dissemination rates reflect the rate of release of circulating 
tumor cells, their survival probability and ability to form metastasis at a downstream site. The parameters rep-
resenting dissemination rates from the tumor (tubo, tulu, tuli, tubr) are 5–300 fold smaller than the two param-
eters representing dissemination from the lung (luli, lubr), displayed in Table S1. This may be due to the fact 
that secondary seeding is much more effective in spreading tumor  cells43. This could biologically be explained 
by metastatic cells being superior to primary tumor cells, as they have evolved from cells that have developed 
characteristics such as stress tolerance within the vasculature, anchoring to the vasculature wall and adaptation 
to a new microenvironment.

The relative size of the dissemination parameters to each other is preserved throughout subtypes, in descend-
ing order: luli, lubr, tubo, tulu, tuli and tubr, which means that the relative importance of dissemination routes 
in the different subtype groups is similar.

We investigated the effect of of HER2− and HR-positivity on the dissemination parameters. Hormone recep-
tor positivity increases dissemination to the bone (comparing rates in the HR−/HER2− vs. HR+/HER2− and 
HR−/HER2+ vs. HR+/HER2+, see Fig. 5), while decreasing spread to the lung and direct spread to the liver. 
Both direct and indirect spread to the brain seems to be decreased by hormone receptor positivity, except in the 
HER2-positive case of direct dissemination, which seems to be hormone receptor-independent. Spread from 
the lung to the liver also seems to be hormone receptor-independent.

HER2-positivity promotes dissemination rate to the bone, lungs and direct dissemination to the liver. It 
increases direct dissemination to the brain and dissemination form the lung to the liver in the HR-positive cases, 
and does not seem to influence the HR-negative cases. Metastasis spread from the lung to the brain seem to be 
HER2-independent.

Figure 6.  Model and one of the validation data sets using tenfold cross-validation. Cumulative number of 
patients versus tumor age. Data displayed in red and model prediction in blue.
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To the liver and the brain we have both primary (from the tumor) and secondary (from the lung) dissemi-
nation. By dividing luli with tuli and lubr with tubr, we find the relative importance of secondary and primary 
dissemination in different subtype groups, (see Table S3). We found that secondary dissemination from the lung 
to the liver is most important in the HR+/HER2− subtype group and least important in the HR−/HER2+ group. 
In the case of the brain secondary seeding seems to be significantly more important for HR+/HER2− subtype 
than the HR+/HER2+.

Finally, we compare our results to other network models of metastasis spread. Newton et al. created a similar 
Markov chain model on lung cancer with dissemination possibilities to 27 different  organs6. They found the 
ratio of transition probability from lung to liver and lung to brain to be 0.284 and 0.565 respectively, which 
is in agreement with the ratios obtained from our model 0.314 and 0.332, even though dissemination is from 
different primary tumors. We can also compare incoming and outgoing dissemination rates for the lungs. The 
dissemination rate into the lung (0.00269) is much smaller than the total dissemination out of the lung (0.126 + 
0.0404). This makes the lungs a good secondary seeding site, which is in line with a later model of Newton et al.44.

Colonizing ability. The dissemination route from the lungs to the liver and the brain can anatomically be 
explained by hematogenous spread. The relative blood flow to these organs is estimated to be 6.5% and 12% of 
the cardiac  output45. By dividing the relative dissemination rates we can get an estimate of the relative colonizing 
ability of breast cancer cells in the liver versus brain. Review data from 3827 autopsies was analyzed by gross 
examination and hematological sections to analyze the metastatic pattern of 41 different primary cancers and 30 
different metastatic  sites9. The ratio of metastasis number in liver versus brain for breast cancer was 5.2:1, while 
we find a ratio for relative metastasis forming ability to be 5.6 (95% CI 5.5–5.9), which is reasonably close. Breast 
cancer cells are thus more than fivefold better at colonizing the liver environment compared to the brain.

Clinical significance. We estimated the probability of developing metastasis in any combination of the 
four organs (Fig. S4). Our model estimates the age of a 5 mm, 10 mm, 40 mm tumor to be 2.4, 2.9 and 4.9 years 
respectively. The probability of developing a metastasis within 10 years without any intervention is given by the 
probabilities corresponding to a tumor aged 12.4, 12.9 and 14.9 years: 12.5% (95% CI 12.1–12.7), 13.2% (95% CI 
12.6–13.3) and 14.8% (95% CI 14.4–15.1) respectively.

We can compare this with the probability of developing relapsed metastatic disease after surgery for primary 
tumors of the same size. A study of 4797 patients investigated the probability of metastasis development within 
10 years after intervention and found a linear relationship between tumor size at intervention and the probability 
of metastasis  development46. For a 5 mm, 10 mm, 50 mm tumor they found a probability of approximately 10%, 
15% and 50%  respectively46. The discrepancy between these numbers and those obtained from our model are due 
to the fact that we model untreated patients whereas the patients that experience relapsed metastatic disease have 
been subject to surgery. This may be due to the fact that de novo and relapsed metastatic disease are biologically 
different, as suggested by a recent  study47.

Even though the model is restricted to de novo breast cancer it could become clinically significant when it 
comes to screening for metastasis at diagnosis. When the model has been validated on independent data it could 
inform clinicians when they make decisions on which patients to screen for distant metastases.

An important future improvement to our model in order to make it clinically more useful is to parameterize 
it with data obtained post-resection, in which case it could be used in order to focus monitoring of recurrent 
disease rates. A further improvement would be to account for subtype specific variation in tumor growth.

Conclusions
Our model gives valuable insights into the relative importance of metastatic dissemination routes between organs. 
Seeding of tumor cells from metastases seems to be several hundred fold more important than seeding from the 
primary. Hormone receptor positivity enhances dissemination to the bone and diminishes dissemination to lungs 
and direct dissemination to the liver, while HER2 promotes dissemination the bone, lungs and direct dissemina-
tion to the liver. Secondary seeding from the lungs to the liver seems to be hormone receptor-independent, while 
spread from the lungs to the brain appears HER2-independent. The model also allows us to quantify metastasis 
formation ability in the liver and the brain, suggesting that breast cancer cells are several times better at coloniz-
ing the liver than the brain. Once validated on independent data the model could be used to guide screening for 
metastasis at diagnosis. Important further developments to the model include growth dynamics of metastases 
and allowing for changing dissemination rates with time.
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