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Optimal strategies and cost‑benefit 
analysis of the n‑player 
weightlifting game
Diane Carmeliza N. Cuaresma1,2*, Erika Chiba3, Jerrold M. Tubay2, Jomar F. Rabajante2, 
Maica Krizna A. Gavina2, Jin Yoshimura1,4,5,6, Hiromu Ito4, Takuya Okabe7 & Satoru Morita1*

The study of cooperation has been extensively studied in game theory. Especially, two‑player two‑
strategy games have been categorized according to their equilibrium strategies and fully analysed. 
Recently, a grand unified game covering all types of two‑player two‑strategy games, i.e., the 
weightlifting game, was proposed. In the present study, we extend this two‑player weightlifting 
game into an n‑player game. We investigate the conditions for pure strategy Nash equilibria and for 
Pareto optimal strategies, expressed in terms of the success probability and benefit‑to‑cost ratio 
of the weightlifting game. We also present a general characterization of n‑player games in terms of 
the proposed game. In terms of a concrete example, we present diagrams showing how the game 
category varies depending on the benefit‑to‑cost ratio. As a general rule, cooperation becomes 
difficult to achieve as group size increases because the success probability of weightlifting saturates 
towards unity. The present study provides insights into achieving behavioural cooperation in a large 
group by means of a cost–benefit analysis.

Competition and cooperation in human or animal society are  prevalent1–5. The existence and evolution of coop-
eration have been an interest in various  disciplines1,2,6–10. Studies in game theory aim to develop criteria for 
selecting a strategy that maximizes gains and promotes  cooperation11–17. Any situation can be considered a game 
if agents maximize their own gains by anticipating the actions of their  opponents18,19. A game requires only a 
set of players, a set of strategies for each player, and corresponding pay-offs for each strategy in response to the 
strategies of other players. Rationality plays a strong role in determining what strategy a player should choose. 
Rational players maximize their expected gains without caring about societal  goals20–22. Under the assumption 
of rationality, game theory finds an equilibrium of players’ strategies at the point where no player can gain from 
changing his or her own  strategy20. Game theory has received considerable attention from researchers as well as 
decision makers seeking to solve problems of conflict or  cooperation18. Especially, the concept of the equilibrium 
strategy has been applied in behavioural science and  psychology2,8,23–25, computer  science26,27, economics and 
 investments6,28–30, evolutionary  biology3,4,10, and other fields.

Self-interest without regard to societal goals is best represented by the game known as the prisoner’s dilemma 
(PD). In PD, two prisoners are to be convicted of a minor crime since prosecutors lack evidence to convict them 
of a major crime. Separated and with no way to communicate, the prisoners are offered a reduced sentence if 
they testify against each other. Rationality urges the two prisoners to betray one another, even though it is in 
their best interest to remain  silent2,31. The stag hunt (SH) game also presents a social dilemma. In the SH, two 
hunters hunt for either a stag or a hare. They depend on each other in terms of which animal to hunt since they 
cannot kill the stag  alone8. This results in two equilibria, one where both hunt a stag and another where both hunt 
a hare, but the best outcome is the  former8,32. In the hawk-dove game (HD), which is equivalent to the chicken 
game (CH), the hawks are ready to fight for resources to drive the doves away, while the doves retreat whenever 
the hawks are around. This game has two equilibria of (Dove, Hawk) and (Hawk, Dove), while the highest pay-
off is achieved for (Dove, Dove)2. Since cooperation and exploitation are prevalent in animals, game theory has 

