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Quasinormal modes and shadow 
of noncommutative black hole
J. A. V. Campos1, M. A. Anacleto2, F. A. Brito1,2* & E. Passos2

In this paper we investigate quasinormal modes (QNM) for a scalar field around a noncommutative 
Schwarzschild black hole. We verify the effect of noncommutativity on quasinormal frequencies by 
applying two procedures widely used in the literature. The first is the Wentzel–Kramers–Brillouin 
(WKB) approximation up to sixth order. In the second case we use the continuous fraction method 
developed by Leaver. Besides, we also show that due to noncommutativity, the shadow radius is 
reduced when we increase the noncommutative parameter. In addition, we find that the shadow 
radius is nonzero even at the zero mass limit for finite noncommutative parameter.

Initial studies for black hole perturbations were done by Regge and  Wheeler1 and  Zerilli2 for Schwarzschild 
geometry, as well as for the Kerr black  hole3. In 1970  Vishveshwara4 identified a type of disturbance subject to 
special conditions such as outgoing waves in the spatial infinity and ingoing waves in the vicinity of the event 
horizon. These disturbances were called quasinormal modes valid only for a group of complex  frequencies5. 
These quasinormal frequencies present a real part that provides the oscillation frequency while the imaginary 
part determines the damping rate of the modes. The dominant quasinormal modes can be seen in gravitational 
wave signals and in this case, the emitted waves are related to many physical processes such as astrophysical 
phenomena involving the evolution of binary systems and stellar oscillations or other highly dense objects in 
the early universe. In this way these quasinormal modes have been observed experimentally by LIGO/VIRGO6,7.

The analysis of quasinormal modes has been widely explored in the  literature8–18 by using different mecha-
nisms, such as the WKB approximation and numerical methods. The first works using the WKB approximation 
to find quasinormal modes were done by Schutz and  Will19. Improvements in the method were made by Iyer 
and Will by adding corrections up to third  order20, and so the results for Schwarzschild black hole are very close 
to those obtained by the numerical method of  Leaver21 in l ≥ 4 regime. Aiming at a new improvement in the 
WKB approach, studies made by  Konoplya22 extended the method up to sixth order leading to more accurate 
results. Currently, we can find extensions of the WKB approximation up to thirteenth  order23. As aforementioned, 
the numerical method is another way to obtain quasinormal frequency modes. Therefore, the first numerical 
approach to calculate quasinormal frequencies was described by Leaver, and the applied mathematical procedure 
is called a continuous  fraction24.  In21, Leaver has obtained quasinormal modes for Schwarzschild and Kerr black 
holes and also for Reissner–Nordström black hole  in25. Several  works26–29 have applied this numerical method 
that has presented a good precision.

In addition to quasinormal modes, in recent years several authors have devoted themselves to study the 
shadow of the black  hole30–34. This shadow requires information about the geometry around the black hole, which 
makes its study a very important way to understand the properties near the event horizon. Moreover with the 
advancement and improvements of the experimental techniques allowed us the first image of a supermassive 
black hole in the center of the M87 galaxy by the Event Horizon  Telescope35,36 by using the properties of the 
shadow. These experimental results have been studied by several  authors37–39 stimulated by the possibility of 
understanding phenomena in the regime close to the event horizon.

In this work we will use the shadow ray to better understand the proximity of the noncommutative Schwar-
zschild black hole horizon. The noncommutative gravity has been extensively investigated, particularly in black 
hole physics, mainly due to the possibility of better understanding the final stage of the black hole—see40–43 for 
further details. We know that there is a relationship between quasinormal modes and of the black hole shadow 
and that several investigations contributed to this understanding. One of the first studies that certainly served 
as a basis for structuring this relationship was made by  Mashhoon44, which describes an alternative method to 
calculate quasinormal modes at the eikonal limit. The most detailed geodesics study is shown in Cardoso et al.45, 
which shows that the real part of the quasinormal modes is related to the angular velocity of the null circular 
orbit and the imaginary part is associated with the Lyapunov exponent. Stefanov et al.46 in the eikonal regime 
established a connection between black hole quasinormal modes and lensing in the strong deflection limit. 
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Currently, important results have been obtained at the eikonal limit, such as the relation between the real part 
of quasinormal frequencies and the black hole shadow  radius47–49.

