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Deep learning supports 
the differentiation of alcoholic 
and other‑than‑alcoholic cirrhosis 
based on MRI
Julian A. Luetkens1,7, Sebastian Nowak1,7, Narine Mesropyan1, Wolfgang Block1,2,3, 
Michael Praktiknjo4, Johannes Chang4, Christian Bauckhage5,6, Rafet Sifa6, 
Alois Martin Sprinkart1,7*, Anton Faron1,7 & Ulrike Attenberger1,7

Although CT and MRI are standard procedures in cirrhosis diagnosis, differentiation of etiology based 
on imaging is not established. This proof‑of‑concept study explores the potential of deep learning 
(DL) to support imaging‑based differentiation of the etiology of liver cirrhosis. This retrospective, 
monocentric study included 465 patients with confirmed diagnosis of (a) alcoholic (n = 221) and (b) 
other‑than‑alcoholic (n = 244) cirrhosis. Standard T2‑weighted single‑slice images at the caudate 
lobe level were randomly split for training with fivefold cross‑validation (85%) and testing (15%), 
balanced for (a) and (b). After automated upstream liver segmentation, two different ImageNet pre‑
trained convolutional neural network (CNN) architectures (ResNet50, DenseNet121) were evaluated 
for classification of alcohol‑related versus non‑alcohol‑related cirrhosis. The highest classification 
performance on test data was observed for ResNet50 with unfrozen pre‑trained parameters, yielding 
an area under the receiver operating characteristic curve of 0.82 (95% confidence interval (CI) 
0.71–0.91) and an accuracy of 0.75 (95% CI 0.64–0.85). An ensemble of both models did not lead to 
significant improvement in classification performance. This proof‑of‑principle study shows that deep‑
learning classifiers have the potential to aid in discriminating liver cirrhosis etiology based on standard 
MRI.

As the end stage of chronic liver disease, liver cirrhosis is a major health issue. In particular, patients with liver 
cirrhosis have a concomitant risk for the development of hepatocellular carcinoma as well as complications 
arising from decompensation such as variceal bleeding or hepatic encephalopathy. Overall, the prevalence of 
chronic liver disease is internationally expected to grow within the next  decades1–3.

Many factors that contribute to the development of cirrhosis have been identified. The most common etiolo-
gies are alcohol consumption, obesity, and chronic viral  infections3. Thereby, identification of the underlying 
cause of disease is crucial as appropriate treatment may not only stop disease from progression, but in certain 
cases also may facilitate regression of  fibrosis2,4,5. In the majority of countries, alcohol consumption still represents 
the leading cause of liver disease and is directly related to liver  mortality3,6. In these patients, alcohol abstinence 
was shown to be critical for long-term outcome, may improve various aspects of disease severity and is also 
fundamental with regard to potential liver  transplantation4,7,8. However, until experiencing severe complications 
such as acute decompensation, many patients with cirrhosis are unaware of their underlying  condition2,3. Liver 
cirrhosis results from chronic inflammation and hence leads to distinct changes in hepatic morphology, which 
in part can be detected by high-resolution imaging methods such as  MRI9,10.

OPEN

1Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), University 
Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany. 2Department of Radiotherapy and Radiation 
Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany. 3Department of 
Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany. 4Department of Internal 
Medicine I, Center for Cirrhosis and Portal Hypertension Bonn (CCB), University Hospital Bonn, Venusberg-Campus 
1, 53127 Bonn, Germany. 5Institute for Computer Science, University of Bonn, Endenicher Allee 19C, 53113 Bonn, 
Germany. 6Media Engineering Department, Fraunhofer IAIS, Schloss Birlinghoven 1, 53757 Sankt Augustin, 
Germany. 7These authors contributed equally: Julian A. Luetkens, Sebastian Nowak, Alois Martin Sprinkart, Anton 
Faron and Ulrike Attenberger. *email: Sprinkart@uni-bonn.de

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-12410-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8297  | https://doi.org/10.1038/s41598-022-12410-2

www.nature.com/scientificreports/

Although it has been described that the micro- and macroscopic appearance of cirrhosis in medical imaging 
varies to some extent according to the underlying etiology, the use of imaging features as a means to determine 
the cause of the disease has not been established  yet9,11,12. In a previous study, a convolutional neural network 
(CNN) was already shown to be able to detect liver cirrhosis based on standard clinical MRI sequences with 
expert-level accuracy irrespective of  etiology13. Therefore, the aim of this proof-of-concept study was to investi-
gate deep learning for standard MRI based characterization of disease etiology, differentiating alcoholic- versus 
other-than-alcoholic cirrhosis.

