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Prediction and variability 
mapping of some physicochemical 
characteristics of calcareous topsoil 
in an arid region using Vis–SWNIR 
and NIR spectroscopy
Samer Alomar1, Seyed Ahmad Mireei1*, Abbas Hemmat1, Amin Allah Masoumi1 & 
Hossein Khademi2

Site-specific management of soils needs continuous measurements of soil physicochemical 
characteristics. In this study, Vis–NIR spectroscopy with two spectroscopic instruments, including 
charge-coupled device (CCD) and indium-gallium-arsenide (InGaAs) spectrometers, was adopted to 
estimate some physicochemical characteristics of a calcareous topsoil in an arid climate. Partial least 
squares (PLS) as linear and artificial neural networks (ANN) as nonlinear multivariate techniques 
were utilized to enhance the accuracy of prediction. The best predictive models were then used to 
extract the variability maps of physicochemical characteristics. Diffuse reflectance spectra of 151 
samples, collected from the calcareous topsoil, were acquired in the visible and short-wavelength 
near-infrared (Vis–SWNIR) (400–1100 nm) and near-infrared (NIR) (950–1650 nm) spectral ranges 
using CCD and InGaAs spectrometers, respectively. The results showed that NIR spectral data of the 
InGaAs spectrometer was necessary to reach the best predictions for all selected soil properties. The 
best predictive models based on the optimum spectral range could allow us the excellent predictions 
of sand (RPD = 2.63) and silt (RPD = 2.52), and very good estimations of clay (RPD = 2.35) and electrical 
conductivity (EC) (RPD = 2.224) by ANN and very good prediction of calcium carbonate equivalent 
(CCE) (RPD = 2.01) by PLS. The CCD device, however, resulted in acceptable predictions of sand 
(RPD = 2.13, very good) and clay (RPD = 1.66, fair) by ANN, and silt (RPD = 1.78, good), EC (RPD = 1.84, 
good) and CCE (RPD = 1.67, fair) by PLS. Similar variability was attained between pairs of predicted 
maps by best models and reference-measured maps for all studied soil properties. For clay, sand, 
silt, and CCE, the Vis/SWNIR-predicted and equivalent reference-measured maps had acceptable 
similarities, indicating the potential application of low-cost CCD spectrometers for prediction and the 
variability mapping of these parameters.

Soil is one of the major natural resources that has evolved through weathering processes (climatic, geologic, and 
biological activities) on parent material. The soil is characterized by a variety of spatial properties. Site-specific 
management practices provide satisfactory environmental and economic impacts on agricultural production. 
However, these practices need to continuously measure and recognize the temporal and spatial variations of 
physicochemical soil properties. Previously, these properties were determined using conventional methods that 
require collecting a sufficient number of soil samples to include all the spatial variations in the farm, a lot of work, 
and expensive chemical materials. Therefore, these methods cannot be applied in site-specific measurements 
and variable-rate application of inputs in farms1–3.

In recent years, researchers have tended to discover an alternative method for conventional laboratory meas-
urements of physicochemical soil properties. Visible and near-infrared (Vis–NIR) spectroscopy has been adopted 
as one of these alternative methods. This method can rapidly conduct the soil analysis and hence it can be used 
for managing the spatial variation of the soil properties with high-resolution1,4. Vis–NIR spectroscopy is divided 
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into field- and lab-based spectroscopy. In lab-based spectroscopy, conditions of spectroscopic measurements and 
samples are controlled by removing heterogeneous soil structure and illumination change. While, field-based 
spectroscopy is influenced by many factors such as variable-size soil aggregates, raw organic residues, and het-
erogeneous soil surfaces, and changes in soil moisture, distance between soil and probe sensor, and illumination. 
Therefore, the results obtained from the field-based spectroscopy are usually less accurate than those obtained 
from the lab-based spectroscopy5,6.

Different physicochemical properties of soil have been successfully estimated by Vis–NIR spectroscopy. These 
include clay, sand, silt, and electrical conductivity (EC) as well as nutritional soil properties such as organic 
matter (OM), total nitrogen (TN), available potassium (K-avl), and available phosphorus (P-avl)5,7,8. Table 1 sum-
marizes a review of some recent studies that used lab-based Vis–NIR spectroscopy for estimating the selected 
physicochemical properties of different soil types. There is a growing demand to quantitatively determine the 
quality and spatial variability of calcareous soils in arid climates to recognize and improve soil condition and 
crop productivity and to use variable-rate inputs application. As shown in Table 1, to the best of our knowledge, 
no studies have so far been conducted to estimate physicochemical properties of calcareous soils in arid climates 
using lab-based Vis–NIR spectroscopy. Furthermore, as shown in Table 1, most researchers have preferred to use 
the full spectroscopic range of the NIR region, i.e., 780–2500 nm. Economically, full-range and even part-range 
NIR spectrometers with the spectral range of 900–1700 nm, are remarkably more expensive than the visible and 
short-wavelength near-infrared (Vis–SWNIR) spectrometers with a more narrow spectral range of 400–1100 nm. 
Among recent literature, no comparison has been made on the cost and the prediction accuracy of selected soil 
properties between these spectrometers.

