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Machine learning based algorithms 
to impute  PaO2 from  SpO2 values 
and development of an online 
calculator
Shuangxia Ren1,5, Jill A. Zupetic2,3,5, Mohammadreza Tabary2,3,5, Rebecca DeSensi2,3, 
Mehdi Nouraie2,3, Xinghua Lu1,4, Richard D. Boyce1,4 & Janet S. Lee2,3*

We created an online calculator using machine learning (ML) algorithms to impute the partial pressure 
of oxygen  (PaO2)/fraction of delivered oxygen  (FiO2) ratio using the non-invasive peripheral saturation 
of oxygen  (SpO2) and compared the accuracy of the ML models we developed to published equations. 
We generated three ML algorithms (neural network, regression, and kernel-based methods) using 
seven clinical variable features (N = 9900 ICU events) and subsequently three features (N = 20,198 ICU 
events) as input into the models. Data from mechanically ventilated ICU patients were obtained from 
the publicly available Medical Information Mart for Intensive Care (MIMIC III) database and used for 
analysis. Compared to seven features, three features  (SpO2,  FiO2 and PEEP) were sufficient to impute 
 PaO2 from the  SpO2. Any of the ML models enabled imputation of  PaO2 from the  SpO2 with lower error 
and showed greater accuracy in predicting  PaO2/FiO2 ≤ 150 compared to the previously published log-
linear and non-linear equations. To address potential hidden hypoxemia that occurs more frequently 
in Black patients, we conducted sensitivity analysis and show ML models outperformed published 
equations in both Black and White patients. Imputation using data from an independent validation 
cohort of ICU patients (N = 133) showed greater accuracy with ML models.

Abbreviations
PaO2  Partial pressure of oxygen
FiO2  Fraction of inspired oxygen
SpO2  Peripheral saturation of oxygen
PF ratio  PaO2/FiO2
SF ratio  SpO2/FiO2
ARDS  Acute respiratory distress syndrome
SOFA  Sequential organ failure assessment
ABG  Arterial blood gas
TV  Tidal volume
PEEP  Positive end-expiratory pressure
MAP  Mean arterial pressure
SVR  Support vector regression
RBF  Radical basis function kernel
AUROC  Area under receiver operating characteristic curve
BIC  Bayesian information criterion
RMSE  Root-mean-square deviation
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The ratio of the partial pressure of oxygen  (PaO2) to the fraction of oxygen  (FiO2) delivered, or the  PaO2/FiO2, is 
the reference standard measurement for the assessment of low blood oxygen levels, or hypoxemia, in mechani-
cally ventilated patients with respiratory failure. The  PaO2/FiO2 ratio (PF ratio) has predictive value for mortality 
in patients with acute respiratory distress syndrome (ARDS)1 and is also part of a severity index scoring system 
called the Sequential Organ Failure Assessment (SOFA) score that is used to predict severity of illness in patients 
with critical  illness2–4. Additionally, the PF ratio is relevant to clinical decision-making including the decision 
to initiate prone positioning in ARDS patients with PF ratios ≤  1505. Currently, measurement of the PF ratio 
requires invasive arterial blood gas (ABG) sampling and does not provide a continuous measure of the patient’s 
oxygenation. Increasingly, non-invasive monitoring with pulse oximetry is utilized instead of  ABGs6,7, particu-
larly in low-resource settings where ABG monitoring may not be readily available. In contrast to invasive blood 
gas sampling, the  SpO2 (peripheral saturation of oxygen)/FiO2 ratio can be calculated without blood collection, 
arterial puncture, or blood gas analyzers and may serve as a surrogate for the  PaO2/FiO2 ratio. Notably several 
studies have evaluated the SF ratio in children where non-invasive measurements are increasingly  favored8–10.

A few studies have examined non-linear imputation of  PaO2/FiO2 from  SpO2/FiO2 measurements recorded 
at the same  time11,12. These studies have reported that the accuracy of non-linear imputation is superior to log-
linear or linear imputation, especially for moderate to severe hypoxemic respiratory failure with ARDS where 
the PF ratio is <  20011,13. However, in patients with respiratory failure requiring mechanical ventilation, the 
optimal equation for imputation of  PaO2/FIO2 from the  SpO2/FIO2 remains unclear. An algorithm to accurately 
impute the  PaO2 from the  SpO2 in mechanically ventilated patients would be beneficial for predictive modeling 
and clinical research to facilitate recruitment of patients for clinical trials if an ABG is not available. Ideally, this 
approach would include only variables that contribute to the relationship between  SpO2 and  PaO2 but would not 
require the same invasive ABG measurement as the  PaO2. From the clinical perspective, SF ratio can be utilized 
as a surrogate for PF ratio to diagnose ARDS or ALI with less invasive nature and comparable  reliability14.