Studies related to quasinormal modes of noncommutative black holes have been extensively carried out by 
several  authors50–55. In this paper, we aim to determine the quasinormal modes of noncommutative Schwarzschild 
black hole via Lorentzian mass distribution in order to verify the changes caused by the noncommutative param-
eter. Moreover, we show that contrary to the case of the Schwarzschild black hole, the shadow radius presents a 
non-zero result at the zero mass limit. Therefore, at this limit, the shadow radius is proportional to a minimum 
mass. This result has not been obtained analytically by using the Gaussian distribution. Thus, considering the 
Lorentzian distribution, some results in an analytical way are more easily explored than in the Gaussian case 
where this is done numerically. Furthermore,  in56,57, we have also found a similar result when investigating the 
zero mass limit in the black hole absorption process. In that case, we have obtained a non-zero absorption at the 
zero mass limit. By considering a Lorentzian mass distribution to introduce the noncommutativity,  in58, we have 
explored the process of scattering and absorption of scalar waves through a noncommutative Schwarzschild black 
hole. Moreover,  in59–74, the thermodynamics of the BTZ and Schwarzschild black holes in the noncommutative 
background has been investigated by using the WKB approach in tunneling  formalism75–77. An advantage of using 
the Lorentzian distribution in analytical calculus has been investigated  in59  and60 where logarithmic corrections 
for entropy and the condition for black hole remnant formation were obtained.

We organize the paper as follows: in section “Noncommutative black hole with Lorentzian smeared mass dis-
tribution” we implemented the effect of noncommutativity in the Schwarzschild black hole metric by a Lorentzian 
smeared mass distribution, and we analyze the results for quasinormal frequencies. In section “Null geodesic 
and Shadow of a noncommutative black hole” we apply the null geodetic method to determine the shadow of 
the noncommutative black hole. In section “Conclusions” we make our final considerations.

Noncommutative black hole with Lorentzian smeared mass distribution
On this section we begin by considering a Lorentzian  distribution43,78 given by

where θ is the noncommutative parameter of dimension length2 and M is the total mass diffused throughout the 
region of linear size 

√
θ  . Thus, the smeared mass distribution function  becomes58

Hence, the line element of the Schwarzschild black hole in the noncommutative background is now given by

with

where

which represent the radius of the event horizon and the Cauchy horizon, respectively.
The next step we consider the case of the massless scalar field described by the Klein–Gordon equation in 
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Thus, we apply the separation of variables method in the above equation by using the following Ansatz

where ω is the frequency and Ylm(ϑ ,φ) are the spherical harmonics.
Now, we can obtain a radial equation for Rωl(r):

We can reduce the radial equation (12) into a Schrödinger like equation by introducing a new coordinate 
(called tortoise coordinate) given by dr∗ = f (r)−1dr and

so that the radial equation becomes

where

In the following sections, we will obtain the quasinormal frequencies by two methods that are widely used in 
the literature. The first uses a sixth order WKB approximation, and the second method introduced by Leaver and 
improved by  Nollert82, consists of using the continuous fraction method to find numerically quasinormal modes.

WKB approximation. Quasinormal modes correspond to solutions of the wave equation (14) that satisfy 
the conditions of the purely outgoing waves at infinity and purely incoming waves at the event horizon, i.e.,

In this section we will use the WKB approximation to find the quasinormal modes. The first works using the 
WKB approximation to evaluate the quasinormal modes were done by Schutz and  Will19. Improvements in the 
method were made using corrections up to third  order20,79 and up to sixth order by  Konoplya22. The quasinormal 
modes are obtained by using the sixth order corrections for the WKB approximation as follows

where �j are the correction terms of the model. We have that V̄eff  is the maximum effective potential at point r̄∗ 
and (′′) refers to the second derivative with respect to the tortoise coordinate. We can obtain the values of r̄∗ by 
making V̄ ′

eff = 0 . In Fig. 1 we show the curves of the effective potential for l = 1, 2 and � = 0.0, 0.05, 0.10, 0.12 , 
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Figure 1.  The effective potential Veff  as function of the tortoise coordinate r∗ (a) l = 1 and (b) l = 2.
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Figure 2.  Transmission coefficients for three multipole l = 1, 2, 3 (from left to right) and � = 0.05, 0.12 . The 
approximation between the two methods is very good.