Due to the low values of some soil parameters, absorption interference can occur in the NIR spectrum. There-
fore, Vis–NIR spectra of soil samples are relatively weak and non-specific and it would be difficult to distinguish 
spectral patterns of these components. Special techniques are needed to obtain these spectral patterns and make 
a successful correlation between these patterns and selected soil properties9,10. These techniques include the 
appropriate selection of spectrometer, light source, optical probe11, and multivariate calibration method12, control 
of surrounding conditions13, and use of suitable pretreatment of the spectroscopic data14. Hence, the appropriate 
selection of multivariate calibration technique, and the ability to interpret spectroscopic data are considered the 
key steps for improving the estimation accuracy of soil properties15,16. Linear multivariate calibration models 
such as partial least squares (PLS) regression have been efficient to extract mathematically complex spectral 
patterns and find the correlation between these patterns and the soil properties. However, due to the nonlinear 
relationship between spectroscopic data and soil properties, there has been a growing interest in using nonlinear 
multivariate calibration methods such as artificial neural networks (ANN) regression9,10.

The aims of the present research were: (1) to evaluate the potential of the lab-based Vis–NIR spectroscopy for 
estimating soil physicochemical properties including clay, sand, silt, calcium carbonate equivalent (CCE), and 
EC in restructured soil samples, collected from the calcareous topsoil in an arid climate, (2) to study the ability 
of two spectroscopic instruments including a high-cost InGaAs with NIR spectroscopic range (950–1650 nm), 
and a low-cost CCD with Vis–SWNIR spectroscopic range (400–1100 nm) for estimating selected physicochemi-
cal properties of soil, and (3) to compare the performance of linear (PLS) and non-linear (ANN) multivariate 
calibration methods to estimate the selected soil physicochemical properties. In general, prediction of various 
physicochemical properties (clay, sand, silt, CCE, and EC) of selected soil type (calcareous topsoil) in an arid 
climate, and comparison of two spectroscopic instruments (InGaAs and CCD) along with the utilization of 
different multivariate calibration methods could be considered as the novelty aspects of the present research.

Table 1.   A review of recent literature that used lab-based Vis–NIR spectroscopy for estimating some 
physicochemical properties of soil. CaCO3 calcium carbonate, EC electrical conductivity, PLS partial least 
squares, R2

p coefficient of determination in prediction, RMSEP root mean square error of prediction (g %, 
hstandard error dS.m−1, istandard error g.kg−1), RPD  residual prediction deviation.

Reference Soil type spectroscopic range (nm) Sample treatment Soil properties Models R2
p RMSEP RPD

Summers, et al.32 Chromosols, Dermosols, Rudosols, 
and Kurosols 400–2500 oven-dried sieved 2 mm

Clay PLS 0.66 3.13g 2.0

Carbonate PLS 0.69 2.90g 2.1

Tümsavaş, et al.1 Clay and clay loam 350–2200 fresh
Clay PLS 0.91 2.67g 3.51

Sand PLS 0.90 2.91g 3.25

Wetterlind, et al.31 Glacial and postglacial clay 350–2500 air-dried sieved < 2 mm

Clay PLS 0.75–0.95 3.6g–2.7g 2.3–3.7

Silt PLS 0.63–0.73 3.4g–2.8g 1.5–1.8

Sand PLS 0.91–0.93 3.8g–2.5g 3.3–3.4

Debaene, et al.7 Podzoluvisol 400–2200 air- dried sieved 2 mm

Clay PLS 0.73 0.32g 1.9

Silt PLS 0.79 2.25g 2.2

Sand PLS 0.79 2.52g 2.2

Feyziyev, et al.33 Soilsare Calcisols, Solonchaks, and 
Calcaric Fluvisols 350–2500 air-dried sieved 2 mm

EC PLS 0.82 0.09h –

CaCO3 PLS 0.90 2.90i –
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Materials and methods
Study farm.  The soil samples were collected from the Lavark research farm (32°32′N, 51°23′E) of the Isfahan 
University of Technology, located in Isfahan province, Iran. The farm has an arid climate with average annual 
precipitation of 140 mm, a mean temperature of 14.5 °C, and an altitude of 1630 m above sea level. The soil is 
a fine-loamy calcareous that developed on alluvial deposits of the Zayandehroud River. It has a history of con-
ventional tillage operations, and low organic matter (less than 0.5%). However, during the last 6 years, decayed 
farmyard manure has been uniformly applied to the soil surface at a rate of 50 Mg ha-1, then mixed to 15 cm 
depth of topsoil using tillage practices. The crop rotation was irrigated maize silage-barley during the last 6 years.

Sampling and preparation for spectroscopy.  A total of 151 composite soil samples were collected 
from an area of 32 ha, after harvesting barley, with a rate of one sample per 2000 m2 plot. The detailed informa-
tion about the area of study and soil sampling locations can be found in our previous study8 in which the soil fer-
tility parameters of the same points were investigated. Each composite sample was obtained from 5 subsamples 
taken from the center and corners of the square with a side length of 5 m. The samples were separately stored 
in plastic bags and transported to the laboratory. For reducing the effect of soil structure on the accuracy of the 
estimation and getting homogeneous samples, air-drying and sieving to 2 mm were adopted, before spectra 
acquisition and reference analyses.

Spectra acquisition.  Two spectroscopic instruments were adopted to record the diffuse reflectance spectra 
from the horizontal and smooth surfaces of soil samples. The first instrument was a CCD-based Vis–SWNIR 
(model: LR1 spectrometer, ASEQ Instrument, Vancouver, Canada), with a wavelength range of 200–1200 nm 
and a wavelength resolution of approximately 0.2 nm. However, due to the light sources utilized in this study 
(tungsten-halogen lamps) and the noise of the spectrometer, the spectral range of 400–1100 nm was used for 
further analysis. Two tungsten-halogen lamps (50-W) were utilized as the light sources in the diffuse reflectance 
mode and placed at an angle of 45° to the horizontal line above a Petri dish (a depth of 10 mm and a diameter 
of 100 mm) containing 30 g of each soil sample. The horizontal distance between light sources and the center of 
the Petri dish was 12 cm. A bundle fiber optic probe (R600-8 Vis–NIR, StellarNet, Inc. Oldsmar, Florida, USA) 
was utilized to collect the diffused reflection lights from the surface of the soil sample and pass them to the spec-
trometer. This probe was placed in a vertical position at a distance of 10 mm and an angle of 90° to the Petri dish. 
The exposure time and the number of scans were selected as 50 ms and 10, respectively. Three replicate spectra 
were collected from each soil sample by 120° rotating of the Petri dish and the average spectrum was calculated 
and used for the subsequent calculations. To obtain the relative spectra, the reference and dark measurements 
were carried out at the beginning of each 15 spectra readings. Finally, reflectance spectra (R) were converted to 
absorbance spectra (A) by adopting the equation of A = log (1/R).

