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NMR‑based metabolomic profiling 
can differentiate follicular 
lymphoma from benign lymph 
node tissues and may be predictive 
of outcome
Mohammad Mehdi Banoei1,6, Etienne Mahé 2,6*, Adnan Mansoor2, Douglas Stewart3, 
Brent W. Winston4, Hamid R. Habibi5 & Meer‑Taher Shabani‑Rad2

Follicular lymphoma (FL) is a cancer of B‑cells, representing the second most common type of non‑
Hodgkin lymphoma and typically diagnosed at advanced stage in older adults. In contrast to the 
wide range of available molecular genetic data, limited data relating the metabolomic features 
of follicular lymphoma are known. Metabolomics is a promising analytical approach employing 
metabolites (molecules < 1 kDa in size) as potential biomarkers in cancer research. In this pilot study, 
we performed proton nuclear magnetic resonance spectroscopy (1H‑NMR) on 29 cases of FL and 11 
control patient specimens. The resulting spectra were assessed by both unsupervised and supervised 
statistical methods. We report significantly discriminant metabolomic models of common metabolites 
distinguishing FL from control tissues. Within our FL case series, we also report discriminant 
metabolomic signatures predictive of progression‑free survival.

Follicular lymphoma (FL) is one of the most frequently diagnosed lymphomas, representing nearly one-fifth 
of all lymphoma  diagnoses1. FL is typically a diagnosis of older adults, with the median age of diagnosis in the 
seventh  decade1. Data suggest that FL is slightly more prevalent in women and, based on US data, is far more 
frequently diagnosed in Caucasians than in African  Americans1.

FL is a neoplasm of germinal center derived B-cells, recapitulating the architectural features of lymphoid 
follicles as an exuberant nodular  proliferation2. In contrast to normal follicular B-cells, however, FL cells usually 
demonstrate the t(14;18)  translocation2. FL often presents with extensive disease and may transform to more 
biologically aggressive lesions such as diffuse large B-cell  lymphoma1,2.

There has been much effort in recent decades to better describe and understand the biology of FL; this 
research has focused mainly on exploring the molecular genetic profiles of  FL3–5. Previous work has demon-
strated that unique molecular genetic signatures can be employed to distinguish FL from other lymphomas, 
especially diffuse large B-cell  lymphoma4,5. Other research has demonstrated a link between molecular genetic 
signatures and survival in  FL6. Work has also evaluated the specific proliferative and immunologic milieu that 
may contribute to lymphomagenesis and aggressiveness in  FL7,8. To our knowledge, however, work has not yet 
been undertaken to systematically investigate the metabolomic profile of FL.

Metabolomic profiling is the identification and quantification of sets of metabolites present in a cell or  tissue9. 
High throughput technologies such as proton nuclear magnetic resonance spectroscopy (1H-NMR), gas/liq-
uid chromatography mass spectrometry enable us to quantify hundreds of metabolites with a high sensitivity 
and specificity  approach10. Metabolomic analyses, as applied to cancer research, can provide a snapshot of 
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current metabolic activity—or derangement, as might occur in the context of cancer—as represented by metabo-
lite  signatures11. Metabolomics can be used to identify pathophysiological states that might be characterized 
by altered signatures and might further inform the effect of a pharmacologic intervention or other extrinsic 
 factor12. The potential for biomarker discovery using such techniques has also been recently highlighted and 
metabolomic profiling has been performed in hematolymphoid contexts, highlighting some potentially useful 
 biomarkers9,13,14. Metabolomic features with potential drug targets have been recently identified for Diffuse Large 
B-cell  Lymphoma15. We aimed to use 1H-NMR-based techniques to differentiate patients with FL from non-FL 
nodal tissues based on differences in metabolomic signatures.

Results
We were able to acquire 35 cryopreserved lymph node specimens involved with FL from the Alberta Cancer 
Research biorepository, collected over the course of approximately 10 years. Of these, sufficient isolates were 
available for analysis in only 29 cases. A control set of 11 reactive lymph node specimens, also obtained from the 
Alberta Cancer Research biorepository, were compared with the FL cohort. Table 1 details the FL clinical data, 
with control demographic data detailed in Table 2. The control and case series did not differ significantly by age 
(Kolmogorov–Smirnov D = 0.45; p = 0.08) or sex (Pearson chi-square = 1.58; p = 0.21).