The objective of this study is to develop a calculator utilizing machine learning algorithms to impute  PaO2 
using non-invasive  SpO2 measurements from mechanically ventilated patients in the Medical Information Mart 
for Intensive Care (MIMIC) III  database15 and to compare the accuracy of the machine learning models to the 
previously published non-linear and log-linear  equations11,13. In this study, three common machine learning 
approaches (neural  network16,  regression17, and kernel-based  methods18,19) were tested for regression and clas-
sification tasks using data available in MIMIC  III20 with 7 clinical variable features and a subsequent 3-feature 
model. We created models to perform a regression task to impute  PaO2 from  SpO2 values and a classification 
task to predict patients with moderate to severe hypoxemic respiratory failure based on a cut-off of a predicted 
PF ratio ≤  15011. Our overall hypothesis is that a machine learning algorithm would perform better in predicting 
the  PaO2 from  SpO2 across the entire span of  SpO2 values when compared to the previously published equations.

Methods
The MIMIC-III database v1.4 (https:// mimic. physi onet. org) is an openly available dataset developed by the 
Massachusetts Institute of Technology Lab for Computational  Physiology15. It contains de-identified health data 
associated with approximately 40,000 intensive care unit admissions for patients admitted to critical care units 
in the Beth Israel Deaconess Medical Center between 2001 and 2012. MIMIC-III is a relational database that 
contains information on demographics, vital signs, mechanical ventilation status, laboratory tests, medications, 
and mortality. We also utilized a validation cohort obtained from an existing database of de-identified clinical 
information from intensive care unit patients with Pseudomonas aeruginosa respiratory isolates from 2 hospi-
tals within the University of Pittsburgh Medical Center (UPMC). This dataset similarly contains information 
of demographics, mechanical ventilation status, ventilator parameters and laboratory tests. Our study utilizing 
the MIMIC-III database was determined as exempt by the University of Pittsburgh Institutional Review Board 
(STUDY19100068). The University of Pittsburgh Institutional Review Board approved the Pseudomonas aer-
uginosa ICU respiratory isolates database as waiver of informed consent (STUDY21030010) and also approved 
the use of this database as an independent validation cohort (STUDY21090073). All methods were carried out 
in accordance with relevant guidelines and regulations.

Data processing. For the MIMIC-III database, we identified unique ICU encounters (icustay_id) with 
mechanical ventilation status. We next identified the lab event  PaO2 and chart event  SpO2 occurring at the 
same time of the mechanical ventilation status. In order to minimize error between matched  PaO2 and  SpO2, 
we constrained the time gap between the lab event  PaO2 and the chart event  SpO2 to be no more than 30 min. 
To minimize repeated sampling from the same subjects, we restricted the search of  PaO2 measurements to the 
first 24 h of mechanical ventilation and obtained the first  PaO2 recorded within this time frame. For chart events 
including tidal volume (TV), positive end-expiratory pressure (PEEP),  FiO2, temperature, and mean arterial 
pressure (MAP), we constrained the time gap to within 2 h of the selected  SpO2 measurement. If a patient was 
treated with vasoactive infusions, it was recorded as a categorical variable. Data extraction and processing meth-
ods are available at https:// github. com/ rensh uangx ia/ PaO2P redic torDj ango21. The online calculator is available 
at https:// dikb. org/ pa02- predi ctor.

For the 3-feature model in the UPMC validation cohort, the database was queried for unique ICU patients 
requiring mechanical ventilation. The validation set cases include 133 discrete individuals with ABGs obtained 
within 30 min of an  SpO2 reading similar to the constraints defined in the MIMICS III derivation cohort.

Machine learning methods for regression task. For the regression task we implemented 3 different 
models—a neural network model, a linear regression model, and support vector regression (SVR), a type of 
kernel-based modeling. For each model, we applied a tenfold cross-validation22.

https://mimic.physionet.org
https://github.com/renshuangxia/PaO2PredictorDjango
https://dikb.org/pa02-predictor
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For the neural network model, we tested different network structures and various numbers of features to 
arrive at two models used for comparison with the linear and support vector regression models. One model 
used seven input features and three hidden layers (16, 8, 5 neurons for layers 1–3). The other model used only 
three input features and two hidden layers (6, 3 neurons for layers 1 and 2). Both final models used a tangent 
activation function for all layers except the output layer which used a linear function in both models. Also, both 
models were trained for 200 epochs with Adam optimizer using gradient descent. The learning rate was 0.001 
and the batch sizes were 50 for both models.