The second spectroscopic instrument was a commercial NIR device (DA 7250™ NIR analyzer, Perten Instru-
ments, PerkinElmer Inc., USA). The instrument was equipped with a photodiode array NIR spectrometer with 
a thermoelectrically cooled 256 element InGaAs detector, capable to acquire spectral data in a wavelength range 
and resolution of 950–1650 nm and 0.5 nm, respectively. Each spectrum consisted of an average of 10 scans col-
lected via automatic rotating of the sample dish. Using a Teflon-coated ceramic reference flag in the instrument, 
the reference and dark spectra were automatically measured.

Reference analysis.  To create models and evaluate them through comparing the estimated and reference 
values, the selected soil physicochemical properties including clay, sand, silt, CCE, and EC were measured using 
standard laboratory methods. The pipette method17 was used to determine clay, sand, and silt contents, and the 
titration method18 and soil–water suspension (1:2)19 were adopted to measure the CCE and EC, respectively.

Spectroscopic data analysis.  Before spectroscopic data analysis, data were reviewed and sample outli-
ers were detected. Principal components analysis (PCA) was first performed to identify the potential outliers 
in spectral data (or X-variables)20. Samples situated outside the Hotelling T2 ellipse with the 95% confidential 
level were identified as the outliers and removed from the data set. Then, by performing PLS analysis, the plot 
of residual sample variance for Y-variables (measured soil properties) was checked to detect the possible outli-
ers due to errors in reference measurements. For each parameter, the samples with the extreme value of sample 
residual were detected as the outlier and eliminated from the data set. 6 samples were detected as the outlier in 
the spectral data after performing the PCA. Additionally, 4, 2, 2, 2, and 0 samples were identified as the outlier 
with extreme Y-residuals in clay, sand, silt, CCE, and EC data sets, respectively. The remaining samples were then 
randomly divided into two subsets, including the calibration (80% of total samples) and the independent valida-
tion or test (20% of remaining samples) subsets. The calibration subset was adopted for developing predictive 
models, while the test subset was utilized to assess the robustness of developed models.

Before developing spectroscopic models, averaging and Savitsky-Golay (SG) smoothing were applied to the 
spectral data to enhance the spectroscopic features and signal-to-noise ratio21. The number of averaging and 
smoothing points for each studied physicochemical property was optimized using the trial and error procedure. 
Different pre-processing techniques were then applied to remove unwanted and irrelevant information from 
spectroscopic data. These techniques included standard normal variate (SNV), multiplicative scatter correction 
(MSC), linear baseline correction (LBC), baseline offset elimination (BOE), minimum, maximum, range mean, 
area, and unit vector normalization, SG first and second derivatives (1st Der. and 2nd Der.), and each combina-
tion of two techniques. For each studied soil property, the best pre-processing technique, which resulted in the 
best predictability of the PLS model, was selected and adopted for further spectroscopic analyses.
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PLS and ANN multivariate techniques were used to extract predictive models of selected soil physicochemical 
properties, and their performances were then compared. The spectral data of CCD and InGaAs spectrometers 
and the combination of both (with the range of 400–1650 nm) were used to develop the PLS and ANN predictive 
models. The performance of spectrometers and the data combination of both were then compared to reach the 
maximum predictability of each studied soil property. The PLS and ANN methods are briefly described below, 
and for more details, the references were cited.

The PLS regression is based on disassembling the spectroscopic data into the features named latent variables 
(LV), which include most of the variance in the spectroscopic data along with the variance of the response vari-
ables as much as possible20,22. To increase the covariance between predictors (wavelengths) and response variables 
(selected properties), the PLS algorithm integrates the compression and regression steps, leading to identifying 
consecutive orthogonal factors, i.e., LVs5. The leave-one-out cross-validation (LOOCV) was adopted for evaluat-
ing the PLS models for the calibration set23. By testing a plot of the LOOCV residual variance versus the number 
of LVs, the optimal number of LVs for each PLS model was selected24. By applying the regression coefficients 
(b-coefficients), the effective wavelengths in the PLS calibrations were specified. When the b-coefficient value of 
a specific wavelength exceeds the standard deviation of all b-coefficient values, the corresponding wavelength 
is considered effective22,25,26. After developing the PLS models for selected soil physicochemical properties, the 
model’s predictability was evaluated by an independent validation subset of samples.

In ANN regression, a multilayer feed-forward neural network with the back-propagation (BP) learning algo-
rithm was adopted for estimating the selected soil physicochemical properties. This type of network (BPANN) 
is the most appropriate and prevalent architecture for modeling complex nonlinear spectroscopic data, because 
of its supervised learning ability. The BP is the generalization of the Widrow–Hoff learning rule for training the 
multilayer perceptron (MLP) networks with nonlinear transfer functions. By calculating the case-wise error 
function, the overall network error was reduced27. For each soil property, a three-layer perceptron network 
(input, output, and hidden layer) was used. However, due to the large size of the spectroscopic data, PCA was first 
applied to them and the PCA-vectors (PCs) were adopted as the input of the neural network. It caused reducing 
the mathematical operations and enhancing the robustness of the models15. The trial and error procedure was 
applied to define the optimal number of neurons in the hidden layer and the best pair of activation functions in 
the hidden and output layer. The network topologies with the maximum predictability of soil properties were 
selected. Moreover, three different training algorithms of gradient descent (GD), conjugate gradient (CG), and 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) were examined for each network architecture to reach the maxi-
mum estimation accuracy.

