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Fusion of expert uncertain 
assessment in FMEA based 
on the negation of basic probability 
assignment and evidence distance
Yusong Yuan1 & Yongchuan Tang1,2*

Failure mode and effects analysis (FMEA) has been widely used for potential risk modeling and 
management. Expert evaluation is used to model the risk priority number to determine the risk 
level of different failure modes. Dempster–Shafer (D–S) evidence theory is an effective method for 
uncertain information modeling and has been adopted to address the uncertainty in FMEA. How to 
deal with conflicting evidence from different experts is an open issue. At the same time, different 
professional backgrounds of experts may lead to different weights in modeling the evaluation. How to 
model the relative weight of an expert is an important problem. We propose an improved risk analysis 
method based on triangular fuzzy numbers, the negation of basic probability assignment (BPA) and 
the evidence distance in the frame of D–S evidence theory. First, we summarize and organize the 
expert’s risk analysis results. Then, we model the expert’s assessments based on the triangular fuzzy 
numbers as BPAs and calculate the negation of BPAs. Third, we model the weight of expert based on 
the evidence distance in the evidence theory. Finally, the Murphy’s combination rule is used to fuse 
the risk assessment results of different experts and calculate the new risk priority number (RPN). At 
the end of this paper, we apply the proposed method to analyze seventeen failure modes of aircraft 
turbine blades. The experimental results verify the rationality and effectiveness of this method.

Failure Mode and Effects Analysis (FMEA) was first proposed by NASA in 1960s. It is a tool of risk analysis 
and management, which aims at allocating limited resources to the projects with the highest risk1–5. FMEA can 
improve the quality, safety and reliability of the products. Due to its remarkable advantages, FMEA has been 
widely used in various fields, such as steel production6,7, fishing boat propulsion system8, sewage treatment9 
and so on10,11. The most commonly used tool for FMEA is the risk priority number (RPN), which is expressed 
as the product of occurrence (O), severity (S) and detection(D). Although FMEA has significant advantages12, 
as the assessment system becomes more and more complex, the results of the assessment are subject to great 
uncertainty, which greatly influences the final risk analysis. Firstly, different risk factors will produce the same 
RPN value. For example, (O: 9, S: 2, D: 5) and (O:2, S:9, D:5), the final RPN value is same, but the occurrence 
and severity of the two are quite different. Secondly, traditional risk priority number treats O, S and D as equally 
crucial, but in fact their weights may vary. Finally, the rating of each risk factor is rated as [1, 2, 3, 4, 5, 6, 7, 8, 9, 
10], so that the final RPN value will be between 1 and 1000, but not all the numbers between them can represent 
RPN values, in fact, there are only 120 discrete values13,14. When we do FMEA, we need to deal with uncertain 
information. At present, there are many methods to study uncertain information, such as fuzzy set theory15–18, 
D numbers theory19, Dempster–Shafer (D–S) evidence theory20,21, grey theory22,23, analytic hierarchy process24,25 
and so on. Because D–S evidence theory has significant advantages in dealing with uncertain information and 
independent evidence fusion, Ma et al.26 applied D–S evidence theory to the gender analysis. In addition, Liu 
et al.27 applied D–S evidence theory to supplier selection, Perez et al.28 applied D–S evidence theory to 3D human 
motion recognition. In this study, we also choose D–S evidence theory as our research method to figure out 
uncertain information.

Motivations. 
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•	 In application of D–S evidence theory, how to generate basic probability assignment (BPA) is an open issue. 
For FMEA, we propose a novel method of generating BPAs for modeling the risk priority number in this 
paper.

	   Quite a few scholars have put forward their own solutions to this problem. Jiang et al. proposed using fuzzy 
set theory to solve evidence conflict29, Su et al. used Gaussian function to construct BPAs30. Tang et al. used 
triangular distribution to construct BPAs for incomplete and uncertain information31. Mendonca et al. used 
game theory to solve data conflicts32. The base BPAs is an option in generating BPAs considering potential 
conflict information33. In this paper, we firstly construct BPAs through triangular fuzzy numbers to reduce 
the evidence conflict, and then consult the negation34,35 of BPAs to study the uncertainty of uncertain infor-
mation from another angle.