Table 1.  QN frequencies for l = 1.

�

ω0 ω1 ω2

6th order WKB Numerical 6th order WKB Numerical 6th order WKB Numerical

0.00 0.292910–0.097762i 0.292936–
0.0976600i 0.264471–0.306518i 0.264449–0.306257i 0.231014–0.542166i 0.229539–0.540133i

0.05 0.316239–0.099311i 0.316243–
0.0992441i 0.290671–0.309586i 0.290591–0.309431i 0.260297–0.543374i 0.258427–0.542162i

0.10 0.351481–0.097397i 0.351435–
0.0973776i 0.330103–0.300074i 0.329892–0.300209i 0.300773–0.519039i 0.299190–0.519345i

0.12 0.371967–0.091934i 0.371932–
0.0919646i 0.346286–0.282086i 0.346358–0.282153i 0.300083–0.491675i 0.301082–0.491385i

Table 2.  QN frequencies for l = 2.

�

ω0 ω1 ω2

6th order WKB Numerical 6th order WKB Numerical 6th order WKB Numerical

0.00 0.483642–0.096766i 0.483644–
0.0967588i 0.463847–0.295627i 0.463851–0.295604i 0.430386–0.508700i 0.430544–0.508558i

0.05 0.521842–0.098436i 0.521844–
0.0984288i 0.504088–0.300022i 0.504087–0.299997i 0.474038–0.514099i 0.474067–0.513965i

0.10 0.580028–0.096808i 0.580028–
0.0968027i 0.565520–0.293676i 0.565511–0.293660i 0.540100–0.499152i 0.540039–0.499083i

0.12 0.615658–0.091534i 0.615659–
0.0915307i 0.599809–0.276911i 0.599817–0.276896i 0.569259–0.469194i 0.569307–0.469133i

Table 3.  QN frequencies for l = 3.

�

ω0 ω1 ω2

6th order WKB Numerical 6th order WKB Numerical 6th order WKB Numerical

0.00 0.675366–0.096501i 0.675366–
0.0964996i 0.660671–0.292288i 0.660671–0.292285i 0.633591–0.496011i 0.633626–0.496008i

0.05 0.728594–0.098197i 0.728594–
0.0981957i 0.715414–0.297060i 0.715414–0.297056i 0.691124–0.502924i 0.691137–0.502911i

0.10 0.809869–0.096642i 0.809869–
0.0966413i 0.799161–0.291636i 0.799159–0.291633i 0.779124–0.491455i 0.779117–0.491442i

0.12 0.860294–0.091410i 0.860294–
0.0914089i 0.848871–0.275415i 0.848871–0.275412i 0.826463–0.462957i 0.826463–0.462950i



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8516  | https://doi.org/10.1038/s41598-022-12343-w

www.nature.com/scientificreports/

where we define � =
√
θ/(M

√
π) for M = 1 . In the Tables 1, 2 and 3 we present the tabulated quasinormal 

frequencies using sixth order WKB method.
Another possibility is to study scattering by using the WKB method done  in20. In order to develop this inves-

tigation, we use the boundary conditions for Eq. (14) in the form:

Notice that as we want to obtain the reflection and transmission coefficients, as done for tunneling in quantum 
mechanics, we need the condition Aint  = 0 . The quantity 

(

ω2 − Veff

)

 in (14) is assumed to be purely real, and 
with these imposed conditions we can find

where ω is purely real and �j(K) are coefficients that depend on the effective potential and K is a purely imaginary 
quantity. This way of studying scattering by using the WKB approximation can be also found  in23,80. Thus, using 
the relationship between K and the reflection and transmission coefficients obtained  in20 we get the following:

Now to find the coefficients, we just calculate the value K that can be obtained by solving the Eq. (19). This 
method has a good approximation for l > 0 as we can see in Fig. 2, where we have a comparison between the 
numerical results and the WKB approximation for the transmission coefficient for l = 1, 2, 3 and � = 0.05, 0.12 . 
Notice that the curves obtained by the WKB approximation are very close to those obtained by the numerical 
method used in the  paper58, showing that the method presents excellent results. The sixth-order WKB approxima-
tion does not show good results for l = 0 , improving only when we take large ω . This problem is also mentioned 
 in23.