Pre-processing the spectroscopic data, removing outliers, PCA, and PLS procedures were all performed by 
using the ‘The Unscrambler’ V10.4 software (CAMO AS, Trondheim, Norway). The ANN regression was carried 
out using ‘STATISTICA’ V12 (StatSoft, Inc., CA, USA). Finally, the spatial variability mapping was performed 
by using ‘ArcGIS’ V10.6.1.

The statistical parameters adopted for assessing the predictive power of models included the coefficient of 
determination in prediction (R2

p), root mean squares error of prediction (RMSEP), and residual predictive 
deviation (RPD). The RPD is determined as the standard deviation of the measured values of the independent 
validation subset divided by the RMSEP28. The model performance was evaluated according to the criterion 
presented by Rossel, et al.23. The RPD > 2.5 refers to the excellent prediction, RPD = 2–2.5 indicates very good 
ability of model, RPD = 1.8–2.0 allows the good predictability, RPD = 1.4–1.8 results in fair predictive model, 
RPD = 1.0–1.4 refers to the poor estimation, and RPD < 1.0 shows a very poor prediction.

Results and discussion
Descriptive statistics of the soil properties.  The descriptive statistics of soil physicochemical proper-
ties obtained from reference measurements for the total, calibration, and independent validation subsets are 
provided in Table 2. Based on the coefficient of variation (%CV) values and the criterion presented by Wilding29, 
the variation was evaluated as high for EC (CV = 51.24%), moderate for sand (CV = 31.78%), and low for clay, 
silt and CCE (CV = 12.81%, 10.44% and 6.28%, respectively). In this research, variations in soil physicochemi-
cal properties are likely due to the differences in parent material, surficial deposits, agricultural operations (e.g., 
land leveling and tillage), planting patterns, irrigation, and harvest of the crop (residue and yield management). 
Figure 1 shows the spatial variation of the selected soil physicochemical properties within the studied farm scale. 
As shown, the soil properties were spatially variable within the studied farm. The wide range and enough spatial 
variability among studied properties could satisfy the prerequisite for obtaining acceptable predictive models in 
using Vis–NIR spectroscopy30. As expected, the variability map of clay content (Fig. 1a) had an opposite spatial 
distribution pattern to that for sand content (Fig. 1b).

Modeling by PLS.  Table  3 summarizes PLS regression results of the soil physicochemical properties, 
including clay, sand, silt, CCE, and EC using spectroscopic data obtained from CCD and InGaAs spectrometers 
and the combination data of both spectrometers. The PLS regression presented various estimation accuracies of 
the selected soil properties when the spectral data from each spectrometer or both were used.

Among selected soil properties, clay and sand offered an accurate estimation with the full range of Vis–NIR 
(400–1650 nm). Based on the criterion presented by Rossel, et al.23, the predictability of the best clay (R2

p = 0.717; 
RMSEP = 2.14%; and RPD = 1.95) and sand (R2

p = 0.801; RMSEP = 2.81%; and RPD = 2.63) PLS models in inde-
pendent validation subset displayed the good and excellent performance, respectively. However, the best silt 
(R2

p = 0.734; RMSEP = 2.32%; and RPD = 2.39), CCE (R2
p = 0.876; RMSEP = 1.27%; and RPD = 2.01), and EC 

(R2
p = 0.734; RMSEP = 0.329 ms; and RPD = 2.05) models had very good performance when the spectroscopic data 
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Table 2.   Summary of descriptive statistics values for the total, calibration, and validation reference data 
subsets of the selected soil physicochemical properties. CCE calcium carbonate equivalent, CV coefficient of 
variation, EC electrical conductivity, Max. maximum, Min. minimum,  SD standard deviation.

Soil properties Sample subsets Min Max Mean SD %CV

Clay (%)

Total (n = 141) 19.20 40.80 30.40 3.90 12.81

Calibration (n = 113) 19.20 38.40 30.24 3.82 12.64

Validation (n = 28) 24.00 40.80 31.06 4.18 13.47

Sand (%)

Total (n = 143) 9.44 42.36 22.94 7.29 31.78

Calibration (n = 115) 9.44 41.80 23.04 7.30 31.67

Validation (n = 28) 9.90 42.36 22.57 7.39 32.75

Silt (%)

Total (n = 143) 34.06 56.50 46.06 4.81 10.44

Calibration (n = 115) 34.20 56.14 46.17 4.63 10.03

Validation (n = 28) 34.06 56.50 45.60 5.55 12.16

CCE (%)

Total (n = 143) 34.50 47.00 40.09 2.52 6.28

Calibration (n = 115) 34.50 47.00 40.07 2.52 6.29

Validation (n = 28) 36.50 46.50 40.18 2.55 6.36

EC (dS.m-1)

Total (n = 145) 0.340 2.780 1.205 0.617 51.24

Calibration (n = 116) 0.340 2.560 1.190 0.605 50.79

Validation (n = 29) 0.487 2.780 1.262 0.674 53.43

Figure 1.   Spatial variation of reference-measured values of selected soil physicochemical properties (a) clay, (b) 
sand, (c) silt, (d) calcium carbonate equivalent (CCE), and (e) electrical conductivity (EC) in the studied farm 
scale.
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of InGaAs spectrometer was only utilized. The reference versus estimated values of selected soil physicochemical 
properties obtained the best PLS models are presented in Fig. 2.