Metabolic profiling to differentiate follicular lymphoma from reactive lymph node con‑
trols. Seventy-five metabolites were identified from 1H-NMR spectroscopy data by the ChenomX 1H-NMR 
software (see Supplementary Fig. S1 for example FL 1H-NMR spectrum). Identified metabolites were mostly 
comprised of amino acids, organic acids, sugars, and volatile organic compounds.

Good grouping of FL cases relative to controls was seen by PCA analysis (Supplementary Fig. S2) and there 
were no outlier specimens detected. The cumulative  R2X of a 5 component PCA model was 0.49, with high 
variability among specimens. Similarly, OPLS-DA analysis discriminated FL cases from controls. By OPLS-DA 
modeling (p = 0.0004), the contribution of 24 metabolites separated the FL and control groups well  (Q2Y = 0.431). 
PLS-DA results suggested the presence of unknown cofounder factor(s) influencing the OPLS-DA model, as PLS-
DA provided more predictable  (Q2Y = 0.639) and more significant (p = 2.5e−07) modeling using 28 metabolites. 

Table 1.  FL cases (n = 29): demographic, clinical, pathology and biomarker data.

Age at biopsy

Mean 59 years

Median 57 years

Range 31–83 years

Sex
Female 12 (41%)

Male 17 (59%)

Grade

1–2 19 (66%)

3 2 (7%)

Data not available 8 (27%)

Clinical stage
I/II 9 (31%)

III/IV 20 (69%)

Ki-67 proliferation index

 < 30% 13 (45%)

 ≥ 30% 4 (14%)

Data not available 12 (41%)

FLIPI

Low-to-Intermediate Risk (FLIPI ≤ 2) 13 (44%)

High-risk (FLIPI ≥ 3) 8 (28%)

Data not available 8 (28%)

Lymph node bulk

All nodes ≦ 6 cm 12 (41%)

Any node > 6 cm 8 (28%)

Data not available 9 (31%)

Table 2.  Controls: demographic data.

Age at biopsy

Mean 45 years

Median 51 years

Range 24–60 years

Sex
Female 7 (64%)

Male 4 (36%)

History of cancer
Yes 5 (45%)

No 6 (55%)



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8294  | https://doi.org/10.1038/s41598-022-12445-5

www.nature.com/scientificreports/

PLS-DA analysis also showed higher sensitivity and specificity compared to the OPLS-DA approach (Supple-
mentary Table S1). The PLS-DA and OPLS-DA models are represented graphically in Fig. 1 and Supplementary 
Fig. S3, respectively. PLS-regression analyses demonstrated a strong correlation  (R2 > 0.90) between the most 
discriminant metabolites and the separation of cases from controls by both OPLS-DA and PLS-DA analyses 
(Supplementary Fig. S4).

Coefficient plots suggested increased alanine, inosine, O-phosphocholine, threonine, nicotinamide adenine 
dinucleotide phosphate (NADPH), acetoacetate, fumarate, glucose, 2-hydroxybutyrate, taurine, lysine, 2-deox-
ygultarate, O-phosphoethanolamine, acetone, sn-glycero-3-phosphocholine, 4-hydroxybutyrate, adenosine 
diphosphate (ADP) and guanosine triphosphate (GTP) in FL cases when compared to controls. Moreover, 
dimethyl sulfone, uracil, formate, acetate, creatine, aspartate, creatinine ascorbate compounds were seen to be 
decreased in FL cases compared to the controls (Supplementary Fig. S5). An S-plot analysis demonstrated that 
inosine, taurine, O-phosphocholine, 2-deoxyglutarate, sn-glycero-3-phosphocholine, glutamate, 4-hydroxy-
butyrate, ADP and alanine could be more putative biomarkers with higher reliability and higher magnitude to 
separate FL from controls (Supplementary Fig. S6).

Using a univariate approach, unpaired t-test analysis identified 7 metabolites significantly enriched in FL cases 
(p < 0.05; Fig. 2) with one metabolite (inosine) also demonstrating a significant FDR (q < 0.05; Supplementary 
Table S2). The validity of  R2 and  Q2 values from the discriminant models were confirmed by permutation testing 
with 200 repetitions (Supplementary Fig. S7). This strongly suggests there is no overfitting of the data.