Leaver’s continued fraction. The numerical method is another way to obtain the quasinormal frequency, 
and this procedure has been described by  Leaver21,25, and which is also found in other  works26,27 showing that it 
is a method with good precision.

We start analyzing the radial equation (12) which is subject to boundary conditions at infinity r → ∞ and 
near the event horizon r → r+ , such that one obtains the asymptotic solutions

We can obtain a solution that has the desired behavior on the horizon ( r = r+ ), and that can be written in the 
form

By replacing the solution (23) in the Eq. (12), we obtain the recurrence relation

and

The recurrence relation coefficients αk , βk and γk are simple functions of k and the parameters ω , l and the 
radius r− and r+:

See that the solution (23) applied directly to the radial equation returns a three-term recurrence relation 
which makes it easier to use continued fractions. This is because our metric for a non-commutative black hole 
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results in a generalized spheroidal wave equation whose solutions are connected by three-term recurrence rela-
tions—see “Appendix” for further details. However, the Leaver’s method is not necessarily limited to recurrence 
relations of this type as shown  in25, where it was considered an equation that describes odd-parity perturba-
tions of a charged black hole, which equation has series solutions whose coefficients are connected by four-term 
recurrence relations.

The boundary condition at infinity will be satisfied for quasinormal frequency values ω = ωn , so that the 
series in (23) is absolutely convergent. Hence, we have a recurrence relation with three terms to determine the 
coefficient ak , and we can write in terms of a continuous  fraction81

which can also be found as follows

We can obtain the characteristic equation for quasinormal frequencies by assigning k = 0 in (30) and com-
paring with reason a1/a0 = −β0/α0 obtained from (24),

With the equation above, we can obtain the quasinormal frequencies ωn , by just calculating its roots numeri-
cally. However, the Eq. (31) is more used to find the fundamental frequency in the case of the more stable root, 
and another way of finding the modes is to invert this equation to a large number of k as follows

To complement the analysis, we will check the behavior for very large k, as done  in82. Now, we have to reor-
ganize the Eq. (25) dividing α , β and γ by ak to obtain

We can see that, limk→∞(ak+1/ak) ≃ 1 , and we can get a more complete expression by expanding ak+1/ak 
in power series in terms of 

√
k,

By considering the series up to the third term and admitting C0 = 1 we have

Now, to obtain the values of C1 and C2 , we replace these two expressions above into Eq. (33) in the very large 
k regime by making the multiplications and restricting up to terms of the order k−3/2 to get

such that we find the following:

Now we have,

Here, we see that at the limit r− → 0 and r+ → 1 , we get the result for the Schwarzschild case initially found 
by Leaver.
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Results. In the Tables 1, 2 and 3, we present some results for the quasinormal modes computed using the 
sixth-order WKB approximation, and the Leaver’s continues fraction method described in the previous section 
by admitting M = 1 for various values of � =

√
θ/π  , l and n. We see that the results between the methods 

approach when l > 1 , this is, due to the instability of the WKB method for small multipole numbers mainly close 
to zero this instability can also be seen in the graphs of Fig. 3. An important detail is in the sign of the imaginary 
part that is always negative when the frequency is associated with the scalar field. A justification for this is due to 
the exponential drop of the quasinormal modes over time by losing energy in the form of scalar waves.