The performance of CCD and InGaAs spectrometers showed that the InGaAs instrument outperformed the 
CCD one in estimating all soil physicochemical properties. For chemical components of CCE and EC, this was 
an expected result because the spectral range of the InGaAs spectrometer (950–1650 nm) included more infor-
mation about the chemical components of the soil. However, due to the correlation of texture parameters with 
the soil components that have direct spectral responses in the NIR region1, the InGaAs spectral data provided 
a pivotal role to reach the maximum accuracy for predicting these parameters. In addition, the visible range 
(400–750 nm) data, associated with soil color and organic matter, played a complementary role to NIR data to 
reach the maximum predictability of clay and sand. Despite the superiority of NIR data, the Vis–SWNIR data 
of the CCD spectrometer led to acceptable estimations using the PLS method. In this case, the sand estimation 
(RPD = 2.09) was evaluated to be very good, the predictability of EC (RPD = 1.842) was good, while, the clay 
(RPD = 1.62), silt (RPD = 1.78), and CCE (RPD = 1.67) estimations were assessed as fair.

In terms of the lab-spectroscopy with the same soil sample conditions (air-dried, and sieved to 2 mm), the 
accuracy of the present PLS models (Table 3) was comparable with results reported in the previous literature 
(Table 1). The performance of the PLS model in estimating clay (R2

p = 0.717, and RPD of 1.95) was slightly bet-
ter than those reported by Debaene, et al.7 with R2

p = 0.73, and RPD = 1.9, and less accurate compared with that 
reported by Wetterlind, et al.31 with R2

p = 0.75–0.95, and RPD = 2.3–3.7. Regarding the sand, the predictability of 
the PLS model (R2

p = 0.801, and RPD of 2.63) was better than the findings of Debaene, et al.7 with R2
p = 0.79, and 

RPD = 2.2, and less accurate compared with the findings of Wetterlind, et al.31, and Tümsavaş, et al.1 with R2
p of 

0.90–0.93, and RPD of 3.25–3.4. For silt, the estimation power (R2
p = 0.734, and RPD of 2.39) was outperformed 

by the PLS models reported by Wetterlind, et al.31, and Debaene, et al.7 with R2
p of 0.63–0.79, and RPD of 1.5–2.2. 

Regarding the CCE, the predictability of the PLS model (R2
p = 0.786, and RPD of 2.01) was slightly less accurate 

than those presented by Summers, et al.32, and Feyziyev, et al.33 with R2
p of 0.69–0.90, and RPD of 2.1. For EC, 

the predictability of the present PLS model (R2
p = 0.734, and RPD of 2.05) was less accurate than the results of 

Feyziyev, et al.33 with R2
p = 0.82. By close investigation of the studies resulted in better accuracies, it was found that 

these studies have often utilized the full spectral range of the NIR region (780–2500 nm) in which more overtones 
and combination absorption bands could be detected to increase the predictability of the developed models. 
For example, a direct spectral response of clay exists in the wavelength range of 2200–2300 nm that is beneficial 
for clay prediction and mineralogy1. At the next step, the main challenge was to improve the prediction power 
and perhaps compensate the weakness of the shorter spectral range by using nonlinear multivariate techniques.

Regression coefficients (b‑values).  Figure 3 displays the regression coefficients (b-values) of the optimal spectral 
range obtained from the best PLS models for estimating selected soil physicochemical properties. The dashed 
lines represent the standard deviation of all b-values. The negative and positive b-values that exceeded the 
dashed line reveal the more efficient wavelengths in terms of explaining the variation in the selected property. 
For clay (Fig. 3a), the b-value curve had sharp positive peaks around 542 and 1411 nm and a negative peak at 

Table 3.   Calibration and estimation PLS results of selected soil physicochemical properties using spectral 
data of CCD and InGaAs spectroscopic instruments, and the combination data of both. BOE baseline offset 
elimination, CCD charge-coupled device, CCE calcium carbonate equivalent, EC electrical conductivity, 
InGaAs indium gallium arsenide, LBC linear baseline correction, MEN mean normalization, MSC 
multiplicative scatter correction, R2

c coefficient of determination in calibration, R2
p coefficient of determination 

in prediction, RMSEC root mean square error of calibration, RMSEP root mean square error of prediction, RN 
range normalization, RPD residual predictive deviation, 1st Der.: first derivative,  2nd Der. second derivative.

Soil properties Spectroscopic instrument Preprocessing

Calibration subset Test subset

Rank R2
c RMSEC R2

p RMSEP RPD

Clay (%)

CCD 1st Der 7 0.761 1.86 0.651 2.58 1.62

InGaAs 1st Der. + MSC 10 0.739 1.98 0.720 2.27 1.84

Combination LBC + BOE 5 0.695 2.10 0.717 2.14 1.95

Sand (%)

CCD 1st Der 7 0.793 3.31 0.762 3.54 2.09

InGaAs BOE 12 0.846 2.81 0.894 2.88 2.57

Combination RN 7 0.802 3.35 0.801 2.81 2.63

Silt (%)

CCD 1st Der 11 0.772 2.20 0.732 3.12 1.78

InGaAs BO 11 0.839 2.02 0.734 2.32 2.39

Combination 2nd Der 5 0.518 3.39 0.572 3.52 1.58

CCE (%)

CCD 2nd Der 3 0.658 1.47 0.681 1.53 1.67

InGaAs MSC 5 0.668 1.49 0.876 1.27 2.01

Combination 1st Der 9 0.743 1.28 0.450 1.81 1.41

EC (dS.m-1)