OPEN

1Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 423-8561, 
Japan. 2Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the 
Philippines Los Baños, 4031 Laguna, Philippines. 3Graduate School of Informatics, Nagoya University, Furo-cho, 
Chikusa-ku, Nagoya 464-8601, Japan. 4Department of International Health and Medical Anthropology, Institute 
of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan. 5Department of Biological Sciences, 
Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan. 6The University Museum, University of Tokyo, 
Bunkyo-ku, Tokyo 113-0033, Japan. 7Graduate School of Integrated Science and Technology, Shizuoka University, 
Hamamatsu, Shizuoka 423-8561, Japan. *email: dncuaresma@up.edu.ph; morita.satoru@shizuoka.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-12394-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8482  | https://doi.org/10.1038/s41598-022-12394-z

www.nature.com/scientificreports/

been applied to study the evolution of animal behaviour, i.e., evolutionary game theory (EGT)2,3. In EGT, the 
assumptions of the rationality of players and the equilibrium of strategies in classical game theory are replaced 
with self-interest via Darwinian fitness and evolutionarily stable strategies (ESSs),  respectively3. Strategies in 
EGT are behavioural  phenotypes3,4.

The above three games and two trivial cases, C-dominant trivial (CT) and D-dominant trivial (DT), com-
prise the five classes of two-by-two games (two players, two strategies: cooperation and defection), represented 
by a 2× 2 matrix (Table 1)33. The pay-offs in two-by-two games are represented by four quantities, R,T , S , and 
P . The reward R is received when the two players cooperate. The temptation T is experienced by a player who 
then betrays the other player. The sucker S is the experience of the betrayed player. The punishment P is the 
pay-off when both players betray each other. Depending on the values of R,T , S and P , two-by-two games are 
categorized into the aforementioned five types: prisoner’s dilemma (PD; T ≥ R > P > S ), chicken game (CH; 
T ≥ R ≥ S > P ), stag hunt game (SH; R > T ≥ P > S ), D-dominant trivial (DT; T ≥ P > R > S ) and C-dom-
inant trivial (CT; R > T ≥ S > P)7,33–35. DT and CT have equilibria of no dilemma, where all players defect or 
cooperate,  respectively7,34. Recently, Yamamoto et al.35 introduced the two-person weightlifting game to unify 
all the five classes of dyadic games. In this game, each player either cooperates or defects in carrying a weight.

Studies on two-by-two games have contributed to understanding cooperation and dilemma in a social sys-
tem. However, many societal concerns require cooperation and decisions of not just two  individuals5. Multiple-
player (or n-player) games have been studied extensively by researchers in various  fields12,26,36–40, especially in 
behavioural  science41,42 and other application  areas2,12,23,28,29,44,45. The most studied n-player cooperative game is 
the public goods game (PGG)32,41, which is the n-player  PD32,33. PGG models a society where members benefit 
equally from voluntary contributions (see refs.33  and43 for more discussion). Being an extension of PD, self-
interest causes individuals to make non-cooperative decisions. The n-player CH is typically used to model social 
dilemmas caused by selfish individuals depleting a common  resource33. Being equivalent to the n-player HD and 
snowdrift game, this game results in the coexistence of people who cooperate and people who free-ride on the 
work of others (see refs.4,5). The n-player SH still gives equilibria where all hunters cooperate to take down a stag 
or all defect to hunt hares instead (see ref.8). In these n-player games, it is generally expected that cooperation 
will diminish as the group size increases owing to the rational behaviour of self-interested  individuals4,20,38,41.

The two-person two-strategy weightlifting game of Yamamoto et al.35 suggests a new way of investigating n
-player games. In the present study, we extend this two-player game to an n-player game. Multiple-player games 
have now become possible to study in a unified manner. We investigate the conditions for pure strategy equilibria 
and optimal strategies, which we express with the success probability and the benefit-to-cost ratio of this model. 
Moreover, we provide the n-player extension of the classification conditions of two-by-two games according to 
the equilibrium and optimal strategies. In the final section, we discuss concrete examples of how the weightlifting 
game can explain behavioural cooperation in a large group.