We can see the influence in the quasinormal modes for the noncommutative case by admitting values for 
� where � = 0 returns to the Schwarzschild case. With the increase of the non-commutative parameter � , we 
have an increase in the real part of the quasinormal frequency, while the imaginary part begins to grow and then 
decreases. Another way of visualizing the effects of the noncommutative parameter is through the graphs of Fig. 3, 
these plots were obtained using the WKB method. We have quasinormal modes where in the plot we depicted 
the real part (top) and the imaginary part (bottom). The modes are based on n for the following multipoles 
numbers l = 1, 2, 3 and 4, for which we see that the results become more linear with the results varying � and 
l = 3 and 4. Thus, in Fig. 3 we observe that, by varying l and the parameter θ , the imaginary part of the frequency 
does not cross the horizontal axis or change sign, thus indicating that the black hole remains stable due to scalar 
perturbation. In addition, it is interesting to make a plot for the complex plane as in Fig. 4 where we consider 
three families of multipoles l = 1, 2, 3 and varying � as follows 0 (black), 0.05 (red), 0.10 (blue), 0.12 (green). 
The left panel was obtained by the WKB approximation and the right panel by the continuous fraction method 
(numerical). We can see that the frequency curves incline more closely when we use the WKB approximation. 
We also see that for the extreme case � = 0.12 the curve tilts more to the left in both methods.

Null geodesic and Shadow of a noncommutative black hole
We know that in the vicinity of a black hole all the photons are absorbed so that a distant observer looking at 
the black hole, in absence of any other source, will see a spot created by this absorption, and this spot is usually 
called the shadow of the black hole. These shadows have been studied long ago by  Synge83 and  Luminet84 who 
started studies for Schwarzschild black hole while Kerr black holes were studied by  Bardeen85.

As these shadows correspond to the apparent shape of the photon capture orbits, the space-time metric itself 
is enough to determine them and thereby better understand the geometry of the near horizon. One method of 

Figure 3.  Real (top) and imaginary (bottom) parts of the quasinormal frequencies as function of the n. We see 
that for l = 1 the frequency curves are very dispersed with the increase of n, while for l = 3, 4 the curves of the 
real part of the frequency are more constant.
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determining the apparent shape of the black hole is through the shadow boundary that can be studied by the 
equations of null geodesics. Similar studies have been done in different  contexts87–92.

Null geodesic. We can find the geodesics from Eq. (7) by taking a Lagrangian in the form

Thus, we have

where the “ · ” is the derivative with respect to an affine parameter.
We are interested in the path of a ray of light in the described metric, which is spherically symmetrical, so if 

we analyze in a plane, any ray of light that begins with a certain angle ϑ must remain with the same angle. We 
will then consider an equatorial plane by setting the angle ϑ to π/2.

Thus, two equations are enough to describe the movement of a beam of light. We can put together a system 
with these equations that give rise to two geodesic motion constants E and L, which correspond to energy and 
angular momentum respectively:

Now, as our goal is to study the null geodesics we have to gµν ẋµẋν = 0 , and using the Eq. (43) we can write

Introducing a new variable u = 1/r we can write the orbit equation as follows

where b = L/E is the impact parameter defined as the perpendicular distance (measured at infinity) between the 
geodesic and a parallel line that passes through the origin. So differentiating (45) we have,

By solving the Eqs. (45) and (46) numerically, we can obtain the behavior of the geodesic lines for different 
values of the impact parameter b. In the Fig. 5, we verify the change of the geodesic lines for different impact 
parameters b and also by varying the values of the noncommutative parameter. In the figures, we have a black 
disk that represents the limit of the event horizon, the internal dotted circle is the radius for the photon sphere 
(critical radius), and the external dashed circle is the critical impact parameter (shadow). Hence, we see that the 
noncommutative parameter decreases the effect of the black hole on the light beams. For a similar effect see  also93.

(41)L ≡
1

2
gµν ẋ

µẋν .

(42)2L = f (r)ṫ2 −
ṙ2

f (r)
− r2

(

ϑ̇2 + sin2 ϑφ̇2
)

,

(43)E = f (r)ṫ, L = r2φ̇.

(44)ṙ2 + f (r)
L2

r2
= E2.

(45)du

dφ
=

√

1

b2
− u2 + 2Mu3 −

8M
√
θ

√
π

u4,

(46)
d2u

dφ2
= −u+ 3Mu2 −

16M
√
θ

√
π

u3.