CCD 1st Der 6 0.790 0.276 0.695 0.366 1.84

InGaAs MEN 15 0.939 0.173 0.734 0.329 2.05

Combination 1st Der 5 0.723 0.322 0.695 0.359 1.88
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Figure 2.   Reference versus estimated values obtained by the best PLS models in predicting (a) clay and (b) sand 
using the combination data of both instruments, and (c) silt, (d) calcium carbonate equivalent (CCE), and (e) 
electrical conductivity (EC) using spectral data of InGaAs spectrometer.
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approximately 641 nm. For sand, the higher b-values were obtained close to 468, 651, and 1414 nm (Fig. 3b). For 
silt, the higher b-values were observed around 1068, 1398, 1509, and 1598 nm (Fig. 3c). Regarding CCE, wave-
lengths around 1007, 1401, 1512, and 1560 nm resulted in higher regression coefficients (Fig. 3d). Finally, for 
estimating EC the wavelengths around 1040, 1448, 1515, and 1589 nm were distinguished as important (Fig. 3e).

Regarding soil texture parameters, the important peak close to 542 nm for clay can be attributed to the 
chromophore (Fe-OOH) found in the goethite (a yellow mineral)34. About estimating sand, the effective wave-
lengths around 468 nm could be assigned to the absorption of blue color at approximately 450 nm35. For silt, the 
significant wavelengths around 1068 and 1598 nm could be due to the absorption of soil aromatic compounds 
containing the C-H functional group36. Since the soil samples were air-dried, the important wavelengths around 
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Figure 3.   Regression coefficients (b-values) of the best PLS models for estimating (a) clay, (b) sand, (c) silt, (d) 
calcium carbonate equivalent (CCE), and (e) electrical conductivity (EC).
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1400 nm for estimating clay, sand, and silt could be related to 1st overtone of the C-H functional group, relevant 
to soil organic matter9. After a close investigation of the data, a significant correlation was observed between 
soil texture components and organic matter of samples (data is not shown). Therefore, it could be concluded 
that the soil texture components (clay, sand, and silt) had indirect spectral responses and their estimation using 
Vis–NIR spectroscopy can be based on the co-variance with spectrally active soil components such as organic 
matter1. Finally, significant wavelengths around 641 and 651 nm for estimating clay and sand, respectively, may 
be assigned to absorptions caused by excitations from the ground state to the higher energy state9.

Detection of soil CCE from spectroscopic data was a relatively complex process. This can be due to the fact 
that the absorption bands of CCE shift to longer wavelengths because of the iron (Fe) impurities in dolomite, and 
to shorter wavelengths due to magnesium (Mg) impurities in calcite37. Moreover, the presence of calcium car-
bonate was considerable in our calcareous soil samples and it could bind with phosphor as calcium phosphate38. 
Therefore, the important wavelength of 1401 nm could be compared with 1439 nm, which is related to calcium 
phosphate39. In most studies, however, the absorption around 2300 nm was found to be closely related to the 
presence of carbonate32. Because of the NIR spectroscopic range of this research (950–1650 nm), the CCE estima-
tions could be also related to the correlation with the other spectrally active soil parameters. Therefore, the high 
b-values around 1007 nm and 1401, 1512, and 1560 nm for estimating soil CCE (Fig. 3d) could be attributed to 
a significant correlation of CCE with soil organic matter and total soil nitrogen, respectively (data is not shown).

Finally, regarding soil EC, previous studies have shown that soil salinity estimation is controlled by associa-
tion with spectrally active soil components such as water40. Although the samples used in this study were air-
dry, soil components were still able to retain some of the soil moisture. Therefore, the high b-value around the 
wavelength of 1448 nm in estimating EC was likely due to the strong water absorption around 1430 nm. Other 
important wavelengths for estimating EC around 1040 and 1589 nm were close to wavelength bands around 
1070 and 1589 nm which were identified as efficient for total nitrogen estimation8.

Modeling by ANN.  Table 4 summarizes the results of ANN regression for predicting the selected soil phys-
icochemical properties using spectral data of CCD and InGaAs spectrometers and the combination data of 
both. The prediction power (in terms of R2 values in both training and testing steps) of various models with 
the different number of nodes in the hidden layer (1 to 20) is shown in Fig. 4. In this figure, all ANN models 
were developed using the optimal spectroscopic range, resulting in the best predictability in estimating the soil 
physicochemical properties (Table 4). As shown, the best estimation powers and consistency (in terms of close 
performance in training and test steps) for predicting clay, sand, silt, CCE, and EC occurred with the optimal 
number of nodes of 10, 10, 6, 16, and 9 in the hidden layer, respectively.

The best estimation among the selected properties belonged to sand (RPD = 2.63), followed by silt, clay, EC, 
and CCE having the RPD values of 2.52, 2.35, 2.22, and 1.76, respectively (Table 4). These RPD values could 
allow us excellent predictions of sand and silt, very good estimations of clay and EC, and a fair prediction of 
CCE, based on the criterion presented by Rossel, et al.23.

Moreover, utilizing the nonlinear ANN method led to a remarkable improvement in prediction powers of 
clay (17%), silt (5%), and EC (8%), when the RPD values of the best ANN and PLS models were compared. 

Table 4.   ANN calibration and estimation results of selected soil physicochemical properties using spectral 
data of CCD and InGaAs spectrometers, and the combination data of both. CCD charge-coupled device, CCE 
calcium carbonate equivalent, EC electrical conductivity, InGaAs indium gallium arsenide, NHL number 
of nodes in hidden layer,  R2

p coefficient of determination in prediction, R2
t coefficient of determination in 

training, RMSEP root mean square error of prediction,  RMSET root mean square error of training,  RPD 
residual prediction deviation, Tanh hyperbolic tangent.