•	 Due to the different professional backgrounds of different experts, the assessment weight of each risk factor 
for the same failure mode may be different.

	   As an important reference in the field, expert knowledge plays a vital role in FMEA36. However, the 
evaluation of each failure mode by experts is based on their own subjective evaluation, which aggravates the 
uncertainty and ambiguity of the evaluation results37. Based on this consideration, we calculate expert weight 
by the evidence distance38,39, and finally fuse the evidence with expert weight. Other solutions for conflict 
data fusion can be belief entropy-based methods40,41.

Contributions.  Compared with a large number of FMEA methods, the main contributions of the method 
proposed in this paper are as follows:

•	 To reduce the evidence conflict, we introduce triangular fuzzy numbers to construct BPAs. In fact, differ-
ent scholars have proposed many methods to reduce the evidence conflict. Bi et al.42 proposed a method 
to reduce the evidence conflict based on Tanimoto measure. Miao et al.43 achieved the goal of reducing the 
evidence conflict by modifying the D–S combination rule. Hu et al.44 used feature fusion method to solve 
this problem. Generally speaking, there are two main methods to reduce evidence conflict. One is to modify 
the preliminary test information, and the other is to modify the combination rule. Our research integrates 
these two methods. And then the idea of construct the negation45,46 is firstly applied to the failure mode and 
effects analysis.

•	 The evidence distance is used to calculate the weight of the experts participating in the risk assessment, 
which reduces the uncertainty and ambiguity of the assessment results caused by the subjectivity of the 
expert assessment. As a matter of fact, there are many ways to get the weight of experts, including Deng 
entropy47, AMWRPN48, Ambiguity Measure49 and so on50–52. These methods show good characteristics in 
some attributes. Compared with these methods, the evidence distance can accurately calculate the distance 
between two bodies of evidence, so as to provide a reliable guarantee for calculating similarity, which is why 
we choose evidence distance to calculate expert weight.

Organization.  In this paper, the rest of the content is arranged as follow. In “Basic concepts” section, we 
briefly reviewed the basic concepts. “Improved method based on the negation of basic probability assignment 
and the evidence distance” section  proposed the new FMEA method. “Application” section  provided the appli-
cation of the proposed method. “Discussion” section  discussed the experimental results. “Conclusions” section  
made the conclusion of the whole paper.

Basic concepts
In this part, we introduce some basic concepts, including D–S evidence theory, the negation of BPA, Murphy 
combination rule, the evidence distance, triangular fuzzy numbers and risk priority number(RPN).

Dempster–Shafer evidence theory20,21. 

Definition 1  Frame of discernment � is defined as a non-empty set � = {θ1, θ2, . . . , θi , . . . , θm} , it 
contains m mutually exclusive events. The power set θ of the frame of discernment contains 2m 
elements, it is shown as follows:

Definition 2  Within the frame of discernment, the basic evidence function is defined to represent uncertain 
information, mass function m is the mapping of set 2� on [0, 1], the mapping satisfies the following relationship:

m(A) is the mass function value of proposition subset A, also known as Basic Probability Assignment (BPA), the 
sum of all mass functions is 1. We call A fatal element if m(A)>0.

Definition 3  Under the framework of evidence theory, two groups of independent mass functions m1,m2 can 
be fused by the following Dempster’s combination rule53,54:

(1)2� = {∅, {θ1}, {θ2}, . . . {θm}, {θ1, θ2}, . . . , θ}

(2)m(∅) = 0

(3)
∑

A∈�

m(A) = 1
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We call k the conflict coefficient.

Definition 4  For n groups of independent mass functions m1,m2...mn(n > 2) , Murphy calculates the average 
of n groups of mass as mavg , then iterate (n-1) times to get the new mass function. Murphy combination rule is 
defined as follows:

where FDS represents the Dempster’s combination rule.

The negation of BPAs55,56. 