Model and results
Preliminaries. To unify all the five classes of two-by-two games, Yamamoto et al.35 introduced the weight-
lifting game. In this game, each player either cooperates or defects in carrying a weight. Players who carry the 
weight pay a cost, c ≥ 0 . The weight is successfully lifted with probability pi , where i = 0, 1, 2 is the total number 
of cooperators and pi increases with the number of cooperators i . If the cooperators succeed, both players receive 
a benefit b > 0 . However, in case of failure, both players gain nothing. The pay-off of the cooperators is bpi − c , 
and the pay-off of the defectors is bpi (Table 2). In terms of the parameters �p1 = p1 − p0 and �p2 = p2 − p1 , 
which represents the increase in the probability of success due to an additional cooperator, the following ine-
qualities are obtained for the pay-offs R,T , S , and P (Table 1):

 (i) �p1 > c/b for S > P,
 (ii) �p2 > c/b for R > T , and
 (iii) �p1 +�p2 > c/b for R > P.

Table 1.  Pay-off table of the two-person two-strategy game.

Row\
Column C D

C (R,R) (S,T)

D (T , S) (P, P)

Table 2.  Pay-off table of two-person weightlifting game.

Row\
Column C D

C R : bp2 − c S : bp1 − c

D T : bp1 P : bp0
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PD satisfies only (iii), CH satisfies (i) and (iii), SH satisfies (ii) and (iii), DT satisfies none of the three condi-
tions, and CT satisfies all three. In 2021, Chiba et al.1 studied the evolution of cooperation in society by incor-
porating environmental value in the weightlifting game. They found that the evolution of cooperation seems to 
follow a DT to DT trajectory, which can explain the rise and fall of human societies.

The n‑player weightlifting game. In this study, we generalize the weightlifting game to n-players. Sup-
pose n self-interested and rational individuals selected from a population of infinite size. The n players are asked 
to lift a weight. Each individual (or player) can decide to either carry the weight (cooperate, C ) or not carry/
pretend to carry the weight (defect, D ). Players who decide to carry the weight can either succeed or fail. The 
probability of successful weightlifting is denoted by pi , i = 0, 1, . . . , n , where i indicates the number of coopera-
tors (henceforth, i always represents the number of cooperators). The probability of success increases with the 
number of individuals cooperating, and it may remain less than unity even if all n individuals cooperate. Players 
who decide to carry the weight pay a cost, c ≥ 0 , regardless of the outcome, while those who defect need not pay 
anything. If the cooperators succeed, all n individuals receive a benefit b ≥ 0 . There is no penalty for failure. We 
use the expected gains/losses of the players as the pay-off. If there are i − 1 cooperative players, then the pay-off 
of j is BC(i) = bpi − c when j cooperates and BD(i − 1) = bpi−1 when j defects. The number of cooperators 
differs by one, since in BC(i) , there is an additional cooperator, which is j him- or herself. To decide whether 
to cooperate or defect, all players weigh their expected gain and rationally choose the option with the highest 
expected gain. The graphical outline of this game is illustrated in Fig. 1 (see also Supplementary Figure S1 for 
the flow of the game). The pay-off table for a four-player game is shown as an example in Table 3. Here, player 1 
is the innermost row (strategies are listed in the second column of the table), player 2 is the innermost column 
(strategies are listed in the second row of the table), and the succeeding players take the succeeding rows or 
columns (we enter the first player as a row player and the following player as a column player and continue in 
this order). Each cell represents players’ pay-offs, with the first component being the pay-off for the first player, 
the second for the second player, and so on. For instance, consider the entry in the first row and third column, 
where players 1, 2 and 3 cooperate but player 4 defects. The pay-offs of players 1 to 3 are BC(3) , while the pay-off 

Figure 1.  A schematic diagram of the n-player weightlifting game. In this game, players decide whether to 
cooperate or defect in carrying the weight. Cooperators need to pay a cost. The weightlifting can either succeed 
or fail. In case of success, all players receive a benefit. In case of failure, all players receive nothing. The player’s 
pay-off depends on the benefit, cost and probability of success. Each player decides whether to cooperate or 
defect so as to maximize the expected gain.

Table 3.  Pay-off table of four-player weightlifting game.