Materials and methods
Dataset. The study was approved by the Ethics Committee at the Medical Faculty of the Rheinische Frie-
drich-Wilhelms-Universität Bonn and the need for written informed consent was waived due to its retrospec-
tive, single-center nature. The research was performed in accordance with the Declaration of Helsinki. Patients 
with confirmed diagnosis of liver cirrhosis, defined by clinical manifestations of liver cirrhosis (e.g. presence of 
dermal features, ascites, splenomegaly or hyperestrogenism), laboratory parameters (e.g. presence of parameters 
of hepatocyte damage or impaired hepatic synthesis), and/or histopathological criteria, who underwent liver 
MRI for diagnostic purposes between 2017 and 2019 at the Department of Diagnostic and Interventional Radi-
ology at the University Hospital of Bonn, were evaluated for inclusion. The clinical information management 
system of the relevant institution was used to derive clinical characteristics of the study population including the 
respective cause of liver cirrhosis. Patients with unknown causes of liver cirrhosis and with overlap of alcoholic 
and other causes were excluded. The final cohort was separated according to the underlying cause of liver cir-
rhosis into (a) patients with alcoholic liver cirrhosis and (b) other-than-alcoholic liver cirrhosis (Fig. 1).

Image segmentation and classification. All patients underwent a standardized imaging protocol 
including a standard clinical respiratory triggered multi-slice turbo spin echo sequence with non-cartesian 
k-space filling (T2 MultiVane XD) on a clinical 1.5 Tesla (Ingenia 1.5 T, Philips Healthcare, Best, the Nether-
lands) or 3.0 Tesla (Ingenia 3.0 T, Philips Healthcare, Best, the Netherlands) scanner. This sequence was shown 
to be suitable for deep learning-based detection of liver cirrhosis in a previous  study13. Similar to the proposed 
approach for cirrhosis detection, a single cross-sectional image at the level of caudate lobe was exported, fol-
lowed by liver segmentation performed by a U-net style convolutional neural network (CNN) with ResNet34 
as backbone that was developed and validated on a dataset of 713 single slice T2- weighted MRI  images13. The 
images were first normalized and image augmentation was applied during training. Supplementary information 
on imaging parameters and image preprocessing can be found in Supplement S1 and S2.

For imaging development of a classification CNN that differentiates patients with alcoholic liver cirrhosis 
and other-than-alcoholic liver cirrhosis, data were randomly split into a training (85%) and a hold-out test set 

Figure 1.  Study inclusion flow chart. Patients with confirmed diagnosis of liver cirrhosis who underwent liver 
MRI between 2017 and 2019 were evaluated for inclusion. Patients with unknown causes of liver cirrhosis and 
with documented overlap of alcoholic liver cirrhosis with other causes were excluded from the analysis. The final 
cohort consisted of 465 patients. Those patients were separated according to liver cirrhosis etiology into patients 
with (a) alcoholic liver cirrhosis (N = 221) and (b) other-than-alcoholic liver cirrhosis (N = 244). Abbreviations: 
NAFLD/NASH non-alcoholic fatty liver disease/non-alcoholic steatohepatitis.
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(15%). Training was performed with fivefold cross-validation. An ensemble of the cross-validated models was 
applied to the test set.

A CNN with residual connections (ResNet50) with ImageNet pre-trained parameters was used, as this estab-
lished architecture was shown to be suitable for the detection of liver  cirrhosis13,14. To investigate whether the use 
of a different pre-trained architecture than ResNet50 or an ensemble of two architectures is beneficial, a CNN 
with dense connections (DenseNet121) was additionally evaluated, which has fewer trainable parameters and is 
less computationally intensive compared to  ResNet5015.

Furthermore, two different training strategies were evaluated for ResNet50 and DenseNet121 in order to 
examine whether altering the pre-trained parameters of the CNN may impact classification performance. First, 
both networks were trained with frozen pre-trained parameters of the convolutional layers. In a second subse-
quent training run, the pre-trained convolutional layers of both networks were unfrozen with descending learning 
rates from the last to the first layer at several stages. Training was performed with Adam optimization, a cyclical 
learning rate scheme, and cross-entropy loss function. Supplementary information on the experimental design 
and hyper-parameters used for training are provided in Supplement S3.