Definition 5  In the evidence theory,Yagar proposed a concept of negation for probability dis-
tribution. The main ideas are as follows:

where n is the amount of fatal element, and m̄i satisfies:

Evidence distance57. 

Definition 6  In order to measure the similarity between evidences, we use the distance func-
tion. In the frame of discernment � where has N elements, the evidence distance between two 
bodies of evidence(m1,m2 ) can be defined as:

where D is a matrix that has 2N rows and 2N columns. The elements in the matrix are:

Triangular fuzzy numbers58,59.  In the fuzzy set theory, the probability that the element x belongs to a set 
A can be represented by a value fA(x) in the interval [0, 1], the membership function fA(x) ∈ [0, 1].

Definition 7  Let X be the domain of discourse, set A =
{(

x, fA(x) | x ∈ X
}

 , the generalized fuzzy number 
is a fuzzy set defined on the real number, it can be expressed as Ã = (a1, a2, a3, a4;ω) , of which 0 ≤ ω ≤ 1 , 
a1, a2, a3, a4 are real numbers. If the membership function of fuzzy number Ã can be expressed as

then, fuzzy numbers Ã is called triangular fuzzy numbers.

Risk priority number (RPN).  FMEA method is used for risk analysis based on the RPN number. RPN is 
expressed as the product of three risk factors: occurrence (O), severity (S) and detection (D).

(4)m(C) = (m1 ⊕m2)(C) =

∑

X∩Y=C
m1(X)×m2(Y)

1− k

(5)k =
∑

X∩Y=∅

m1(X)×m2(Y)

(6)m1 = FDS(mavg ,mavg )

(7)mi = FDS(m
i−1,mavg )(i ≥ 2)

(8)m̄i =
1−mi

n− 1

(9)m̄i ∈ [0, 1]

(10)
n

∑

i=1

m̄i =
1

n− 1

n
∑

i=1

(1−mi) = 1.

(11)d(m1,m2) =

√

1

2
(
−→m1 −

−→m2)
T
D(−→m1 −

−→m2)

(12)D(A,B) =
|A ∩ B|

|A ∪ B|
A,B ∈ m(�).

(13)µÃ(x) =















ω(x−a1)
a2−a1

0 ≤ a1 < a2
ω x = a2 = a3

ω(a4−x)
a4−a3

a3 < x ≤ a4
0 others
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Definition 8  RPN is defined as follows:

Generally speaking, for each failure mode item, the risk level of each risk factor is divided into ten grades. 
The rating standard of occurrence, severity and detection can be found in60.

Improved method based on the negation of basic probability assignment 
and the evidence distance
The flow chart of the improved FMEA method based on triangular fuzzy numbers, the negation of BPAs and the 
evidence distance in D–S evidence theory is shown in Fig. 1.

Step 1: Simplify the frame of discernment.  Suppose there are J experts in an FMEA, and N failure modes: 
E1, . . .EJ ; FM1, . . . FMN . In this case, the frame of discernment of the ith risk factor of the nth failure mode can 
be written as follows:

Obviously, we can observe that the number of recognition frames is 3N. Because the evaluation of the ith risk 
factor by different experts on the nth failure mode is not very different, in practical applications, the frame of 
discernment can be simplified into the following form:

Among them, minX|X⊆�n
i
 represents the lowest level of evaluation by L experts on the ith risk factor of the nth 

failure mode. And, the following constraints are also satisfied:

Step 2: Construct BPAs using triangular fuzzy numbers.  In this step, in order to solve the conflict of combined 
evidence, we use triangular fuzzy numbers to construct more flexible BPAs, and fully consider the uncertainty of 
experts in evaluation. Since the evaluation of risk factor i by different experts on the nth failure mode is not very 
different, we can select two adjacent setting values to construct the BPAs function. An illustration of constructing 
new BPAs with triangular fuzzy numbers is shown in Fig. 2.