Row\
Column

C D

C D C D

C
C (BC(4),BC(4),BC(4),BC(4)) (BC(3),BD(3),BC(3),BC(3)) (BC(3),BC(3),BC(3),BD(3)) (BC(2),BD(2),BC(2),BD(2))

D (BD(3),BC(3),BC(3),BC(3)) (BD(2),BD(2),BC(2),BC(2)) (BD(2),BC(2),BC(2),BD(2)) (BD(1),BD(1),BC(1),BD(1))

D
C (BC(3),BC(3),BD(3),BC(3)) (BC(2),BD(2),BD(2),BC(2)) (BC(2),BC(2),BD(2),BD(2)) (BC(1),BD(1),BD(1),BD(1))

D (BD(2),BC(2),BD(2),BC(2)) (BD(1),BD(1),BD(1),BC(1)) (BD(1),BC(1),BD(1),BD(1)) (BD(0),BD(0),BD(0),BD(0))
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of player 4 is BD(3) . In the above example, there are as many row players as column players because the number 
of players is even. However, we can have one more player in the rows than in the columns if there is an odd 
number of players.

Nash equilibrium and pareto optimal strategies. Here we present the Nash equilibrium and Pareto 
optimal strategies of the n-player weightlifting game in terms of the cost-to-benefit ratio c/b and probability of 
success pi . The Nash equilibrium consists of the best responses of each player. Players have no incentive to devi-
ate from this strategy profile since deviation will not increase an individual’s pay-off if the other players maintain 
the same strategy. If BC(i) ≥ BD(i − 1) , the best response of player j is to cooperate, but if BC(i) ≤ BD(i − 1) , 
the best response is to defect.

We have �pi = pi − pi−1 ≥ 0 for the increase in the probability of success because the probability pi increases 
with the number of cooperators i . It is convenient to divide cases depending on whether �pi > c/b or �pi < c/b . 
We obtain the following results (see Supplementary Text for the derivations):

Result 1 If �p1 ≤ c/b, there is a Nash equilibrium at (D,D, . . . ,D). The Nash equilibrium at (D,D, . . . ,D) is 
unique if and only if �pi < c/b, for all i = 1, 2, . . . , n.

Result 2 If �pn ≥ c/b, there is a Nash equilibrium at (C,C, . . . ,C). The Nash equilibrium at (C,C, . . . ,C) is 
unique if and only if �pi > c/b, for all i = 1, 2, . . . , n.

Result 3 There is a Nash equilibrium in the combination of strategies where i − 1 players choose C and the rest 
of the players choose D if and only if �pi < c/b < �pi−1, for some i = 2, 3, . . . , n.

Result 1 shows that players have no incentive to cooperate when the cost relative to the benefit is (very) high, 
so much so that �pi < c/b , for all possible values of i . This case of all defection is a unique equilibrium, where no 
player can improve the pay-off by cooperating. In contrast, Result 2 shows that all players cooperate when the cost 
is sufficiently smaller than the benefit. Results 1 and 2 indicate that cooperation is determined by the relationship 
between the cost and the benefit; raising the benefit or lowering the cost can increase cooperation. There may be 
cases where full defection or cooperation is not a unique equilibrium (see cases 3 or 10, for example, in Table 4). 
The reason for this is covered by Result 3. This result shows the conditions for the existence of equilibria where 
only some individuals cooperate, which we will refer to as anti-coordination equilibria. Result 3 also implies 
the significance of an individual in promoting cooperation. For instance, when �p2 < c/b < �p1 , we have an 
equilibrium with a single cooperator. While there is a small chance of success, if an individual’s contribution to 
the probability of success is substantial, cooperation will exist. These three results cover all possible cases of pure 
equilibrium. The equilibria at (D,D, . . . ,D) and at (C,C, . . . ,C) are covered by Results 1 and 2, respectively, and 
the anti-coordination equilibria are covered by Result 3.