Figure 4.  Complex plane of the QNMs. In plot (a) we have the results obtained by the WKB approximation, 
while in (b) we use continuous fraction. The markers denote the multipole number as: l = 1 (circle), l = 2 
(square) and l = 3 (diamond), while the colors denote the value of the noncommutative parameter � = 0 
(black), � = 0.05 (red), � = 0.10 (blue) and � = 0.12 (green).
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Critical orbit and shadows. It is known that the shadow of the black hole is directly related to the impact 
parameter for the photon orbit, as we will see below. So to determine the shadow limit, we will start by studying 
the effective potential that satisfies the equation of the null geodesic as follows

where using (44), we have

In this case, we can obtain a critical radius or critical circular orbit for a photon rc and critical impact param-

eter bc , by using the following conditions: Veff (rc) = 0 and 
dVeff (rc)

dr
= 0 . So we find

Let us now compute the size of the black hole shadow that can be expressed via celestial coordinates as 
 follows85

where (ro,ϑo) is the observer position at infinity.
As our study is restricted to the equatorial plane, the radius that delimits the size of the shadow is equivalent 

to the critical impact parameter, and so we have

where

In a semiclassical description of the  scattering86, the impact parameter is associated with each partial wave 
b = (l + 1/2)/ω in the large l regime. As shown  in45, the real part of the quasinormal frequencies at the eikonal 

(47)ṙ2 + Veff (r) = 0,

(48)Veff (r) = f (r)
L2

r2
− E2.
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3

4
(r+ + r−)+

3
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32r+r−

9
,

(50)=
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2
+
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2

√

1−
64
√
θ

9M
√
π
,
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√
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=

r2c√
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.
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[
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dφ

dr

∣

∣

∣

ϑ=ϑo

]

,
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[
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∣

∣
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]

,

(54)Rs ≡
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α2 + β2 = bc ,

(55)Rs =
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Figure 5.  Geodesics surrounding a noncommutative black hole. The impact parameters defined as 
b = 3.6, 4.1, 4.7, 5.2, 5.9 and 6.5 are the same for all graphs, assuming M = 1 . We can clearly see the influence of 
the noncommutative parameter on the geodesic curves from (a) � = 0 (Schwarzschild case) to (d) � = 0.12.
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limit corresponds to the angular velocity for the last null circular orbit �c and the imaginary part is associated 
with the Lyapunov exponent � which determines the unstable timescale of the orbit

being the angular velocity given by

This suggests a relationship between quasinormal frequencies and shadow radius as done by  Jusufi47 at the 
eikonal limit, showing that the real part of quasinormal modes is inversely proportional to the radius Rs as follows

Note that this expression is valid only for large values of l in most of the cases although fails for Einstein–Love-
lock theory as shown by Konoplya and  Stuchlik94. We can see in Fig. 3 that the higher the value of l the smaller 
the contribution of n. Thus by using the results obtained by the WKB approximation we compare with the 
shadow radius Rs.

In the Table 4 we see that by increasing the value of l, the results between the real part of the quasinormal 
frequencies and the black hole shadow radius approach each other. Now, we can express Rs by considering θ 
small, and so we get the following approximate expression

Note that for θ = 0 , we have the shadow radius for the Schwarzschild black hole case. Therefore, we notice that 
the shadow radius is reduced when we change the parameter θ . In Fig. 6, we see the circles that represent the 
shadow boundaries of the noncommutative black hole for different values of � . Note that we have a reduction 

(56)ωQNM = �cl − i

(

n+
1

2

)

|�|,

(57)�c =
φ̇

ṫ
=

f (rc)bc

r2c
=

1

bc

(58)Re(ω) = lim
l>>1

l

Rs
.

(59)Rs ≈ 3
√
3M − 4

√
3

√

θ

π
+

16

3
√
3M

θ

π
+ · · · .

Table 4.  The real part of quasinormal frequencies for large l compared with shadow radius Rs.