Based on the above discussion, we construct a trigonometric fuzzy number that fits this description well. 
In this example, we define ω = 2/3, a2 − a1 = 1, a4 − a3 = 2 . There are two reasons: (1) The triangular fuzzy 
numbers cover the two adjacent tuning values, and the corresponding function value of the other tuning values is 
0. (2) The sum of these two adjacent setting values is 1, which conforms to the basic definition of mass function.

Suppose we use X to represent the single possible rating of the ith risk coefficient of the nth failure mode, the 
new BPAs will be expressed in the following form:

where the frame of discernment can be expressed as 
[

minX|X⊆θni
, max X|X⊆θni

+ 1

]

.

Example 1  Suppose that the severity(S) results of two experts(E1,E2 ) for nth failure mode are mn
S1 = 1 and 

mn
S2(4) = 1 respectively, using Eq. (5) we can get the conflict coefficient k = 1 . But judging from our experience, 

level 3 and level 4 are not completely in conflict. Then using triangular fuzzy numbers we can get new BPAs:

Using Eq. (5) again, we can get k = 0.78 . Obviously, the use of triangular fuzzy numbers can effectively reduce 
the evidence conflict.

Step 3: Calculate the negation of BPAs.  In order to study the probability distribution from another point of 
view, we use the method of finding the negation of mass function. For these new BPAs that constructed with 
triangular fuzzy numbers, using Eq. (8) to calculate the negation of them.

Step 4: Calculate the evidence distance.  Murphy combination rule is just a simple averaging process for BPAs, 
the difference between information is not considered. In our modified combination rule, we use the evidence 
distance to calculate weight when combining different evidences. In this step, we need to get the evidence distance 
between experts. Then, use these distances, we construct a distance matrix. For 3 experts, the distance matrix of 
ith risk factor and nth failure mode can be defined as follows:

Step 5: Find out the support degree and credibility between the evidences. 

(14)RPN = O × S × D.

(15)�n
i = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) i = O, S,D; n = 1, 2, . . .N

(16)�n
i =

(

minX|X⊆�n
i
, minX|X⊆�n

i
+ 1, . . .max X|X⊆�n

i

)

(17)1 ≤ minX|X⊆�n
i
≤ max X|X⊆�n

i
≤ 10

(18)
m(X) = 2/3,

m(X + 1) = 1/3

E1 : m
n
S1(3) = 0.667 mn

S1(4) = 0.333

E2 : m
n
S2(4) = 0.667 mn

S2(5) = 0.333

(19)d =

(

d(mn
i1,m

n
i1) d(mn

i1,m
n
i2) d(mn

i1,m
n
i3)

d(mn
i2,m

n
i1) d(mn

i2,m
n
i2) d(mn

i2,m
n
i3)

d(mn
i3,m

n
i1) d(mn

i3,m
n
i2) d(mn

i3,m
n
i3)

)
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Figure 1.   Flow chart of improved FMEA method based on triangular fuzzy numbers, the negation of BPAs and 
the evidence distance.
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Definition 9  Because we have performed the inverse operation on BPAs, the greater the evidence distance, the 
smaller the similarity. Similarity represents the degree of similarity between two bodies of evidence, the similar-
ity matrix is defined as follows:

Definition 10  The degree of support reflects the extent to which a certain body of evidence is supported by other 
bodies of evidence. The following equtaion shows the extent to which the ith body of evidence is supported by 
other bodies of evidence.

In the end, we normalize the degree of support and call it credibility.

Definition 11  The purpose of normalization is to make the final result more accurate. The calculation method 
is as follows:

Step 6: Use the modified combination rule to fuse the evidence.  Using credibility as weight to average BPAs. 
For proposition subset A, we can get

where A represents the rating standard and the value range of A is from 1 to 10. Then, after two rounds of itera-
tions using Murphy combination rules, we can get the fused BPA value(m̃n

i (A)).
Step 7: Get the new RPN value based on the improved method. RPN is a discrete random variable. In the nth 

failure mode, it is assumed that RPN has several different levels, each of which corresponds to different prob-
abilities. The mean value of RPN can be used to compare the overall risk of each failure mode. The specific 
definition is as follows:

Application
This section adopts a structure similar to literature60.