Image regions that were particularly relevant to the classification task were highlighted by generating gradient-
weighted class activation maps (Grad-CAM) for the test  set16.

Statistical analysis. Prism 8 (GraphPad software), SPSS Statistics 24 (IBM), MedCalc 20.014 (MedCalc 
Software Ltd) and Scikit-learn 0.23.217 were used for statistical analysis. Patient characteristics are expressed as 
frequencies or means with standard deviation, as appropriate. Classification accuracy (ACC), as well as receiver 
operating characteristic (ROC) analyses was performed for the cross-validation and the test sets for both studied 
CNN architectures (ResNet50, DenseNet121) and both training strategies (frozen, unfrozen). For the test set, 
95% confidence intervals were determined for ACC and AUC values. ROC and precision-recall curves were 
 generated18. Grad-CAM images were visually inspected by one experienced radiologist (A.F.) and highlighted 
regions were categorized according to their anatomical localization as being predominantly situated in the right 
liver lobe, the left liver lobe, the portal region, the caudate lobe, or in the image background. Resulting categori-
cal data were compared using either Fisher`s exact test (for a cell count of ≤ 5) or χ2 test (for a cell count > 5), as 
appropriate. The two-sided t-Test was used to compare differences between groups regarding continuous vari-
ables. P < 0.05 was set as the level of statistical significance.

Results
Baseline characteristics of the study population. A total of 465 patients (203 female; mean age, 
60 ± 11 years) were included. Of those, 47.5% (221/465) of patients had alcoholic liver cirrhosis. 52.5% (244/465) 
of patients had other-than-alcoholic liver cirrhosis.

Liver biopsy was performed in 64.8% (301/465) of patients. The most common causes of non-alcohol related 
liver cirrhosis were viral hepatitis (39%, 95/244), non-alcoholic fatty liver disease or non-alcoholic steatohepatitis 
(17%, 41/244), and autoimmune hepatitis (8%, 19/244). In 5% (12/244) of patients with other-than-alcoholic 
liver cirrhosis, etiology of liver disease was multifactorial. Causes of liver cirrhosis of the entire study popula-
tion are summarized in detail by Table 1. No significant differences regarding age (61 ± 9 years vs. 59 ± 13 years, 
P = 0.110) and gender distribution (48%, 105/221 female patients vs. 40%, 98/244 female patients, P = 0.111) 
were observed between patients with alcoholic and other-than-alcoholic liver cirrhosis. There was no difference 
in weight between patients with alcoholic and other-than-alcoholic cirrhosis (80.1 ± 20.4 kg vs. 80.1 ± 17.7 kg, 
P = 0.972). Values for γ-glutamyltransferase were higher in patients with alcoholic cirrhosis compared to patients 
with other-than-alcoholic cirrhosis (208.8 ± 264.1 U/l vs. 147.4 ± 166.1 U/l, P = 0.003).

Classification of liver cirrhosis etiology. Segmented images of the entire study population were ran-
domly subdivided into a training (N = 396; 174 female; mean age, 60 ± 12 years), and a test set (N = 69; 29 female; 
mean age, 59 ± 10 years), with training sets being further split for fivefold cross-validation, balanced for patients 
with alcoholic and non-alcoholic cause of liver cirrhosis.

Trained with frozen parameters, a mean accuracy (ACC) and mean area under the curve (AUC) of 0.69 and 
0.78 was observed for ResNet50 and a mean ACC of 0.66 and a mean AUC of 0.78 was observed for DenseNet121 
for all 5 validation splits (Table 2). With unfrozen pre-trained parameters, mean ACC values of 0.74 and 0.71 
and mean AUC values of 0.83 and 0.82 were obtained for ResNet50 and DenseNet121 on cross-validated train-
ing data, respectively.

On test data, the classification performance of ResNet50 was higher than DenseNet121 when training with 
unfrozen parameters, however the difference was not statistically significant (Value and 95% CI: AUC ResNet50 
0.82 [0.71–0.91] vs. AUC DenseNet121 0.79 [0.67–0.88], P = 0.40; ACC ResNet50 0.75 [0.64–0.85] vs. ACC DenseNet121 0.70 
[0.57–0.80], P = 0.26). Also, training with unfrozen parameters did not differ significantly compared to frozen 
parameters for both ResNet50 and DenseNet121 (AUC ResNet50, 0.82 [0.71–0.91] vs. 0.82 [0.71–0.90], P = 0.91; 
ACC ResNet50, 0.75 [0.64–0.85] vs. 0.74 [0.62–0.84], P = 0.78; AUC DenseNet121, 0.79 [0.67–0.88] vs. 0.80 [0.69–0.89], 
P = 0.69; ACC DenseNet121, 0.70 [0.57–0.80] vs. 0.74 [0.62–0.84], P = 0.43).