Follicular lymphoma metabolomics in relation to clinical and outcome data. In addition to dis-
tinct metabolomic differences seen when comparing FL cases to controls, we also identified two apparent FL sub-
groups (identified as FL1 and FL2 in Fig. 1) from among the cases. By the Kaplan–Meier method, we observed 
a significant difference in progression-free survival between the FL subgroups (log-rank chi-square = 4.1, 
p = 0.043; see Fig. 3). We also explored the potential impact of other clinical and pathology variables using widely 
accepted cut-offs to facilitate Kaplan–Meier analyses (see Supplementary Fig. S8A–G); none of these variables 
demonstrated significant prediction of progression-free survival in our case cohort, however. Notwithstanding 
our small sample size, only our metabolomic classifier demonstrated significance in multi-variate analyses (by 
the cox-proportional hazards method).

To further explore the possible metabolites that might account for differential time-to-progression, we sepa-
rated the FL cases into groups demonstrating progression at less than/greater than 24 months. In this manner, 
PLS-DA analysis noted a highly predictive and significant  (Q2 = 0.549, and p = 0.0004) metabolomic model 
(Fig. 4). The FL cohort with early progression demonstrated increased mannose, glutamine, 2-oxoisocaporate, 
lysine, methanol, fumarate, alanine, beta-alanine, valine ornithine, leucine, tyrosine, ADP, isoleucine and AMP 
(Supplementary Fig. S9).

Pathway analysis. The metabolomic profile of FL suggests upregulation of energy-conversion pathways, as 
evidenced by enrichment in FL cases for energy conversion pathway metabolites and intermediates. Increased 
levels of glucose, UDP-glucose, alanine, glutamate, ADP, GTP and NADPH suggest higher energy metabolism in 

Figure 1.  Partial least squares discriminant analysis highlights a very predictive  (R2Y = 0.777,  Q2Y = 0.639) and 
significant (p = 2.5e−07) separation between FL cases (including subsets FL1 and FL2) and controls using 28 
metabolites (with a variable importance in projection > 1).
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FL cases compared to controls. Correspondingly, lower levels of uracil in FL cases suggest a relatively higher rate 
of DNA synthesis and cell growth relative to controls. Note is made of increased Inosine in the FL group vs the 
controls. This is indeed reflected in the MetaboAnalyst pathway analysis, demonstrating significantly upregu-
lated aminoacyl-tRNA biosynthesis pathways and downregulated pyruvate metabolism pathways. Our data also 
suggested decreased pyruvate and increased lactate metabolites in FL cases compared to controls.

Increased branched chain amino acids and decreased antioxidant metabolites were associated with FL disease 
severity and early mortality. Multivariate analyses using clinical classification suggested increased valine, leucine 
and isoleucine in apparently more aggressive forms of FL. These branched chain amino acids were enriched in 
cases of FL demonstrating early progression of disease (progression at less than 24 months). We also observed a 
relative decrease in concentration of glutathione and hypoxanthine, which are known antioxidant and anticancer 

Figure 2.  Dot and whisker plot showing the 7 metabolites highlighted by unpaired t-test analysis as being 
significantly different in follicular lymphoma cases relative to controls.

Figure 3.  Kaplan–Meier analysis demonstrating significantly different progression-free survival by 
metabolomic subgroup.
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 compounds16, in the more aggressive FL cases. Energy metabolism intermediates, such as sAMP and ADP and 
UDP-glucose, were also increased in the more aggressive FL cases.

Methods
This study was reviewed and approved by the Health Research Ethics Board of Alberta (HREBA.CC16-0641); all 
experiments were performed in accordance with the relevant regulations of the Health Research Ethics Board of 
Alberta. Banked tissues were used as part of a materials transfer agreement undertaken between the principal 
investigator and the Alberta Cancer Research Biobank. Tissue banking procedures, and collection of clinical 
data, were performed with full and informed patient consent, and with oversight of our regional Institutional 
Review Board.

Specimen selection and data collection. High-quality cryopreserved lymph node specimens from 
patients with Follicular Lymphoma, as well as cryopreserved lymph node specimens obtained from control 
(non-follicular lymphoma) patients, were obtained from our regional biobank. Where available, clinical data 
were also collected, including age at diagnosis, sex, stage, FL international prognostic index (FLIPI), primary 
site lymph node bulk (in cm), FL grade and Ki67 proliferation index. Fulsome overall survival data were sparse, 
owing in part to patient loss-to-follow-up; as such, our clinical outcome assessment was limited to progression-
free survival.