In the FMEA for aircraft compressor rotor blades, according to literature60, the evalu-
ation results of the O risk factors of the first failure mode by three experts are as follows: 

(20)Sim =

(

1− d(mn
i1,m

n
i1) 1− d(mn

i1,m
n
i2) 1− d(mn

i1,m
n
i3)

1− d(mn
i2,m

n
i1) 1− d(mn

i2,m
n
i2) 1− d(mn

i2,m
n
i3)

1− d(mn
i3,m

n
i1) 1− d(mn

i3,m
n
i2) 1− d(mn

i3,m
n
i3)

)

(21)
Sup(mi) =

n
∑

j = 1

j �= i

Sim(mi ,mj)

(22)Crd(mi) =
Sup(mi)

∑n
i=1 Sup(mi)

(23)mn
i (A) = Crd(mn

i1)×mn
i1(A)+ Crd(mn

i2)×mn
i2(A)+ Crd(mn

i3)×mn
i3(A) i = O, S,D

(24)inavg =

10
∑

A=1

A× m̃n
i (A)i = O, S,D; n = 1, 2, . . . ,N

(25)RPNn
avg = On

avg × Snavg × Dn
avg

Figure 2.   Construct new BPAs with triangular fuzzy numbers.



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8424  | https://doi.org/10.1038/s41598-022-12360-9

www.nature.com/scientificreports/

O1(3, 40%; 4, 60%),O2(3, 90%; 4, 10%),O3(3, 80%; 4, 20%) . This means that “the operation of the system can 
continue, but the performance of the system or product will be affected.”

Firstly, for the risk factor O of the first failure mode in60, the frame of discernment of risk level can be simpli-
fied as:

�1
O = (3, 4)

Table 1.   BPAs constructed using triangular fuzzy numbers.

Item

Rating of risk factor

Expert 1 Expert 2 Expert 3

O S D O S D O S D

1
m(3) = 0.4 m(7) = 0.667 m(2) = 0.667 m(3) = 0.9 m(7) = 0.667 m(2) = 0.667 m(3) = 0.8 m(7) = 0.667 m(2) = 0.667

m(4) = 0.6 m(8) = 0.333 m(3) = 0.333 m(4) = 0.1 m(8) = 0.333 m(3) = 0.333 m(4) = 0.2 m(8) = 0.333 m(3) = 0.333

2
m(2) = 0.667 m(8) = 0.667 m(4) = 0.667 m(2) = 0.667 m(8) = 0.7 m(4) = 0.667 m(2) = 0.667 m(8) = 0.667 m(4) = 0.667

m(3) = 0.333 m(9) = 0.333 m(5) = 0.333 m(3) = 0.333 m(9) = 0.3 m(5) = 0.333 m(3) = 0.333 m(9) = 0.333 m(5) = 0.333

3
m(1) = 0.667 m(10) = 0.667 m(3) = 0.667 m(1) = 0.667 m(10) = 0.667 m(3) = 0.667 m(1) = 0.667 m(10) = 0.667 m(3) = 0.667

m(2) = 0.333 m(11) = 0.333 m(4) = 0.333 m(2) = 0.333 m(11) = 0.333 m(4) = 0.333 m(2) = 0.333 m(11) = 0.333 m(4) = 0.333

4
m(1) = 0.667 m(6) = 0.8 m(3) = 0.667 m(1) = 0.667 m(6) = 0.667 m(3) = 0.7 m(1) = 0.667 m(6) = 0.667 m(3) = 0.667

m(2) = 0.333 m(7) = 0.2 m(4) = 0.333 m(2) = 0.333 m(7) = 0.333 m(2) = 0.3 m(2) = 0.333 m(7) = 0.333 m(4) = 0.333

5
m(1) = 0.667 m(3) = 0.667 m(2) = 0.5 m(1) = 0.667 m(3) = 0.667 m(1) = 0.7 m(1) = 0.667 m(3) = 0.6 m(1) = 0.667

m(2) = 0.333 m(4) = 0.333 m(1) = 0.5 m(2) = 0.333 m(4) = 0.333 m(2) = 0.3 m(2) = 0.333 m(2) = 0.4 m(2) = 0.333