The ensemble of the two architectures did not lead to statistically significant improvement on the test set com-
pared to ResNet50, neither for frozen (AUC Ensemble 0.84 [0.73–0.92] vs. AUC ResNet50 0.82 [0.71–0.90], P = 0.54; ACC 
Ensemble 0.75 [0.64–0.85] vs. ACC ResNet50 0.74 [0.62–0.84], P = 0.78), nor for unfrozen (AUC Ensemble 0.81 [0.70–0.90] 
vs. AUC ResNet50 0.82 [0.71–0.91], P = 0.70.; ACC Ensemble 0.71 [0.59–0.81], vs. ACC ResNet50 0.75 [0.64–0.85], P = 0.40) 
pre-trained parameters.

ROC and precision-recall curves of the models trained with unfrozen pre-trained parameters are given in 
Fig. 2.
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Highlighted imaging regions according to Grad‑CAM. The decision process to classify liver cirrhosis 
as being alcohol related or non-alcohol related was further visualized using Grad-CAM analysis for ResNet50 
trained with unfrozen pre-trained parameters. According to Grad-CAM analysis, the right liver lobe (alcoholic 
liver cirrhosis 42%, 14/33; other-than-alcoholic liver cirrhosis 61%, 22/36) and the portal area (alcoholic liver 
cirrhosis 30%, 10/33; other-than-alcoholic liver cirrhosis 19%, 7/36) were the imaging regions that were most 
frequently decisive for the classification process in both groups. Thereby, no significant differences regarding 
distribution of decisive imaging regions between the two patient groups were observed (Table 3). Exemplary 
images of the Grad-CAM analysis are provided in Fig. 3.

Discussion
The purpose of this study was to investigate whether a deep learning-based analysis can aid in differentiating 
the etiology of liver cirrhosis based on routine clinical T2-weighted MRI. Acceptable to excellent discrimina-
tory ability was found in distinguishing patients with alcoholic and other-than-alcoholic cirrhosis. In a previous 

Table 1.  Liver cirrhosis etiology. Underlying causes of liver cirrhosis are reported for the entire study 
population (N = 465) as total numbers as well as percentages of the entire study cohort. NAFLD/NASH non-
alcoholic fatty liver disease/non-alcoholic steatohepatitis.

Etiology of liver cirrhosis Number of patients (%)

Alcoholic liver cirrhosis 221 (48%)

Other-than-alcoholic liver cirrhosis 244 (52%)

  Hepatitis B virus 26 (6%)

  Hepatitis C virus 69 (15%)

  Fatty liver disease (NAFLD/
NASH) 41 (9%)

  Autoimmune hepatitis 19 (4%)

  Primary sclerosing cholangitis 16 (3%)

  Drug-induced 13 (3%)

  Primary biliary cholangitis 10 (2%)

  Portal vein thrombosis 9 (2%)

  Nutritional 9 (2%)

  Budd-Chiari syndrome 9 (2%)

  Hemochromatosis 5 (1%)

  Idiopathic 5 (1%)

  Sinusoidal obstruction syndrome 3 (1%)

  Secondary sclerosing cholangitis 3 (1%)

  Alpha-1 Antitrypsin Deficiency 3 (1%)

  Wilson disease 2 (< 1%)

  Congestive hepatopathy 1 (< 1%)

  Sarcoidosis 1 (< 1%)

Table 2.  Classification performance of the cross-validation and testing of the CNN architectures trained with 
frozen and unfrozen pre-trained parameters. Classification accuracy and AUC values for each validation split 
of the cross-validation and mean over all splits. The classification accuracy and AUC values of ensembles of the 
cross-validated models on the test set. AUC  area under the curve, ACC  accuracy.