M = 1 Re(ω)/(l + 1/2) (Rs)
−1

� l = 100 l = 1500 –

0.00 0.192450707 0.192450092 0.192450090

0.05 0.207583654 0.207582949 0.207582946

0.10 0.230750607 0.230749836 0.230749832

0.12 0.245314933 0.245314347 0.245314347

Figure 6.  We see the influence of non-commutativity in the shadow admitting M = 1 and � = 0.0, 0.05, 0.10 
and 0.12.
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in the circles when we vary � . Furthermore, taking M → 0 in (55), we obtain a non-zero result for the shadow 
radius, that is

where Mmin =
√
θ/π  is the minimal  mass60. Therefore, at the limit of M → 0 the shadow radius is proportional 

to the minimum mass and the black hole becomes a black hole remnant. We have shown this behavior in Fig. 7. 
In Fig. 7, we show the behavior of the shadow radius by keeping � fixed and assuming small values of M. In Fig. 8, 
We show the behavior of the shadow radius by keeping M fixed and assuming small values of �.

Conclusions
In summary, in this work, we investigate the quasinormal frequencies for a noncommutative Schwarzschild 
black hole by two different methods in order to investigate and compare the results. Using the sixth-order 
WKB approximation and Leaver’s continuous fraction, we found that there is a small difference between the 
quasinormal frequencies obtained by each method mainly for small multipoles. The effects of the noncommuta-
tive parameter � cause an increase in the real part of the quasinormal frequencies, while the magnitude of the 
imaginary part begins to grow and then decreases. For the black hole shadow we use the results obtained by 

(60)Rs ≈ 8Mmin,

Figure 7.  We see the influence of non-commutativity in the shadow admitting (a) � = 0.01 and 
M = 1.0, 0.6, 0.4, 0.2, 0.09 . (b) � = 0.005 and M = 0.1, 0.09, 0.08, 0.06, 0.04.

Figure 8.  We see the influence of non-commutativity in the shadow admitting (a) M = 0.03 and 
� = 0.000, 0.001, 0.002, 0.003 . (b) M = 0.05 and � = 0.000, 0.001, 0.002, 0.003.
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the WKB method to verify that in large l regimes the real part of quasinormal modes is inversely proportional 
to the shadow radius. In addition, we have shown that the shadow radius is non-zero at the zero mass limit. 
Therefore being proportional to a minimum mass. However for θ = 0 , we recover the shadow radius for the 
Schwarzschild black hole case. Finally, we also notice that the shadow radius is reduced when we increase the 
noncommutative parameter.

Appendix
Here we will show that the differential equation (12) can be written in the form of a generalized spheroidal wave 
equation, as done by Leaver for the Schwarzschild and Kerr cases  in95. The generalized spheroidal wave equation 
has the following form

The radial equation (12) can be rewritten as follows

In this appendix, by considering 2M = 1 , for simplicity, we have r± = (1± b)/2 , where b =
√

1− 16
√
θ/π  . 

Firstly, we have to find a suitable transformation, by using the following solution

where α and β are parameters to be determined. Furthermore, let us assume that x = r − r− , with x → 0 as 
r → r− and x → b as r → r+ . Now applying these changes we have that the Eq. (62) can be written in the form

where

In order to have an equation of the form (61) the first two terms of (65) must be zero, that is, 
(b− 1)4ω2 + 16b2α2 = 0 and (1+ b)4ω2 + 16b2β2 = 0 , so we have the following values for α and β

Thus, for α = −i(b− 1)2ω/4b = −ir2−ω/b and β = −i(b+ 1)2ω/4b = −ir2+ω/b , the Eq. (64) is of the form

This implies that the Eq. (62) can be transformed into a generalized spheroidal equation. By comparing it 
with (61) we have:

Thus, by using Jeffe’s regular solution to y(x) as  in95 (p. 12) for a generalized spheroidal wave equation we have
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We can also compare the solution (63) with the values of α and β to the solution (71), by rewriting it in the 
form

This is precisely our solution (23), for 2M = 1 . Thus, just as we have three coefficients in equation (41)  in95, we 
can also get the three coefficients for the recurrence relation of the Eq. (68). So by using the solution (71) we have

where

These coefficients are the same as those found in (26), (27) and (28), for 2M = 1.
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