For the linear regression model, the output variable can be computed by a linear combination of the input 
variables. We trained the linear regression equation by the Ordinary Least Squares approach. We used the lin-
ear_model.LinearRegression method from scikit-learn 0.22 (https:// scikit- learn. org/ stable/) with default hyper-
parameters for predicting  PaO2 values.

For the SVR model, we tested multiple kernels including linear kernel, polynomial kernel, and radical basis 
function kernel (RBF). Based on the performance in the training data, the RBF kernel was selected.

Machine learning methods for classification task. We utilized  PaO2/FiO2 ≤ 150, an accepted thresh-
old previously utilized to capture patients with moderate to severe disease meeting the criteria for  ARDS11,13. 
We utilized this cut-off to test machine learning methods to predict this diagnostic threshold  PaO2/FiO2 ≤ 150 
for the different imputation techniques. We implemented three classification models including neural network, 
logistic regression, and a kernel-based model, SVM.

For each machine learning model, we applied a tenfold cross-validation and calculated the sensitivity, 
specificity, likelihood ratios, diagnostic Odds Ratio (OR), Area Under Receiver Operating Characteristic curve 
(AUROC), F1 score and Bayesian Information Criterion (BIC) to compare across models. The two neural network 
models for classification were similar to the neural networks used in regression, except the output layer used 
the sigmoid function. As with the regression models, various topologies were tested to arrive at the final two 
multi-layer perceptron (MLP) classifiers, one with an input size of seven features and the other with an input 
size of three features. The hidden layer size is (12, 8, 6, 4, 4) for the model with seven input features. For the other 
model which utilizes only three input features, we used two hidden layers of size 6 and 3. All hidden layers used 
the tangent activation function. We trained both models for 200 iterations with Adam optimizer, setting seven 
feature classifier momentum value as 0.8 and three feature classifier momentum value as 0.6. The learning rate 
was 0.001 and the batch size was 200 for both models.

In addition, we implemented a basic logistic regression model for classification purposes as well as the SVM 
model which classifies examples with an optimal hyperplane. For the logistic regression, it uses logistic func-
tion to model a binary dependent variable. We utilized the linear_model.LogisticRegression method provided 
in the scikit-learn library without regularization, and other arguments were set as default. For the SVM model, 
we compared the results by applying different kernels and the RBF kernel outperformed other kernels. Methods 
were similar to those used in the regression task.

Comparison of machine-learning based algorithm to published non-linear and log-linear equa-
tions. We compared the performance of our machine learning algorithms to the previously published equa-
tions. For the non-linear equation from Brown et al.11 the  PaO2 was imputed from the  SpO2, where  PO2 =  PaO2, 
S =  SpO2 and F =  FiO2 which is illustrated in the Eq. (1). For situations where the recorded  SpO2 was 100% (or, 
1.0), the  SpO2 was substituted with 0.996 given that the equation would not permit the calculation of S = 1.0.

Non-linear equation to impute  PaO2 from the  SpO2 (Reprinted with permission - see Acknowledgment 
section).

For the log-linear equation from Pandharipande et al.11,13, the  PaO2/FiO2 was imputed from  SpO2/FiO2 
utilizing the Eq. (2):

Log-linear equation to impute  PaO2 from the  SpO2 (Reprinted with permission - see Acknowledgment 
section).

Sensitivity analysis. To compare the performance of our machine learning algorithms to previously pub-
lished equations, a sensitivity analysis was performed by selecting either self-reported White or Black race. For 
each machine learning model, we implemented a tenfold cross-validation and calculated the sensitivity, speci-
ficity, likelihood ratios, diagnostic OR, AUROC, F1 score, RMSE (root-mean-square deviation), and BIC to 
compare across models.
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Results
A parsimonious three features model is sufficient to impute PaO2/FiO2 ratio using a large data-
set. An overview of the machine learning tasks is outlined in Fig. 1. We initially chose seven relevant features 
from the chart events  (SpO2,  FiO2, TV, MAP, temperature, PEEP and vasopressor administration) representing 
recorded bedside measurements that were independent from an invasive arterial blood gas measurement. When 
applying the seven features to impute the  PaO2, the final data set contained 9900 unique ICU encounters from 
9302 mechanically ventilated patients (Supplementary Table e1). The relationship between  SpO2/FiO2 (S/F) and 
the  PaO2/FiO2 (P/F) was examined in dataset 1 containing 9900 unique ICU events from the MIMIC-III data-
base and was best described by a log-linear relationship between the transformed logarithmic value of the SF and 
PF ratios as previously described by Pandharipande et al.13 (Supplementary Fig. e1). The relationship between 
S/F and P/F ratios showed high variance across the distribution of mechanically ventilated subjects  (R2 = 0.21).