Frozen pre-trained parameters Unfrozen pre-trained parameters

ResNet50 DenseNet121 Ensemble ResNet50 DenseNet121 Ensemble

AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC 

Training + validation

Split 1 0.737 0.684 0.764 0.671 0.776 0.658 0.798 0.696 0.780 0.671 0.807 0.709

Split 2 0.774 0.658 0.751 0.646 0.768 0.747 0.773 0.722 0.839 0.684 0.798 0.684

Split 3 0.800 0.722 0.797 0.646 0.815 0.722 0.864 0.785 0.817 0.772 0.876 0.797

Split 4 0.821 0.709 0.822 0.658 0.852 0.684 0.879 0.785 0.858 0.722 0.870 0.759

Split 5 0.742 0.671 0.756 0.684 0.770 0.722 0.822 0.722 0.805 0.696 0.813 0.709

Mean 0.775 0.689 0.778 0.661 0.796 0.707 0.827 0.742 0.820 0.709 0.833 0.732

Test

0.819 0.739 0.801 0.739 0.838 0.754 0.823 0.754 0.786 0.696 0.813 0.710
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study, a ResNet50 with frozen pre-trained ImageNet parameters was proposed for automatic detection of liver 
cirrhosis on T2-weighted  MRI13. The results of our proof-of-concept study extend the findings of this previous 
report and show that deep learning not only enables the detection of cirrhosis, but can also help in identifying 
the underlying cause of the disease.

Although the ability of the ImageNet pre-trained ResNet50 to discriminate between alcoholic and other-than-
alcoholic cirrhosis can be described as  excellent19, it is inferior to the differentiation of cirrhotic versus non-
cirrhotic  livers13. This may be due to less distinctiveness between imaging criteria indicating different causes of 
the disease compared to image criteria distinguishing a diseased organ from a non-diseased organ. For instance, it 
has been described that a hypertrophic appearance of the central hepatic parenchyma/caudate lobe is expected in 
alcohol-related cirrhosis, but also in primary sclerosing cholangitis and Budd-Chiari syndrome related  cirrhosis11.

Of both models investigated in the current study, ResNet50 showed higher classification performance on test 
data. However, the performance was not significantly higher compared to Densenet121. Interestingly, for both 
CNNs, subsequent training with unfrozen pre-trained parameters did not significantly increase classification 
performance on test data. This may suggest that the extraction capabilities of general imaging features of the con-
volutional kernels, learned during the pre-training with the ImageNet database, generalize well to T2-weighted 
MRI images. An ensemble of the two models trained with unfrozen parameters achieved equal accuracy and a 
slightly higher AUC compared to ResNet50, however, the difference was not statistically significant. Therefore, 
no clear advantage was observed by using an ensemble of the two different pre-trained ImageNet architectures.

Grad-CAM-analysis indicate that the imaging morphology of the right liver lobe and caudate lobe seem to 
comprise particularly relevant information for discrimination of alcoholic from other-than-alcoholic liver cir-
rhosis. This is in line with previous studies, which describe that the right posterior hepatic notch sign, defined 
as a sharp liver surface indentation at the posterior boundary of the right and caudate lobe, is considered to be 
particularly prevalent among patients with alcoholic liver  cirrhosis12,20. As described above, hypertrophies of the 
caudate lobe and central hepatic areas are more frequently observed in patients with alcohol-related diseases, 
but are also seen in other etiologies. To the best of our knowledge, there are currently no studies presenting 
metrics for the diagnostic accuracy of cirrhosis etiology based on such imaging  criteria11,12. However, a very 
recent work investigated a radiomics approach that relates imaging features to the etiology of liver cirrhosis, and 
also achieved promising  results21. Unlike the deep learning method presented in the current study, the proposed 
radiomics approach requires manual definition of region of interests. To date, imaging features have not been 
used in routine clinical practice to identify alcohol as a cause of cirrhosis.

Figure 2.  Receiver operating characteristic and precision-recall analysis for the classification performance 
of DenseNet121 and ResNet50, both trained with unfrozen pre-trained parameters. Abbreviations: AUC  area 
under the curve, AP average precision.

Table 3.  Highlighted imaging regions according to gradient-weighted class activation maps (Grad-CAM). 
Results of the visual inspection of Grad-CAM images classified by ResNet50 are provided. Within each 
segmented image of the test set, highlighted regions were visually rated as being primary located within 
the right liver lobe, the left liver lobe, the portal area, the caudate lobe, or within image background by one 
radiologist experienced in abdominal imaging (A.F.).