Result 4 The number of equilibria of an n-player weightlifting game is at most 
∑⌊ n

2 ⌋
i=0 C(n, 2i) if n is even and ∑⌊ n

2 ⌋
i=0 C(n, 2i)+ 1 if n is odd, where C(n, 2i) denotes the combination of 2i out of n.
Result 4, on the other hand, gives the maximum number of equilibria in a weightlifting game. To illustrate 

this result, the equilibrium strategies (marked with X) of a four-player game are presented in Table 4. Notably, 
the one X in case 2 means not just one equilibrium but four equilibria: (C,D,D,D) , (D,C,D,D), (D,D,C,D) and 
(D,D,D,C) . The same applies to the other cases (except 1 and 16). As shown in Table 4, there can be at most three 
types of equilibrium (case 11): all-D , anti-coordination, and all-C . There is exactly one all-D and exactly one all-C 
strategy. However, there are (2+ 2)!/(2!2!) = C(4, 2) anti-coordination equilibria of two players cooperating and 
two players defecting; thus, there are at most eight equilibria in a four-player game. This finding is in accordance 
with Result 4: 

∑2
i=0C(4, 2i) = C(4, 0)+ C(4, 2)+ C(4, 4) = 8.

Table 4.  Equilibrium strategies of a four-player weightlifting game.

Case �p4 �p3 �p2 �p1 all-D 1C, 3D 2C, 2D 3C, 1D all-C

1  < c/b  < c/b  < c/b  < c/b X

2  < c/b  < c/b  < c/b  > c/b X

3  < c/b  < c/b  > c/b  < c/b X X

4  < c/b  < c/b  > c/b  > c/b X

5  < c/b  > c/b  < c/b  < c/b X X

6  < c/b  > c/b  < c/b  > c/b X X

7  < c/b  > c/b  > c/b  < c/b X X

8  < c/b  > c/b  > c/b  > c/b X

9  > c/b  < c/b  < c/b  < c/b X X

10  > c/b  < c/b  < c/b  > c/b X X

11  > c/b  < c/b  > c/b  < c/b X X X

12  > c/b  < c/b  > c/b  > c/b X X

13  > c/b  > c/b  < c/b  < c/b X X

14  > c/b  > c/b  < c/b  > c/b X X

15  > c/b  > c/b  > c/b  < c/b X X

16  > c/b  > c/b  > c/b  > c/b X
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In Pareto optimal strategies, players cannot increase their pay-offs by changing their strategy without also 
decreasing the other players’ pay-offs. Owing to pi ≤ pi+1 , BD(i) ≤ BD(i + 1) and BC(i) ≤ BC(i + 1) . Thus, if 
a defector cooperates, the rest of the players will enjoy an increased pay-off. Moreover, some players will suffer 
from a decreased pay-off if cooperators decrease. In this case, we only have to check the condition that makes a 
strategy profile Pareto-dominated, i.e., when defectors cooperate.

Result 5 Strategy (C,C, . . . ,C) is Pareto optimal if and only if 
∑n

j=1�pj > c/b.
Result 6 The strategy profile with i defectors, i = 0, 1, . . . , n− 1, is Pareto optimal if and only if 

∑n
j=i+1�pj < c/b.

In (C,C, . . . ,C) , the only way a player can deviate is to defect; thus, it is sufficient to check the condition where 
all-D Pareto-dominates all-C . However, in the following result, which covers the remaining strategies, all-D does 
not Pareto-dominate these strategies since defectors are disadvantaged. Furthermore, we know that 

∑n
j=1�pj 

saturates towards unity. Thus, intuitively, cooperation is Pareto optimal unless c is close to or greater than b.