6
m(2) = 0.667 m(6) = 0.667 m(5) = 0.667 m(2) = 0.667 m(6) = 0.667 m(5) = 0.667 m(2) = 0.667 m(6) = 0.667 m(5) = 0.667

m(3) = 0.333 m(7) = 0.333 m(6) = 0.333 m(3) = 0.333 m(7) = 0.333 m(6) = 0.333 m(3) = 0.333 m(7) = 0.333 m(6) = 0.333

7
m(1) = 0.667 m(7) = 0.667 m(3) = 0.667 m(1) = 0.667 m(7) = 0.667 m(3) = 0.667 m(1) = 0.667 m(7) = 0.667 m(3) = 0.667

m(2) = 0.333 m(8) = 0.333 m(4) = 0.333 m(2) = 0.333 m(8) = 0.333 m(4) = 0.333 m(2) = 0.333 m(8) = 0.333 m(4) = 0.333

8
m(3) = 0.667 m(5) = 0.6 m(1) = 0.667 m(3) = 0.667 m(5) = 0.8 m(1) = 0.667 m(3) = 0.667 m(5) = 0.8 m(1) = 0.667

m(4) = 0.333 m(6) = 0.4 m(2) = 0.333 m(4) = 0.333 m(6) = 0.2 m(2) = 0.333 m(4) = 0.333 m(7) = 0.2 m(2) = 0.333

9
m(2) = 0.9 m(10) = 0.6 m(4) = 0.667 m(2) = 0.75 m(10) = 0.9 m(4) = 0.667 m(2) = 0.8 m(10) = 0.9 m(4) = 0.667

m(1) = 0.1 m(9) = 0.4 m(5) = 0.333 m(1) = 0.25 m(9) = 0.1 m(5) = 0.333 m(1) = 0.2 m(9) = 0.1 m(5) = 0.333

10
m(1) = 0.667 m(10) = 0.667 m(6) = 0.667 m(1) = 0.667 m(10) = 0.667 m(6) = 0.667 m(1) = 0.667 m(10) = 0.667 m(6) = 0.667

m(2) = 0.333 m(11) = 0.333 m(7) = 0.333 m(2) = 0.333 m(11) = 0.333 m(7) = 0.333 m(2) = 0.333 m(11) = 0.333 m(7) = 0.333

11
m(1) = 0.667 m(10) = 0.667 m(5) = 0.667 m(1) = 0.667 m(10) = 0.667 m(5) = 0.667 m(1) = 0.667 m(10) = 0.667 m(5) = 0.667

m(2) = 0.333 m(11) = 0.333 m(6) = 0.333 m(2) = 0.333 m(11) = 0.333 m(6) = 0.333 m(2) = 0.333 m(11) = 0.333 m(6) = 0.333

12
m(1) = 0.667 m(10) = 0.667 m(6) = 0.6 m(1) = 0.667 m(10) = 0.667 m(5) = 0.8 m(1) = 0.667 m(10) = 0.667 m(6) = 0.7

m(2) = 0.333 m(11) = 0.333 m(5) = 0.4 m(2) = 0.333 m(11) = 0.333 m(4) = 0.2 m(2) = 0.333 m(11) = 0.333 m(5) = 0.3

13
m(1) = 0.667 m(10) = 0.667 m(5) = 0.8 m(1) = 0.667 m(10) = 0.667 m(5) = 0.667 m(1) = 0.667 m(10) = 0.667 m(5) = 0.667

m(2) = 0.333 m(11) = 0.333 m(4) = 0.2 m(2) = 0.333 m(11) = 0.333 m(6) = 0.333 m(2) = 0.333 m(11) = 0.333 m(6) = 0.333

14
m(1) = 0.667 m(10) = 0.667 m(6) = 0.667 m(1) = 0.667 m(10) = 0.667 m(6) = 0.8 m(1) = 0.667 m(10) = 0.667 m(6) = 0.667

m(2) = 0.333 m(11) = 0.333 m(7) = 0.333 m(2) = 0.333 m(11) = 0.333 m(7) = 0.2 m(2) = 0.333 m(11) = 0.333 m(7) = 0.333