For the regression task, we derived the RMSE and BIC for each of the different seven feature machine learning 
models (neural network, linear regression, support vector regression) to assess the performance of the imputation 
techniques. The RMSE and BIC of the three machine learning methods are shown in Supplementary Table e2. 
All the machine learning models outperformed the previously published non-linear and log-linear equations as 
shown by lower RMSE score; the same was observed for subset 1  (SpO2 < 97%). For the classification task, the 
three machine learning methods achieved similar classification performance according to F1 scores, as shown 
in Supplementary Table e3; the same pattern was observed for subset 1  (SpO2 < 97%).

To improve practicality of the method at the bedside, we attempted to use the smallest number of features pos-
sible to predict the  PaO2 or  PaO2/FiO2 ratio from the regression and classification tasks, respectively. Compared 
to the other measured variables, PEEP had the strongest correlation with  PaO2/FiO2 (r = − 0.31) outside of the 
SF ratio  (SpO2/FiO2) (Table 1). Using this information, we created a 3-feature model using  SpO2,  FiO2 and PEEP. 
As compared to seven features, three features were sufficient to impute  PaO2/FiO2 ratio with a similar degree of 
accuracy. The 3-feature model was therefore utilized in the remainder of the analysis for the machine learning 
algorithms. The final 3-feature data set (dataset 2) contained 20,198 ICU encounters from 17,818 unique patients 
(Table 2). Forty percent of subjects were of female sex and the mean age was 64 years. The degree of hypoxemic 
respiratory failure, as measured by the  PaO2/FiO2  ratio1, showed a distribution in which 26% had mild respira-
tory failure  (PaO2/FiO2 = 201–300), 22% had moderate respiratory failure  (PaO2/FiO2 = 101–200), and 8% had 
severe respiratory failure  (PaO2/FiO2 ≤ 100).

Figure 1.  Overview of the experimental study design.

Table 1.  Correlation coefficients between PF ratios and variables. Correlation coefficients between measured 
PF ratios and the six other measured variables  (SpO2/FiO2 = SF ratio, PEEP, MAP, Temperature, Vasopressor 
Administration and TV) were performed. The variable with the strongest correlation coefficient (r) was 
chosen for the 3-feature model. PF ratio  PaO2/FiO2, SF ratio  SpO2/FiO2, TV tidal volume, PEEP positive end-
expiratory pressure, MAP mean arterial pressure.

SF ratio PEEP MAP Temperature Vasopressor administration TV

PF ratio 0.44 − 0.31 0.06 − 0.06 − 0.04 0.02
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Machine learning models show improved performance when compared to the prior published 
equations for regression. We quantitatively derived the RMSE for all of the machine learning and previ-
ously published models and the BIC for each of the three machine learning models to assess the performance 
of the different imputation techniques (Table 3). The RMSE of the neural network, linear regression and SVR 
machine learning models were 84.7, 88.8 and 85.9, respectively, compared to 117.7 and 91.8 for the log-linear and 
non-linear equations. The lower RMSE values indicate that the three machine learning models outperformed the 
previously published equations. Of the machine learning models, the neural network method showed the lowest 
RMSE as well as the lowest BIC in both the whole dataset (dataset 2) and for  SpO2 < 97% (subset 2). A Bland–Alt-
man Plot suggests that the neural network model is comparable to the published equations (Supplementary Fig. 
e2). There was decreasing accuracy at higher  PaO2/FiO2 ratios for all the methods examined.

Machine learning models show improved performance for the classification task. We com-
pared the performance of the machine learning models with the log-linear and non-linear equations using F1 
scores. Similar to the findings for the regression task, all three machine learning models performed better in the 
whole dataset than log-linear and non-linear equations (Table 4). When the dataset was limited to  SpO2 < 97% 
(subset 2), the machine-learning methods performed slightly better than log-linear and better than non-linear 
equations, respectively (Table 4). The F1 scores for all three machine learning methods were similar when using 
the whole dataset (dataset 2) and for subset 2 where  SpO2 < 97%. As shown in Fig. 2, when comparing the 3 
machine learning models to one another, the neural network preformed slightly better in the whole dataset (area 

Table 2.  Subject characteristics based on three features. The 3-feature models captured 20,198 ICU events 
from 17,818 unique patients. Variables included in the 3-feature machine learning models are  SpO2,  FiO2, and 
PEEP. ICU intensive care unit. a For subjects older than 89 years, the age was assigned as 90 years of age.