General properties of the n‑player games. While Yamamoto et al.35 considered only the conditions 
that encourage cooperation, the violation of these conditions implicitly implies the satisfaction of the converse 
conditions. Thus, PD, SH and DT satisfying �p1 < c/b assures equilibrium at (D,D) . Moreover, PD and DT 
satisfying �p2 < c/b makes this equilibrium unique, according to Result 1. On the other hand, SH satisfying 
�p2 > c/b leads to another equilibrium at (C,C) (Result 2). The anti-coordination equilibrium of CH is cov-
ered by the condition �p2 < c/b < �p1 of Result 3. In addition, the condition �p1 +�p2 > c/b (condition 
iii), which PD, CH, SH and CT satisfy, indicates that all-C is more beneficial than all-D . As in Result 5, the 
counterpart of this condition for the n-player game is 

∑n
j=1�pj > c/b . Similarly, the inequality 

∑n
j=1�pj < c/b 

indicates that all-D is more beneficial than all-C in Result 6 when i = 0.
The five classes of two-by-two games are characterized by their equilibria and optimal strategies. All these 

games are unified under a single structure in the two-player weightlifting game. As an extension of the n-player 
game, the following correspondence occurs: With all-C being the optimal strategy, PD has a unique equilibrium 
at all-D , CH has an anti-coordination equilibrium, SH has an equilibrium at both all-C and all-D , CT has a unique 
equilibrium at all-C , and DT has a unique and optimal equilibrium at all-D . In the above results, we have shown 
the existence and uniqueness of an equilibrium and the existence of optimal strategies. In summary, we present 
the conditions and characterization of the n-player games in Table 5.

Illustration. Let us consider a concrete example of lifting a weight of W = 100 by four individuals (Figs. 2 
and 3). The weight that each individual cay carry is normally distributed with mean µ and standard deviation σ . 
For µ = 10 and σ = 50 , we obtain �p1 = 0.013,�p2 = 0.019,�p3 = 0.026 and �p4 = 0.034 (Figs. 2a1, 2a2). 
The n-player CT obtains for 0 < c/b < 0.013 , SH for 0.013 < c/b < 0.034 , PD for 0.034 < c/b < 0.092 , and DT 
for 0.092 < c/b < 1 . In Figs. 2a1 and 2a2, we show the parameter regions for Nash equilibria and Pareto optimal 
strategies as hatched in the i-c/b plane, where i is the number of cooperators and c/b is the cost-to-benefit ratio. 
As c/b increases, the number i of cooperators drops from four to zero in Nash equilibria (Fig. 2a1). In Pareto 
optimal strategies, the number i decreases from four to zero, while the range of c/b for i = 0 ∼ 3 reaches the 
right end point c/b = 1 (Fig. 2a2). Note that the boundary values for the hatched bars are different for Nash 
equilibria (Fig. 2a1) and Pareto optimal strategies (Fig. 2a2). Similarly, we obtain Figs. 2b–e and 3a–e for µ from 
20 to 100. The range for each game category varies depending on µ . As µ increases, SH ceases to exist (Fig. 2e) 
while the coexistence CH&PD begins to appear (Fig. 2d) and disappear (Fig. 3e). A pure CH appears afterwards 
(Fig. 3b).

Discussion
The present game is related to n-player Prisoner’s Dilemmas ( n PDs), or Public Goods games (PGG)33,43. Consider 
the public goods game played by i cooperators and j = n− i defectors. Each cooperator contributes c to the pub-
lic pool. Total contributions ic is equally distributed among all players after multiplied by a factor R . Thus, each 
player gains icR/n . Since this quantity is compared with bpi of the weightlifting game, we see the correspondence 
of cR to b and i/n to pi . Accordingly, the success probability pi of the weightlifting game corresponds to the ratio 
of cooperators among all players in the public goods game. Unlike this specific case, however, in general, and in 
principle, the dependence of pi on the ratio i/n can be nonlinear. The effect of this nonlinearity is properly taken 
into consideration in a general model of the weightlifting game. For instance, as a second example, let us consider 
n-player stag hunt dilemmas ( n SH). Pacheco et al.32 studied evolutionary dynamics in n SH, where it is assumed 
that the “public goods” increases with the number of cooperators i inasmuch as i exceeds a certain threshold 
value M while it is zero for i < M . This game is formally equivalent to replacing R of PGG with Rθ(i −M) , where 

Table 5.  Conditions for the n-player extension of two-by-two games.