15
m(2) = 0.667 m(7) = 0.95 m(3) = 0.667 m(2) = 0.667 m(7) = 0.667 m(3) = 0.667 m(2) = 0.667 m(7) = 0.667 m(3) = 0.7

m(3) = 0.333 m(6) = 0.05 m(4) = 0.333 m(3) = 0.333 m(8) = 0.333 m(4) = 0.333 m(3) = 0.333 m(8) = 0.333 m(4) = 0.3

16
m(2) = 0.9 m(4) = 0.667 m(3) = 0.667 m(2) = 0.75 m(4) = 0.667 m(3) = 0.667 m(2) = 0.8 m(4) = 0.667 m(3) = 0.8

m(1) = 0.1 m(5) = 0.333 m(4) = 0.333 m(1) = 0.25 m(5) = 0.333 m(4) = 0.333 m(1) = 0.2 m(5) = 0.333 m(2) = 0.2

17
m(2) = 0.667 m(5) = 0.9 m(3) = 0.667 m(2) = 0.667 m(5) = 0.9 m(3) = 0.667 m(2) = 0.667 m(5) = 0.6 m(3) = 0.667

m(3) = 0.333 m(6) = 0.1 m(4) = 0.333 m(3) = 0.333 m(6) = 0.1 m(4) = 0.333 m(3) = 0.333 m(6) = 0.4 m(4) = 0.333

Table 2.   Evaluation information by three experts.

Expert BPA

E1 m1
O1(3) = 0.4 m1

O1(4) = 0.6

E2 m1
O2(3) = 0.9 m1

O2(4) = 0.1

E3 m1
O3(3) = 0.8 m1

O3(4) = 0.2
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According to Eq. (4), the new BPAs constructed from the data in literature60 is shown in Table 1. As for the risk 
factor O of the first failure mode, the results are shown in Table 2. By using Eq. (8), we can get the negation of 
the BPAs. The results are shown in Table 3.

Then, we start to calculate the evidence distance between 3 experts. By using Eqs. (11) and (12), we get the 
evidence distance. Next we construct the distance matrix using Eq. (19):

The smaller the distance between the two evidences, the higher their similarity. By using Eq. (20) we get the 
similarity matrix between 3 experts:

The support degree reflects the degree of mutual support between evidence. We get the support degree by using 
the similarity matrix and Eq. (21), the results are shown in Table 4. Then we use the Eq. (22) to normalize the 
results to get the credibility, as shown in the Table 5. The more evidence is supported by other evidence, the 
more credible the evidence is.

Then, we use credibility as the weight of BPAs to calculate the m̃1
O . The specific calculation process of m1

O(3) 
is shown as follows:

Next we use Murphy combination rule to get the final mass function, as shown in Table 6. Use Eq. (24) to get the 
average value of O risk factor. The specific calculation process is shown as follows:

d =

(

0 0.5 0.4

0.5 0 0.1

0.4 0.1 0

)

Sim =

(

1 0.5 0.6

0.5 1 0.9

0.6 0.9 1

)

m1
O(3) =Crd(m1

O1)×m1
O1(3)+ Crd(m1

O2)×m1
O2(3)+ Crd(m1

O3)×m1
O3(3)

=0.275× 0.4+ 0.350× 0.9+ 0.375× 0.8

=0.725

Table 3.   The negation of BPAs.

Expert BPA

E1 m̄1
O1(3) = 0.6 m̄1

O1(4) = 0.4

E2 m̄1
O2(3) = 0.1 m̄1

O2(4) = 0.9

E3 m̄1
O3(3) = 0.2 m̄1

O3(4) = 0.8

Table 4.   The support degree of evidence.

Expert E1 E2 E3

Support degree 1.1 1.4 1.5

Table 5.   The credibility of evidence.

Expert E1 E2 E3

Credibility 0.275 0.350 0.375

Table 6.   BPAs based on Murphy combination rule.