Total ICU events, N 20,198

Female sex, n (%) 8084 (40.0)

Age in years, mean (± SD)a 64.0 (± 16.2)

PaO2/FiO2, mean (± SD) 310.4 (± 184.4)

Available mean PaO2/FIO2, N 20,198

PaO2/FiO2 > 300, n 8996

PaO2/FiO2 = 201–300, n 5226

PaO2/FiO2 = 101–200, n 4448

PaO2/FiO2 < 100, n 1528

Available SpO2 measurements per unique patient, N 17,818

1 measurement, n 16,065

2 measurements, n 1367

3 measurements, n 262

4 measurements, n 77

5 measurements, n 29

6 measurements, n 14

7 measurements, n 4

Table 3.  RMSE and BIC of the 3-feature machine learning models regression tasks compared to published 
methods. The RMSE and BIC for the 3-feature machine learning models were calculated for the entire dataset 
(20,198 ICU events) and a subset of the dataset with  SpO2 < 97% (3280 ICU events) and compared to the 
published log-linear and non-linear models. BIC Bayesian information criterion, RMSE Root-mean-square 
deviation. RMSE: An estimate of the differences between values predicted by a model and the values observed. 
The lower RMSE is, the lower the difference that exists between the predicted and observed values. BIC: A 
criterion used in Bayesian statistics to choose between models. The model with the lowest BIC is supposed to 
be the best.

Entire dataset 2 (20,198 events)
Subset 2  (SpO2 < 97%) 
(3280 events)

RMSE BIC RMSE BIC

Neural network 84.7 17,952.7 67.5 2778.9

Linear regression 88.8 18,144.3 68.0 2783.5

Support vector regression 85.9 18,013.6 70.3 2805.0

Log-linear 117.7 NA 72.2 NA

Non-linear 91.8 NA 81.2 NA
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under the precision recall curve = 0.94 for the neural network compared to 0.93 and 0.91 for the logistic regres-
sion and support vector machine model, respectively). The three models had similar performance in subset 2.

Sensitivity analysis. Hidden hypoxemia, or the discrepancy between peripheral oxygen saturation  (SpO2) 
measurements and the arterial oxygen saturation  (SaO2) measured by ABG, was recently identified to occur in 
5.3–5.5% of patients in the ICU  setting23,24. Hidden hypoxemia, defined as  SpO2 ≥ 88% despite an  SaO2 ≤ 88%, 
was observed in all races and ethnic groups but occurs with higher prevalence in Black  patients23,24. We con-
ducted a sensitivity analysis to compare the performance of the machine learning models between self-reported 
Black and White race in dataset 2. For the regression task, among Black patients, machine learning algorithms 
outperformed both non-linear and log-linear equations in terms of the regression task (RMSE: 88.7, 91.1, 90.1, 
117.4, and 95.8 for neural network, linear regression, SVR, log-linear, and non-linear models, respectively). 
Among machine learning algorithms, neural network revealed the highest performance in Black patients (Sup-
plementary Table e4). Focusing on Black patients with  SpO2 < 97% (subset 2), machine learning models showed 
superior performance over previously published equations (RMSE: 72.1, 74.4, 71.5, 85.0, and 95.6 for neural net-
work, linear regression, SVR, log-linear, and non-linear models, respectively). The same pattern was observed for 
White patients in both the whole population and patients with  SpO2 < 97% (subset 2) (RMSE in White patients: 
84.6, 88.3, 85.9, 117.7, and 91.8; RMSE in White patients with  SpO2 < 97%: 67.8, 68.3, 70.5, 72.2, and 81.2 for 
neural network, linear regression, SVR, log-linear, and non-linear models, respectively).

Considering the classification task, all machine learning algorithms performed better than or comparable 
to previously published equations in Black patients (F1: 0.93, 0.92, 0.93, 0.89, 0.92 for neural network, linear 
regression, SVR, log-linear, and non-linear models, respectively). Of note, neural network model performed 

Table 4.  Prediction performance of machine learning classification models based on three features. Prediction 
performance statistics were calculated for the machine learning models based on three features and compared 
to the Log-linear and Non-linear methods for the entire dataset (20,198 ICU events; entire dataset 2) and for 
a subset of the events where  SpO2 < 97% (3280 events; subset 2). Variables included in the 3-feature machine 
learning models are  SpO2,  FiO2, and PEEP. PaO2: SVR Support vector regression, AUROC area under receiver 
operating characteristic curve, BIC Bayesian information criterion, LR likelihood ratio, OR odds ratio.