Conditions for equilibrium strategy Conditions for optimal strategy

PD �pi < c/b, ∀i ∈ P
∑n

j=1�pj > c/b Results 1 and 5

CH �pi < c/b < �pi−1, ∃i ∈ {2, 3, . . . , n}
∑n

j=1�pj > c/b Results 3 and 5

SH �p1 ≤ c/b , �pn ≥ c/b
∑n

j=1�pj > c/b Results 1, 2 and 5

CT �pi > c/b, ∀i ∈ P
∑n

j=1�pj > c/b Results 2 and 5

DT �pi < c/b, ∀i ∈ P
∑n

j=1�pj < c/b Results 1 and 6
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Figure 2.  Equilibria and optimal strategies of the four-player weightlifting game. Nash equilibria 
(a1,b1,c1,d1,e1) and Pareto optimal strategies (a2,b2,c2,d2,e2). (a1,a2) µ = 10 . (b1,b2) µ = 20 . (c1,c2) µ = 30 . 
(d1,d2) µ = 40 . (e1,e2) µ = 50 . The parameter regions for Nash equilibria and Pareto optimal strategies are 
as hatched in the i-c/b plane, where i is the number of cooperators and c/b is the cost-to-benefit ratio. We set 
σ = 50 in all cases. All players cooperate for a small value of c/b (CT), while they defect for a large value (DT).
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θ(x) is the Heaviside step function satisfying θ(x) = 0 for x < 0 and θ(x) = 1 for x ≥ 0 . Consequently, n SH is 
recovered by the weightlifting game under the assumption pi = iθ(i −M)/n , i.e., we need at least M coopera-
tors for the weightlifting to be successful (or to produce any benefits). A third example is provided by a n-player 

Figure 3.  Equilibria and optimal strategies of the four-player weightlifting game. Nash equilibria 
(a1,b1,c1,d1,e1) and Pareto optimal strategies (a2,b2,c2,d2,e2). (a1,a2) µ = 60 . (b1,b2) µ = 70 . (c1, c2) 
µ = 80 . (d1, d2) µ = 90 . (e1, e2) µ = 100 . See Fig. 2 and the text for details.
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snowdrift  game46, while it is more sophisticated. Souza et al.46 studied the n-person snowdrift game in which the 
cost paid by a cooperator depends on the number of cooperators, i , i.e., it is given by C/max(i,M) , where M is 
a minimum number of cooperators required for achieving a benefit and max(i,M) = i if i ≥ M and M if i < M . 
Each player receives a benefit Bθ(i −M) , which is zero for i < M and B for i ≥ M . This game is obtained by 
assuming pi = θ(i −M)×max(i,M)/n = iθ(i −M)/n as above, but with b/c = nB/C depending on n because 
each cooperator’s cost decreases with the total number. This explicit n-dependence of the benefit-to-cost ratio 
may reinforce the impact of group size, as mentioned just below.

It has been generally acknowledged that cooperation becomes difficult to achieve as group size increases 
4,20,37,41,46–48. The effects of group size may be discussed from a static  perspective40. For instance, the size depend-
ence comes in through the decrease in the benefit-to-cost ratio as the number of players increases. When the total 
gain W does not increase in proportion to the number of players n , the benefit of each player b = W/n decreases 
as the number of players n increases. Thus, the inequality �pi < c/b should be met for all i eventually, because 
the right-hand side increases in proportion to n . In other words, the larger the group, the less cooperative people 
will be. However, when the total gain W increases in proportion to n , the right-hand side c/b stays constant even 
if n increases. In this case, the impact of group size on cooperation can be positive (or, to be precise, the negative 
effect of group size is mitigated when the benefits reaped by one individual do not reduce the benefits received 
by another). In fact, the impact in the latter case ( W ∝ n ) has been studied as compared specifically against the 
former case ( W = const.) (see, e.g., refs.49,50 ). Recently, the emergence of cooperation in a large group has been 
extensively studied by means of dynamical  models32,48,50. In this context, it should be remarked that the size effect 
may also come about as a result of dynamical, stochastic processes of how the numbers of players with different 
strategies vary, namely a genetic drift in evolutionary  biology47. While assessing if the size effect due to genetic 
drift is positive or negative requires further assumptions than necessary for the present ‘static’ results, we made 
a calculation to find that the size effect, as evaluated from Eq. (2.5) of Kurokawa and  Ihara47, is negative (Sup-
plementary Text). Thus, we consider it an interesting future research direction to investigate population dynamics 
of the present game, especially to make a more specific comparison with these prior studies.