BPA Value

m̃1
O(3) 0.72

m̃1
O(4) 0.28
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In the same way, we can find out the average value of S and D risk factor. We put the results in Table 7.
Finally, we can get the improved RPN value:

Discussion
After the same calculation process for 17 failure modes, using Eq. (25) we get the RPN value of each fail-
ure mode. The results ( RPNavg ) are listed in the Table 8, as well as the results of some other methods. 
AMWRPN48 uses the method of Ambiguity Measurement to calculate the weight of experts. MVRPN60 aver-
ages the obtained RPN values. Improved MVRPN30 further improves the combination rule of MVRPN60. 
As described in the literature, FM1 ∼ FM8 describe the failure mode of compressor rotor blades and 
FM9 ∼ FM17 describe the failure mode of turbo rotor blades. Experimental results show that, for com-
pressor rotor blades: FM2 ≻ FM6 ≻ FM1 ≻ FM3 ≻ FM7 ≻ FM8 ≻ FM4 ≻ FM5 , for turbo rotor blades: 
FM9 ≻ FM10 ≻ FM14 ≻ FM12 ≻ FM11 ≻ FM13 ≻ FM15 ≻ FM17 ≻ FM16 , ≻ indicates that the previous 
item has a higher priority. For compressor rotor blades and turbo rotor blades respectively, FM2 and FM9 have 
the highest priority, indicates that more resources should be allocated to it. In Fig. 3, we can know that our rank-
ing result is nearly the same with others. In Fig. 4, we can find that the results calculated by different methods are 
slightly different, but this is acceptable. Because the calculation results of several groups in FM9− FM17 are very 
close, this brings some impact to our sorting results. The experimental results verify the rationality of our method.

Conclusions
In the frame of D–S evidence theory, this paper proposes an improved failure mode and effects analysis method 
based on triangular fuzzy numbers, negation of BPAs and evidence distance. Firstly, the new BPAs was con-
structed by fuzzy modeling of expert evaluation results, then calculate the negation of BPAs, next BPAs weight 
was calculated by evidence distance, and finally, a new RPN value was calculated by fusion of Murphy combina-
tion rule. In short, the method considers how to fuse conflicting evidence from experts and also considers the 

O1
avg =3× m̃1

O(3)+ 4× m̃1
O(4)

=3× 0.72+ 4× 0.28

=3.12

RPN1
avg = O1

avg × S1avg × D1
avg = 45.81.

Table 7.   The average value of 3 risk factors.

Risk factor Value

O1
avg 3.12

S1avg 7.25

D1
avg 2.03

Table 8.   RPN value based on different improved methods.

FMEA AMWRPN48 MVRPN60 Improved MVRPN30 RPNavg

FM1 5.1551 42.56 42.56 45.81

FM2 5.3171 64.00 64.05 70.27

FM3 3.8634 30.00 30.00 34.95

FM4 3.3302 18.00 17.97 20.61

FM5 1.6529 4.17 3.14 4.00

FM6 5.0964 60.00 60.00 65.94

FM7 3.3567 21.00 21.00 24.58

FM8 3.2975 15.00 15.00 17.42

FM9 8.3797 78.92 79.57 81.65

FM10 5.0964 60.00 60.00 68.66

FM11 4.7399 50.00 50.00 57.42

FM12 5.0973 50.00 50.00 63.13

FM13 4.9447 50.00 50.00 56.85

FM14 5.4187 60.00 60.04 68.13

FM15 5.9509 42.00 42.09 46.22

FM16 3.756 23.88 23.86 25.02

FM17 5.0554 30.05 30.05 32.92
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relative weight inconsistency caused by the uncertainty of experts’ evaluation. We apply the proposed method 
to the failure mode analysis of compressor rotor blades and turbo rotor blades. The experimental results verify 
the effectiveness and rationality of this method. In the future research, we can broaden our approach to other 
fields. Moreover, we can consider the relative importance of each risk factor to enrich our study.

Data availability
All data generated or analysed during this study are included in this published article.
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