Entire dataset 2 (20,198 events) Subset 2  (SpO2 < 97%) (3280 events)

Neural network Logistic regression SVM Log-linear Non-linear Neural network Logistic regression SVM Log-linear Non-linear

Total, No 20,198 20,198 20,198 20,198 20,198 3280 3280 3280 3280 3280

Sensitivity 0.96 0.97 0.98 0.84 0.93 0.80 0.87 0.83 0.85 0.58

Specificity 0.39 0.26 0.33 0.56 0.49 0.76 0.59 0.69 0.59 0.89

Positive LR 1.59 1.32 1.46 1.90 1.83 3.37 2.13 2.75 2.09 5.16

Negative LR 0.09 0.10 0.07 0.29 0.15 0.27 0.23 0.25 0.25 0.47

Diagnostic OR 17.12 13.16 19.68 6.49 12.61 12.53 9.46 10.96 8.44 10.94

AUROC 0.83 0.81 0.74 NA NA 0.85 0.83 0.84 NA NA

F1 0.92 0.92 0.92 0.87 0.91 0.81 0.80 0.81 0.79 0.70

BIC − 4612.6 − 4440.7 − 4446.0 NA NA − 591.8 − 567.0 − 580.0 NA NA

Figure 2.  Precision-recall curves of machine learning models in Dataset 2 and Subset 2 using 3 features. The 
precision recall curves, where improved performance is demonstrated if the curve is closer to the upper right-
hand corner or has the highest area under the curve (AUC), are shown for the 3 machine learning models for 
(A) the entire Dataset 2 (N = 20,198) ICU events) and (B) Subset 2 where  SpO2 < 97% (N = 3280 ICU events). 
Data was obtained from the MIMIC-III database v1.4 (https:// mimic. physi onet. org).

https://mimic.physionet.org
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slightly better than the other two machine learning algorithms in Black patients (AUC: 0.78, 0.77, 0.68 for neural 
network, logistic regression, and SVM model, respectively). Considering Black patients with  SpO2 < 97% (subset 
2), machine learning models outperformed conventional equations (F1: 0.82, 0.82, 0.84, 0.81, 0.73 for neural 
network, linear regression, SVR, log-linear, and non-linear models, respectively). Among White population, 
machine learning models outperformed conventional equations in both the whole population and patients with 
 SpO2 < 97% (subset 2) (F1 in White patients: 0.92, 0.92, 0.92, 0.87, and 0.91; F1 in White patients with  SpO2 < 97%: 
0.81, 0.80, 0.81, 0.80, and 0.70 for neural network, linear regression, SVR, log-linear, and non-linear models, 
respectively), and neural network was the preferrable model. These findings are summarized in Supplementary 
Table e5.

Machine learning algorithms show a better accuracy in the validation cohort. We developed an 
online calculator using the three machine learning algorithms requiring three inputs  (SpO2,  FiO2, and PEEP): 
https:// dikb. org/ pa02- predi ctor. The calculator was then utilized in an independent validation cohort of 133 
mechanically ventilated ICU patients to impute the  PaO2 in a regression task. The imputed  PaO2 was compared 
to the actual  PaO2 obtained by ABG. The accuracy of the machine learning algorithms was compared to the non-
linear equation and was reported as the RMSE and adjusted R-squared (Table 5). The neural network and SMV 
models had lower RMSE than the previously published non-linear equation, demonstrating improved perfor-
mance in the imputation of  PaO2. Adjusted R-squared was also higher in the neural network and SMV models. 
To clarify the models proposed in this study, the following example is worth mentioning: with the assumption 
of  SpO2 = 100%,  FiO2 = 0.6, and PEEP = 5  cmH2O (observed  PaO2/FiO2 = 190), the predicted  PaO2 is estimated 
as 203.0, 186.2, 188.4 using neural network, SVM, and regression models, respectively, while the estimate of 
conventional non-linear model is 167 (Table 6).

Discussion
We used the publicly available MIMIC-III database as a derivation cohort to develop and evaluate machine-
learning algorithms to impute  PaO2 utilizing non-invasive  SpO2 in patients who are mechanically ventilated. 
We tested three machine learning models (neural network, linear regression and SVR) first using seven avail-
able clinical variables  SpO2,  FiO2, PEEP, TV, MAP, temperature, and vasopressor administration to impute the 
 PaO2. We subsequently used a parsimonious model with three clinical variables  (SpO2,  FiO2 and PEEP) to non-
invasively impute  PaO2 in both a derivation and validation cohort. The imputation of  PaO2 from the regression 
tasks enabled us to derive the  PaO2/FiO2, a clinically meaningful ratio with predictive  value1,25. Additionally, we 
performed a classification task to predict  PaO2/FiO2 ≤ 150, a cut off that has been used to capture those patients 
with moderate to severe respiratory failure in ARDS  cohorts11,13 and to guide patient  management5. To increase 
the clinical applicability of our work, we also developed an open-access online calculator to impute the  PaO2 
using the 3-feature model requiring only non-invasive bedside parameters in mechanically ventilated patients. 
Our calculator showed improved accuracy in the imputation of the  PaO2 when compared to the previously 
published non-linear equation in both our initial cohort and the validation cohort.