Several  studies8,32,46 discuss a minimum number M of players for cooperation, specifically anti-coordination, 
to exist. Our study can also supply this concept of threshold using the parameter �pi . A good example is provided 
by the concept of a ‘threshold’ in joining a strike, which is defined as the number of people in the strike for a given 
employee to join the strike (see ref.51). This number (threshold) may be different for a different individual. In fact, 
it is evaluated according to Result 3; an employee will join the strike under the condition �pi < c/b < �pi−1 
when i − 2 employees are in the strike. In the present model, the probability of success is used instead of the risk 
preference to evaluate the threshold value. When each individual has his/her own success probabilities �pi , the 
threshold can be different for each individual if the cost-to-benefit ratio c/b is a fixed constant. Specifically, if 
�p2 < c/b < �p1 , a single employee (‘instigator’) will decide to start the strike, while it can be that the threshold 
becomes so high that the condition �pi < c/b < �pi−1 is not met for any i.

This ‘threshold’ behaviour is not unique to humans. Conradt and  Roper52 studied social animals making 
communal decisions. The animals decide how long they conduct a communal activity, which is beneficial to 
the group but takes time away from their own personal  activities46,52. Conradt and  Roper52 named this loss of 
personal time the ‘synchronization cost’. They noted that the animals that stop communal activity earlier should 
have twice as much motivation as the others (‘double motivation’). If i − 1 animals pursue communal activities, 
the animals to stop earlier (defect) are those that satisfy the condition �pi < c/b < �pi−1 . In the present model, 
the motivation for communal activity is modelled with the probability of success.

In the previous section (Section “Illustration”), we presented that the game follows CT-SH-PD-DT, CT-SH-
CH&PD–PD-DT, CT-CH&PD–PD-DT, CT-CH-CH&PD–PD-DT, and CT-CH-PD-DT (Figs. 2 and 3). This 
is consistent with the previous  result1, while there are slight differences in the order and where SH appears. 
These trajectories may be used to explain the dynamical process of joining a  strike51. We may regard µ as the 
employee’s rank in the company. The larger µ , the higher the rank. When the consequences for joining the 
strike are minor, all employees are persuaded to join the strike (game type CT), regardless of the rank. As the 
consequences become severe, they are inclined not to join the strike, especially for those with a low rank µ (SH). 
If the consequences become more severe, those with a high rank µ are encouraged to leave the strike (PD). Not 
surprisingly, no employees will join the strike when faced with much more severe penalties (DT). This is just an 
example. Many other cases can be analysed from the perspective of the present study.

The weightlifting game does not only pertain to the physical act of carrying a load, as we have seen in the 
examples provided above. The probability of successful weightlifting pi can also be interpreted in different ways. 
For example, it can be interpreted as the probability of not depleting the public resource, the probability of driv-
ing the other species away, or the probability of taking down the stag. We can also regard pi as the probability of 
i individuals to reproduce and for its species to prevent extinction. Many other interpretations are possible. This 
study can be extended in several ways: (1) by incorporating environmental effects, such as spatial and temporal 
parameters; (2) by generalizing the cost c and benefit b to depend on the players; (3) by considering the risk 
aversion of the players; and (4) by considering pre-play communication. The evolution from one class of game 
to another is also worth studying.

Data availability
This study is theoretical and does not use any data. In the illustration, all results can be computed directly from 
the values and formulas presented in the text.
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