Soil property Spectrometer

Activation function Training Test set validation

Hidden layer Output layer NHL R2
t RMSET R2

p RMSEP RPD

Clay (%)

CCD Tanh Exponential 4 0.697 2.11 0.656 2.52 1.66

InGaAs Logistic Tanh 16 0.736 2.00 0.725 2.29 1.83

Combination Exponential Exponential 10 0.859 1.43 0.781 1.78 2.35

Sand (%)

CCD Logistic Identity 6 0.792 3.32 0.778 3.47 2.13

InGaAs Tanh Logistic 19 0.872 2.57 0.872 3.33 2.22

Combination Logistic Tanh 10 0.858 2.85 0.842 2.81 2.63

Silt (%)

CCD Exponential Logistic 4 0.813 1.99 0.584 3.74 1.48

InGaAs Logistic Identity 6 0.770 2.42 0.765 2.20 2.52

Combination Logistic Logistic 13 0.567 3.27 0.537 3.48 1.59

CCE (%)

CCD Tanh Logistic 10 0.765 1.22 0.604 1.62 1.57

InGaAs Tanh Exponential 16 0.863 0.96 0.843 1.45 1.76

Combination Logistic Identity 7 0.896 0.81 0.554 1.70 1.50

EC (dS.m-1)

CCD Exponential Exponential 8 0.842 0.240 0.574 0.478 1.41

InGaAs Logistic Tanh 9 0.784 0.328 0.758 0.303 2.22

Combination Logistic Tanh 6 0.834 0.249 0.691 0.361 1.87
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However, no noticeable improvement in predictability of sand (RPD of 2.63 for both ANN and PLS), and slightly 
less accuracy in the prediction of CCE (RPD of 1.76 and 2.01 for ANN and PLS, respectively) were obtained.
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Figure 4.   The performance of ANN models versus the number of neurons in hidden layer for estimating (a) 
clay, (b) sand, (c) silt, (d) calcium carbonate equivalent (CCE), and (e) electrical conductivity (EC).
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Similar to PLS, the spectral data of the InGaAs spectrometer was necessary to reach the best ANN predictive 
models of all selected soil properties. Figure 5 illustrates the estimated versus reference values of selected soil 
physicochemical properties obtained from the best ANN regression models.

Regarding the CCD instrument and in comparison with PLS results, the ANN regression could slightly 
enhance the predictability of clay and sand (approximately 2%). However, the predictability of the silt, CCE, and 
EC decreased by 17%, 6%, and 23% in using the ANN regression method (Tables 3 and 4).

Spatial variability mapping.  Table 5 summarizes the results of the best models for estimating studied soil 
properties using the optimum and CCD spectral data. The NIR spectral range (950–1650 nm) was essential for 
achieving the best predictive models of sand and silt (RPD up to 2.50, excellent performance), and clay, CCE, and 
EC (RPD up to 2.00, very good performance). The CCD spectroscopic instrument, however, was able to attain 
a very good performance for estimating the sand (RPD of 2.13), good performance for predicting EC (RPD of 
1.84), and fair performance for estimating clay (RPD of 1.66), silt (RPD of 1.78), and CCE (RPD of 1.67). Despite 
a remarkable decrease in the predictability of clay, sand, silt, CCE, and EC by using CCD spectrometer (29.36%, 
19.01%, 29.37%, 16.92%, and 17.12%, respectively, compared to the best models), the noticeable lower price of 
CCD spectrometer should be considered in selecting the appropriate instrument for a specific application.

The spatial variability maps of soil properties obtained from the reference-measured and predicted values by 
the best models in the optimum spectral range are shown in Fig. 6. These maps were derived using the valida-
tion subset for each physicochemical soil property. As shown, a promising visual similarity existed in reference 
and predicted maps for all soil properties. About clay, the low content (northwestern corner) and high content 
(northeastern) areas of the studied field were obviously distinguished (Fig. 6a). Moreover, the low sand (north-
eastern) and high sand (south), the low silt (south) and high silt (northeastern), the low CCE (northeastern) and 
high CCE (southwestern), and the high EC (north) regions of the field can be clearly distinguished in predicted 
maps of Fig. 6b–e, respectively. Since spectral models resulted in a reliable prediction of clay, sand, silt, CCE, 
and EC (Table 5), there were similarities between predicted and reference maps. Therefore, the utilization of soil 
spectral models can be used as a layer to delineate the management zones and indirectly conduct the variable-
rate fertilizer application.

The maps of laboratory reference values (test set samples) and the estimated values by the best models in the 
CCD spectral range (400–1100 nm) for all physicochemical soil properties are shown in Fig. 7. A visual com-
parison revealed a similar spatial pattern between the two maps and those obtained from the optimum spectral 
range (Fig. 6). The low, medium and high content zones can be distinguished for clay, sand, silt, CCE, and EC 
in predicted maps of Fig. 7a–e, respectively. Among the studied pairs of maps, the lowest similarity belonged 
to EC (Fig. 7e). As shown in Table 2, EC had the highest variation (CV of 53.43% in the test data set) among 
studied soil properties, and this high variance could not be successfully described by the few data points of the 
test set and relatively lower prediction power of corresponding Vis–SWNIR model (RPD of 1.84). Furthermore, 
closer spatial similarity can be observed in the variability maps of Fig. 6 (optimum spectral range) than those 
presented in Fig. 7 (CCD spectral range). This is due to the fact that the more accurate models were obtained by 
optimum spectral data (RPDs up to 2) in comparison with the CCD spectral range (RPD of 1.66–2.13) (Table 5).