Specimen preparation and extraction of metabolites. We applied an adjusted methanol/chloroform 
method to extract metabolites from tissue specimens for 1H-NMR  analysis17. One hundred mg of each cryopre-
served specimen was transferred to 1.5 ml Eppendorf tubes followed by immediate addition of liquid nitrogen. 
Pre-cooled 200 µl methanol and 85 µl water were added to specimens in the tubes after evaporation of liquid 
nitrogen. Specimens were homogenized for 1 min at 3000 rpm using a homogenizer and resuspended in 200 µl 
chloroform and 200 µl water at 4 °C and vortexed for 15 min. Specimens were then centrifuged at 10,000 rpm for 
15 min at 4 °C. The resulting aqueous and non-aqueous phases were analyzed separately.

Specimen volumes were adjusted to 400 µl with 80 µl of NMR buffer (0.5 M  NaH2PO4 buffer solution at pH 
7.0) containing 2.5 mM 2,2-dimethylsilapentane-5-sulfonate (DSS, final concentration 0.5 mM) as an internal 
reference compound, 10 µl sodium azide (1 M  NaN3) to prevent bacterial growth, and deuterated water. The pH 
of the specimens was adjusted to 7.0 ± 0.04 and NMR assessment was performed at 4 °C.

Metabolite quantification and profiling. 1H-NMR data for all the specimens were generated in a 
blinded manner using a 600 MHz Bruker Ultrashield Plus NMR spectrometer (Bruker BioSPin Ltd., Canada). 
The one dimensional spectra were acquired using the Bruker 1D proton spectroscopy pre-saturation pulse 
sequence (noesy 1D) using an optimal water suppression program and a mixing time of 100  ms18,19. Initial 
specimens from each batch were sized to ensure the half-height line width of approximately 0.7–0.8  Hz for 
the DSS peak calibrated to 0.0 ppm. The NMR spectra were obtained with 1024 scans, zero filled and Fourier 
transformed to 128 k points. Obtained NMR spectra were corrected using line broadening, phasing, baseline 

Figure 4.  Partial least squares discriminant analysis highlighting good separation of FL cases with early 
progressive disease (< 24 months) and those who experienced later progressive disease (≥ 24 months) using 30 
metabolites with the highest effect magnitude (Q2Y = 0.549; p = 0.0004).
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correction and referencing to the DSS peak at 0.0 ppm using the Topspin software program (Bruker BioSpin 
Ltd., Canada). The ChenomX NMR Suite 7.1 software (ChenomX Inc., Edmonton, Alberta, Canada) was used 
to assign the metabolites peaks through processing and profiling modules, as has been described  previously18. 
1H-NMR spectra were manually phased followed by baseline correction. Water peak region was deleted from 
the spectra before metabolites alignment. The profiler module of ChenomX NMR Suite 7.1 was used to profile 
1H-NMR spectra for metabolite identification and quantification using a non-targeted  approach18. Metabolite 
identification was accomplished using the Human Metabolome Database (HMDB, version 2.5) linked to Che-
nomX, by matching the chemical shift patterns of metabolites in the query specimens with those in the library 
database, as described  previously20. We used DSS as an internal standard for metabolite quantification (concen-
trations derived in mM)21.

Data analysis. We performed multivariate and univariate data analyses to identify metabolite patterns. In 
the multivariate approach, 1H-NMR data were log transformed, mean-centered or scaled to univariance and 
then analyzed using the SIMCA-P + software (version 15.0.2, Umetrics AB, Umeå, Sweden). Unsupervised 
principal component analysis (PCA) was used to identify trends, for grouping and identification of outliers. 
Supervised partial least square discriminant analysis (PLS-DA) and orthogonal partial least discriminant analy-
sis (OPLS-DA) were used to classify metabolites and for separation of distinct specimens. OPLS-DA can also 
identify potential confounding factors that appear as orthogonal components in the resulting statistical model, 
whereas PLS-DA will highlight distinct metabolomic profiles without influence of orthogonal factors.

The parameters  R2Y,  Q2Y and p values were considered when evaluating discriminant statistical models.  R2Y 
and  Q2Y represent goodness of model fit and goodness of predictability, respectively, and vary between 0 and 1. 
Cut off values of  Q2Y > 0.3, > 0.5 and > 0.7 were established to define acceptable, good and excellent prediction 
models,  respectively22–24. We generated S-plots to identify those putative metabolites with high model reliability 
and effect magnitude. Coefficient plots were generated to illustrate how metabolites change between specimen 
subgroupings in a relative correlation scale.