To develop the machine learning algorithms, we initially evaluated clinical variables such as PEEP, TV, MAP, 
temperature, and vasopressor administration that are easily obtained at the bedside. TV, MAP, temperature 
and vasopressor use demonstrated a stochastic distribution and did not significantly alter the accuracy of the 
machine-learning based algorithms and were therefore removed to create the 3 features model  (SpO2,  FiO2, 

Table 5.  RMSE of the 3-feature machine learning models regression task compared to the published non-
linear equation. The  PaO2 was imputed using an online calculator of the three machine learning models using 
 SpO2, PEEP, and  FiO2 from a validation cohort of 133 mechanically ventilated ICU patients. Subsequently, 
the RMSE and adjusted  R2 for the 3-feature machine learning models were calculated and compared to the 
published non-linear equation. A lower RMSE and higher adjusted  R2 indicate higher accuracy. SVR Support 
vector regression, RMSE root-mean-square deviation.

N = 133 Neural network SVR Regression Non-linear

RMSE (adjusted  R2) 65.0 (0.35) 64.9 (0.35) 74.1 (0.16) 67.1 (0.31)

Table 6.  Examples of comparing four models applied to four cases from different categories of  PaO2 (< 150, 
150–200, 200–300, > 300). PaO2 Partial pressure of oxygen, FiO2 fraction of inspired oxygen, SpO2 peripheral 
saturation of oxygen, PEEP positive end-expiratory pressure, SVR support vector regression.

PaO2 SpO2 FiO2 PEEP Neural network-imputed Regression-imputed SVR-imputed Nonlinear-imputed

113 96 40 5 115.3 136.7 101.6 82

190 100 60 5 203.0 186.2 188.4 167

217 100 90 5 226.8 220.1 194.2 167

304 100 100 5 259.3 231.4 260.5 167

https://dikb.org/pa02-predictor
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PEEP). This 3-feature model provides a framework for generalizability using large datasets of mechanically 
ventilated patients.

We considered other clinical variables such as skin pigmentation, pulse oximeter location, oximeter manu-
facturer, vasopressor infusion, and laboratory variables such as serum bicarbonate, serum chloride, serum creati-
nine, serum sodium but others have shown these variables provided negligible improvement in the accuracy of 
imputation in a prior prospective  study11 and were therefore not included. However, it is worth mentioning that 
recent studies showed discrepancy between peripheral oxygen saturation  (SpO2) measurements and the arterial 
oxygen saturation  (SaO2) measured by ABG. This discrepancy, defined as  SpO2 ≥ 88% despite an  SaO2 ≤ 88% 
and referred to as hidden hypoxemia, was present in all racial and ethnic groups but showed higher prevalence 
in Black  patients23,24. Considering this discrepancy between  SpO2 and arterial oxygen saturation occurs more 
frequently in Black  patients24, we performed a sensitivity analysis showing that our machine learning algorithms 
outperform previously published equations both in the Black and White race.

Our study shows that a machine learning based method for both the regression and classification task, when 
applied to the MIMIC-III critical care database, improved the accuracy compared to the previously published 
non-linear and log-linear imputation methods. As is evidenced by comparing the F1 and discrimination meas-
ures in Table 4, the performance improvement was more modest for the classification task in subset 2 where 
 SpO2 < 97%. A possible explanation is that there were fewer ICU events (smaller N) per group in the subset.

Prior studies have examined the relationship between SF and PF ratios for patients with ARDS to determine 
whether the non-invasive SF ratio can be substituted for the invasively obtained PF  ratio11,13,26. Panharipande, 
et al. studied matched measurements of  SpO2 and  PaO2 in a heterogeneous population (i.e., patients undergo-
ing general anesthesia and patients with ARDS) to determine the association between SF and PF ratios in order 
to calculate the respiratory parameter of the SOFA  score13. In their study, matched  SpO2 and  PaO2 values were 
obtained from two groups of patients: Group 1 comprised of the derivation set and was obtained from patients 
undergoing general anesthesia from a single center and Group 2 comprised a validation set utilizing data from 
patients enrolled in a multi-center randomized clinical trial examining low versus high tidal volume for acute 
respiratory management of ARDS (ARMA)27. All  SpO2 values > 97% were also excluded from analysis in order 
to maximize matched data to those values likely to be within the linear range of the oxyhemoglobin disso-
ciation curve. Data from 4728 matched  SpO2 and  PaO2 measurements showed that the relationship was best 
described by a log-linear equation with slight variation based upon the level of PEEP. In the setting of a more 
heterogeneous population, a poorer correlation was noted between SF and PF ratios. The regression equation of 
Log(PF) = 0.48 + 0.78 × Log(SF) yielded an R-square of 0.3113.