The results of this study revealed that the InGaAs spectral data was mandatory to obtain the best predictive 
models and most accurate variability maps of all studied soil physicochemical properties. However, acceptable 
predictions and similar variability maps were provided via the CCD-based spectrometer. Hence, a compromise 
should be done between the accuracy of prediction and the cost of the spectroscopic device in selecting the 
adequate spectrometer. While InGaAs spectrometer provided more informative spectral data in the NIR range, 
its remarkably higher price and much higher dark current (thermally generated signal) compared to CCD 
spectrometers should be considered specifically in the field and online applications. In contrast, the CCD spec-
trometer with an inexpensive cost and the narrower spectral range in the NIR region could result in weaker but 
acceptable predictability and variability maps for all studied soil properties.

Finally, the multivariate techniques remarkably affected the predictability of different physicochemical param-
eters. Nonlinear ANN regression improved the prediction accuracy of soil texture parameters of clay (17%) and 
silt (5%) and chemical component of EC (8%) as compared to the linear PLS method. However, for the spectrally 
active component of CCE, better predictions were obtained by linear PLS regression for both optimum (RPD of 
2.01) and CCD (RPD of 1.67) spectral data compared to ANN. It is likely due to the direct absorption of calcium 
phosphate and the significant correlation of CCE with the other spectrally active soil parameters, including soil 
organic matter and total nitrogen.

Conclusions
This research compared the capability of two spectroscopic devices (CCD Vis/SWNIR and InGaAs NIR spec-
trometers) and their data combination in estimating and spatial variation mapping the selected physicochemi-
cal properties (clay, sand, silt, CCE, and EC) for a calcareous topsoil. Two different multivariate calibration 
techniques of PLS as linear and ANN as nonlinear approaches were used to extract the predictive models. The 
following conclusions can be drawn based on the results:

(1)	 Vis–NIR spectroscopy was evaluated as an efficient method for estimating and spatial variation mapping 
the physicochemical properties of calcareous topsoil. Among these properties, excellent estimations were 
obtained for sand, and silt, and very good predictions for clay, CCE, and EC.

(2)	 The spectral data of the InGaAs spectrometer (NIR spectral range) was necessary to reach satisfactory 
predictions of all selected soil properties. However, the predictive models obtained from spectral data of 
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Figure 5.   Estimated versus reference values obtained from the best ANN models of (a) clay and (b) sand using 
combination data of both spectrometers, and (c) silt, (d) calcium carbonate equivalent (CCE), and (e) electrical 
conductivity (EC) using spectral data of InGaAs spectrometer.
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the low-cost CCD spectrometer could allow us the very good prediction of silt, good estimation of EC, and 
fair predictions of clay, silt, and CCE.

(3)	 The nonlinear ANN regression outperformed the linear PLS method for predicting the spectrally inac-
tive texture parameters of soil and EC. While the PLS was appropriate for estimating the spectrally active 
component of CCE.

(4)	 Comparing predicted physicochemical property maps achieved from the best models in the optimum 
spectral range and corresponding laboratory-measured maps showed satisfactory similarities. Moreover, 
except for EC, the significant similarities were attained between the Vis/SWNIR-predicted maps (data of 
CCD spectrometer) and the equivalent reference-measured maps for all studied physicochemical proper-
ties, indicating the potential application of low-cost CCD spectrometers for detecting the variability maps 
of clay, sand, silt, and CCE.

Table 5.   The results of the best models, obtained from optimum and CCD spectral data for estimating 
physicochemical properties of soil. ANN artificial neural networks, BOE baseline offset elimination, 
CCE calcium carbonate equivalent, EC electrical conductivity, LBC linear baseline correction, MEN 
mean normalization, MSC multiplicative scatter correction,  PLS partial least squares, R2

p coefficient of 
determination in prediction, RMSEP root mean square error of prediction, RN range normalization, RPD 
Residual predictive deviation, 1st Der. first derivative, 2nd Der. second derivative.

Soil properties Spectral range (nm) Preprocessing Modeling methods

Model validation

R2
p RMSEP RPD

Clay (%)
400–1650 LBC + BOE ANN 0.871 1.78 2.35

400–1100 1st Der ANN 0.656 2.52 1.66

Sand (%)
400–1650 RN ANN 0.842 2.81 2.63

400–1100 1st Der ANN 0.778 3.47 2.13

Silt (%)
950–1650 BOE ANN 0.765 2.20 2.52

400–1100 1st Der PLS 0.732 3.12 1.78

CCE (%)
950–1650 MSC PLS 0.876 1.27 2.01

400–1100 2nd Der PLS 0.681 1.53 1.67

EC (dS.m-1)
950–1650 MEN ANN 0.758 0.303 2.22

400–1100 1st Der PLS 0.695 0.366 1.84
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Figure 6.   Field-scale spatial variation maps of reference and estimated values of (a) clay, (b) sand, (c) silt, (d) 
calcium carbonate equivalent (CCE), and (e) electrical conductivity (EC), obtained from best predictive models 
with optimum spectral range.
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Figure 7.   Field-scale spatial variation maps of reference and estimated values of (a) clay, (b) sand, (c) silt, (d) 
calcium carbonate equivalent (CCE), and (e) electrical conductivity (EC), obtained from best predictive models 
in the CCD spectral range (400–1100 nm).
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Data availability
The datasets generated and/or analysed during the current study are not publicly available due to the commercial 
spectrometer used in this study (DA 7250™ NIR analyzer, Perten Instruments), and the lack of financial sup-
port from the manufacturer for the models extracted in this research, but are available from the corresponding 
author on reasonable request.
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