Alcoholic liver cirrhosis (N = 33) Other-than-alcoholic liver cirrhosis (N = 36) P value

Right lobe 14 (42%) 22 (61%) 0.12

Left lobe 3 (9%) 3 (8%) 1.00

Portal area 10 (30%) 7 (19%) 0.30

Caudate lobe 4 (12%) 1 (3%) 0.19

background 2 (6%) 3 (8%) 1.00
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In clinical routine, liver cirrhosis is typically diagnosed by a combination of characteristic clinical and imaging 
findings, corresponding laboratory testing and ancillary examinations such as abdominal sonography. Thereby, 
while this work-up is usually straightforward for virus-related cirrhosis, it may be much more effortful in patients 
with alcohol-related disease, which in many cases may be diagnosed only by exclusion since there are no specific 
laboratory  findings22. Liver biopsy is recommended if cirrhosis etiology is uncertain, but is limited due to its 
invasive nature, inter-observer variability and potential sampling  error2,23. Moreover, cirrhosis-related paren-
chymal changes may hamper or even preclude correct histological  analysis2.

Compensated liver cirrhosis is frequently asymptomatic; thus, it may be assumed that many patients who 
undergo routine clinical MRI for other indications may be unaware of a concomitant liver disease. In these 
patients, a pipeline that automatically identifies tissue alterations and can classify possible disease etiologies has 
the potential to better guide diagnostic pathways and thus initiate a specific therapy earlier. With the help of deep 
learning algorithms simple cross-sectional imaging modalities could serve as imaging-based biomarkers for the 
classification of liver disease in the future. Particularly in alcoholic liver cirrhosis, timely and correct identification 
of the underlying etiology is crucial, as early abstinence was demonstrated to be the key determinant of long-
term  outcome8,24. Sole clinical assessment of alcoholic liver disease alone might not be trivial in clinical practice 
because it mostly relies on patients’ self-report. In this regard, deep learning applications have the potential to 
aid diagnosis by extracting also relevant information that may not be readily apparent to the human eye.

Our study has several limitations. The algorithm was developed for binary classification only and does cur-
rently not support differentiation of various non-alcohol-related cirrhosis etiologies. Due to the limited number 
of patients within the respective subclasses and to ensure collectives of comparable size for classification, we 
decided to pool patients with other-than-alcoholic cirrhosis. Future studies with larger samples of the respective 
subgroups are needed to substantiate the findings from this proof-of-concept study and to expand its application. 
The clinical benefit would also be significantly increased by an extension to other etiologies. Especially, NAFLD 
is becoming the main cause of chronic liver disease in many countries and the detection of metabolic related cir-
rhosis on cross-sectional imaging should be further explored in future studies. Also, we were not able to analyze 
possible coexisting etiologies of liver cirrhosis in our explorative analysis, as detailed data on additional risk 
factors were not available due to the retrospective study design. However, future studies should evaluate the abil-
ity of deep learning methods to differentiate overlapping liver disease, such as both alcoholic and non-alcoholic 
steatohepatitis (BASH). Moreover, we exclusively used single-slice T2-weighted images of segmented livers and 
ImageNet pre-trained models, as these have been shown to be suitable for the detection of liver cirrhosis in a 

Figure 3.  Exemplary images from the study population. ResNet50 trained with unfrozen pre-trained 
parameters was used for the classification task. Exemplary patients from the test set are provided and imaging 
regions that were particularly relevant to the classification task are highlighted using the gradient-weighted class 
activation maps (Grad-CAM) method. Panels A1, B1, C1 provide exemplary patients from the test set with 
alcoholic liver cirrhosis. In panels A2, B2, C2, images of exemplary patients from the test set with other-than-
alcoholic liver cirrhosis are presented. In panels A1, B1, A2, B2, regions within the right liver lobe appeared to 
be particularly relevant for the classification task, as indicated by Grad-CAM images. In panels C1 and C2, the 
portal liver region appeared to be most decisive for classification.
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previous  study13. Future studies may also address a three-dimensional approach accounting also for extrahepatic 
manifestations in cirrhotic patients or the use of other imaging sequences for differentiation of etiologies.

In summary, the results of this proof-of-principle study demonstrate that discrimination between alcoholic 
and other-than-alcoholic cirrhosis based on clinical T2-weighted single-slice images is feasible with acceptable 
to excellent discrimination ability. This indicates the potential of deep learning for a more comprehensive assess-
ment of diffuse liver disease.

Data availability
The data sets analysed in this study are subject to data protection law and are therefore not publicly available.
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