Additionally, a retrospective analysis of arterial blood gas measurements from three ARDS Network studies 
compared the performance of non-linear, log-linear and linear imputation methods to derive  PaO2 from the 
 SpO2

12. In all patients (N = 1184), the nonlinear imputation was equivalent to log-linear imputation. However, 
in those patients with  SpO2 < 97% (N = 707), the nonlinear imputation showed lower error than either linear or 
log-linear equations. A prospective study was subsequently conducted in patients enrolled in the Prevention and 
Early Treatment of Acute Lung Injury  network11 to assess the performance of the non-linear equation to impute 
 PaO2 from the  SpO2 and compare it to the prior log-linear and linear  equations11,13,26. This study included 1034 
arterial blood gases from 703 patients, of which 650 arterial blood gases had matched  SpO2 < 97%. The non-linear 
equation showed lower error and better identified moderate to severe ARDS patients (defined in the study as 
 PaO2/FiO2 ≤ 150) when compared to log-linear or linear imputation methods.

In our study, we similarly found a high degree of variance across  SpO2 values and corresponding measured 
 PaO2 values which was noted when we formally examined the relationship between SF and PF. This may be 
attributed to the retrospective nature of the data collection and the numerous variables that may confound the 
reliability of a recorded  SpO2 measured non-invasively to reflect the arterial  SaO2

8,10,12. Despite this limitation, 
the machine learning algorithms performed better on both regression and classification tasks when compared 
to the log-linear and non-linear published equations.

We used a validation cohort to show improved accuracy for the neural network and kernel-based machine 
learning algorithms when compared to the previously published non-linear equation. Another strength of our 
study is the development of an online calculator that can be used to impute the  PaO2 from three noninvasive 
parameters  (SpO2,  FiO2 and PEEP) and may serve as a tool for future studies in large electronic health record 
datasets. Additionally, our machine learning models allow for the evaluation of all mechanically ventilated 
patients with available data rather than narrowing the analysis to a specific population such as those with ARDS. 
Given the inclusion of all mechanically ventilated patients, a significant number of  SpO2 values were > 97% 
(N = 8510 for seven features and N = 16,918 for three features). While this reduced the accuracy of the imputed 
PF ratio, particularly above a certain threshold, the machine learning models were applied to the data without 
a pre-defined restriction placed upon the range of  SpO2 values and showed better performance than both the 
log-linear and non-linear equations on both the regression and classification tasks.

Imputation of  PaO2 from  SpO2 has been increasingly implemented in clinical and research settings using 
previously published equations for subjects that do not have invasive ABG measurements readily available. This 
underscores the need to improve upon existing published equations and the clinical importance of machine 
learning models proposed. Machine learning models are currently being used to answer numerous clinical 
questions; these models have substantially impacted different scopes of medicine from early-warning systems 
for sepsis to imaging  diagnostics24. Herein, we proposed three machine learning algorithms which can provide 
a framework for future investigations. The online calculator, on the other hand, can provide feasible prediction 
of PF ratio from SF ratio at the bedside for clinicians working in the critical care settings.

We showed that machine learning models outperformed previously published equations in terms of imputing 
 PaO2 from  SpO2 in the mechanically-ventilated adult population. Consistent with our findings, Sauthier et al., 
utilized neural network models to validate a continuous and noninvasive method of hypoxemia estimation in 
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pediatric  population28. They utilized convolutional neural network (CNN), long short-term memory network 
(LSTM), and multilayer perceptron (MLP) to impute  PaO2. Intriguingly, they concluded that bias was lowered 
when using neural network models compared to mathematical equations.

In summary, any of the tested machine learning models applied to MIMIC-III dataset enabled imputation 
of  PaO2 from the  SpO2 with lower error and provided greater accuracy in predicting  PaO2/FiO2 ≤ 150 across the 
entire range of  SpO2 examined when compared to that of published equations in two independent cohorts. All 
machine learning models proposed in this paper outperformed log-linear and non-linear equations. Future work 
will be required to prospectively test ML algorithms for use in clinical practice. Additionally, our study provides a 
clinically relevant online calculator for the imputation of the  PaO2 from the 3-feature machine learning models. 
The calculator requires the input of  SpO2,  FiO2, and PEEP all of which are non-invasive and readily available at 
the bedside of mechanically ventilated patients.
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