We used MetaboAnalyst (version 4.0)21 and Cytoscape (version 3.6.0)25 for pathway analysis using the most 
discriminant metabolites; metabolites with higher predictability  (Q2Y) values were selected based on the OPLS-
DA model. Clinical and survival statistical analyses were performed in Stata (version 17.0). Model p values less 
than 0.05 were considered significant.

Discussion
To our knowledge, this is the first application of metabolomics to follicular lymphoma using 1H-NMR spectros-
copy. 1H-NMR spectroscopy provides a reproducible and quantitative approach to metabolomic investigation, 
if perhaps less sensitive relative to mass spectrometry techniques, capable of providing a metabolomic snapshot 
including small polar molecules at micromolar concentrations. Although best seen as a pilot study of 1H-NMR 
in FL, our results suggest that an FL-specific metabolomic signature exists and that certain FL metabolomic 
patterns may be prediction of more aggressive disease. We observed a FL metabolomic profile enriching for 
pathways relating to energy metabolism. Elevated concentrations of ADP, AMP, GTP, NADHP, glucose and 
UDP-glucose tend to characterize FL relative to normal control tissues. We also report that elevated concentra-
tions of branched-chain amino acids and lowered antioxidant and anti-inflammatory molecule tend to associate 
with more aggressive forms of FL.

Previous studies have reported elevated AMP, UDP, CTP, ATP, UTP and GMP in cancer  cells26,27. Investiga-
tions on purines and pyrimidines in human lung  cancer28 and breast, endometrial and prostate  cancers29 have 
shown extracellular nucleosides (adenosine) and nucleotides (ATP, ADP, UTP, UDP and sugar UDP) could be 
correlated to disease progression as premetastatic and growth factors through the activation of purinergic signal-
ing. Our data also suggest an enrichment of inosine in FL relative to benign tissues. Increased inosine has been 
observed in other cancers, and inosine has also been observed to stimulate tumor cell  proliferation30,31. These 
observations may relate to impaired purine metabolism and increased cell turn-over30,31. Glycogen metabolism 
is reported to play an important role in the cancer microenvironment and elevated UDP-glucose and pentose 
phosphate pathway (PPP) characterize the relatively higher energy metabolism required by cancer  cells32.

Other studies have also highlighted the significance of branched-chain amino acids in cancer growth, con-
tributing to many biochemical and cell signaling pathways in both  human33,34 and animal models of  cancer35. 
Elevated concentrations of branched-chain amino acids have been associated with increased colorectal cancer 
 risk36. Branched-chain amino acid deprivation (particularly of leucine) may impart an increased tendency for 
 apoptosis34. Leucine enrichment has been shown to stimulate pancreatic cancer growth, for  example37. Indeed, it 
has been suggested that enhanced glucose and branched-chain amino acid metabolism might portend a higher 
risk of metastasis of breast cancer to the  brain38. In another study, plasma and urine levels of branched-chain 
amino acids were found to be relatively lower in prostate cancer cases than healthy  controls39. Higher concen-
trations of leucine in prostate cancer tissues were found to associate with a higher rate of energy metabolism in 
models of human prostate cancer and in mouse cell  lines40. Our data suggest that elevated branched-chain amino 
are associated with higher risk of progression in FL.

Perhaps not unexpectedly, our data also suggest relative depletion of glutathione and other antioxidant 
metabolites in more aggressive forms of FL. Glutathione plays different critical roles in cells, functioning as an 
antioxidant, balancing the intracellular redox state, modulating immune responses and assisting in detoxifica-
tion of exogenous biological  compounds41. Lower concentrations of glutathione in cancer cells might occur as 
a result of consumption of cystine/cysteine, glycine or  glutamate42, and cancer cells deprived of glutathione are 
known to be relatively more sensitive to  radiation42,43.
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Certain study limitations should be highlighted. Owing mainly to the challenges of obtaining high-quality 
cryopreserved tissues, our FL cohort is small. Nevertheless, using banked cryopreserved tissues afforded us access 
to follow-up data, and available clinical information suggested that our cohort was reasonably representative. Of 
perhaps greatest import, however, is the need for independent validation of our results.

Data availability
The datasets used and/or analyzed as part of this study are available from the corresponding author on reason-
able request. Requests will need to be vetted by the corresponding author’s regional institutional review board 
prior to data release.
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