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Distribution equality as an optimal 
epidemic mitigation strategy
Adar Hacohen1,2, Reuven Cohen3, Sol Efroni2, Ido Bachelet1 & Baruch Barzel3,4,5*

Upon the development of a therapeutic, a successful response to a global pandemic relies on efficient 
worldwide distribution, a process constrained by our global shipping network. Most existing strategies 
seek to maximize the outflow of the therapeutics, hence optimizing for rapid dissemination. Here 
we find that this intuitive approach is, in fact, counterproductive. The reason is that by focusing 
strictly on the quantity of disseminated therapeutics, these strategies disregard the way in which this 
quantity distributes across destinations. Most crucially—they overlook the interplay of the therapeutic 
spreading patterns with those of the pathogens. This results in a discrepancy between supply and 
demand, that prohibits efficient mitigation even under optimal conditions of superfluous flow. To solve 
this, we design a dissemination strategy that naturally follows the predicted spreading patterns of 
the pathogens, optimizing not just for supply volume, but also for its congruency with the anticipated 
demand. Specifically, we show that epidemics spread relatively uniformly across all destinations, 
prompting us to introduce an equality constraint into our dissemination that prioritizes supply 
homogeneity. This strategy may, at times, slow down the supply rate in certain locations, however, 
thanks to its egalitarian nature, which mimics the flow of the pathogens, it provides a dramatic leap in 
overall mitigation efficiency, potentially saving more lives with orders of magnitude less resources.

Global pandemics driven by international  mobility1–6, once an abstract threat, have now, with the advent of 
COVID-197–12, become a realistic scenraio, twards which we must prepare. Originating in a random outbreak, the 
pathogens spread internationally though air-travel, then locally, at each destination via contagion  dynamics13,14. 
When such events transpire, the challenge is to (i) develop ad hoc a drug or vaccine; then (ii) design an efficient 
strategy for its global dissemination. The point is that even if a therapeutic is avalibale, eliminating challenge (i), 
we must still ship it to multiple destinations worldwide—potentially stretching our transportation resources to 
their maximal capacity. Hence, to outrun the epidemic, we crucially need optimal dissemination schemes, that 
achieve the most efficient mitigation, in the face of limited shipping  capacity15–19.

The common approach to this challenge treats the dissemination as a commodity flow  problem20–23. The 
therapeutics (commodity) are shipped from one or few sources, propagating along transportation routes—each 
with a given shipping capacity—aiming to fill the demand of all network nodes. In this framework one seeks the 
shipping sequence that optimally utilizes the network—namely, allows for the maximal volume of commodity 
to flow through the network per unit  time24,25 (Fig. 1a). This well-established approach, however, overlooks the 
interplay between the supply, i.e. the therapeutics, and the demand, here generated by the spreading pathogens. 
Indeed, our true goal is not just to generate the maximal outflow of commodities, but rather to obtain the optimal 
mitigation of the disease. This does not depend only on the volume of commodity flow, but also on the manner 
in which this volume is distributed across all potential destinations, i.e. its spreading pattern26,27. Consequently, 
the most efficient shipping sequence might be one that compromises maximal flow, but generates the optimal 
spreading patterns, compatible with those of the  pathogens13,28–30.

With this in mind, we take here a network dynamics approach, and analyse the spatiotemporal propagation 
 patterns26,27 of both the commodities and the pathogens (Fig. 1b). We find that while the disease impacts the 
majority of nodes uniformly, maximum commodity flow optimization naturally yields a highly uneven spread, 
conflicting a concurrent and homogeneous global demand with an extremely heterogeneous supply pattern. 
This discrepancy, we find, is not merely theoretical, but, in fact, it was clearly evident during COVID-19. There, 
comparing the epidemic vs. vaccine spreading patterns we observe precisely the predicted mismatch. As a result 
of this supply/demand incompatibility, not only does maximum flow not guarantee optimal mitigation, it is, in 
fact, counterproductive, indeed, generating a desirable volume of available therapeutics, but at the same time a 
highly undesirable spreading pattern.
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To solve this, we introduce an equality criterion into the optimization, that prioritizes dissemination sequences 
with homogeneous spreading patterns (Fig. 1c). This ensures that the therapeutic flow is not just rapid, but also 
properly disseminated, generating supply patterns that are compatible with demand. The resulting dissemina-
tion, we find, is orders of magnitude more efficient, achieving higher mitigation levels even under extremely 
prohibitive shipping constraints. We examine our strategy, first on a set of hypothetical epidemic scenarios, 
which allow us to extract analytical insights, and then on a COVID-19 inspired simulation, where we assess the 
practical relevance of our analysis. Our strategy is tailored primarily towards drug-based mitigation, offering 
guidelines for the future dissemination of currently produced  therapies31. Yet, as we explain below, it is also 
relevant for vaccine distribution.
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Figure 1.  Optmizing therapeutic dissemination for efficient mitigation. We treat the theraputic spread as a 
commodity flow problem. (a) Commodities flow from the source s to fill the demands Dn(t) at all destinations 
a through e . The transportation network imposes constraints, expressed by the restricted shipping capacity of all 
links. For example, the route s → a can transport at most 5 units per day (edge labels). The shipping sequence 
determines the quotas shipped via each link Lnm , and hence the rates by which all nodes are supplied. Demands 
are updated as therapeutics are supplied—for instance, at t = 1 b ’s demand D2(t) is updated to zero, as b ’s quota 
is filled. Under max-flow the goal is to achieve the highest net outflow of commodities from s , i.e. maximize 
Ls→(t) . Here, nodes were supplied within 2 days, a net flow Ls→(1) = 9 in day 1 and Ls→(t) = 8 , in day 2 . (b) 
During an epidemic, however, the goal is to achieve optimal mitigation, not just optimal commodity flow. This 
requires us to consider the interplay between our dissemination and the spread of the epidemic. Each node’s 
demand is determined by its infection levels ( jn(t) , red), leading us to seek the shipping sequence which best 
adresses the anticipated spread of infections—aiming for supply ( qn(t) , blue) that is most compatible with 
demand. (c) We find that the optimal strategy is to design an egalitarian flow, in which supply is homogeneously 
spread across all destinations. Using the same network as in (a), our egalitarian strategy yields a balanced 
shipping sequence, in which nodes are supplied concurrently at roughly equal rates. For example, instead of fully 
supplying node b in t = 1 and only then shipping to d at t = 2 , as done under max-flow in (a), our egalitarian 
algorithm favors the shipping sequence where b and d are simulataneasly supplied at equal rates. Under global 
demand, we show, such egalitarian supply is orders of magnitude more effective in terms of mitigation and 
resource disposal.
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Mitigation via maximum‑flow
To examine our response to a global epidemic, we begin by considering different epidemiological scenarios, 
from mildly contagious to extremely transmissible, in which a disease spreads globally via air-travel, under the 
susceptible-infected-recovered (SIR) epidemic  model13,14,32 (Box 1). We used empirical data on human aviation to 
evaluate the flux of passengers between 1292 local populations (nodes), each with Mn individuals ( n = 1, . . . ,N ), 
and quantified the impact of the epidemic through its global coverage

where rn(t) is the fraction of recovered individuals in n and � =
∑N

n=1 Mn represents the global population. 
Hence, R(t) in (1) captures the fraction of impacted individuals worldwide. In Fig. 2a we show the unmiti-
gated R(t) under three different scenarios: extremely contagious, where R(t → ∞) → 1 (dark red), medium 
( R(t → ∞) ≈ 0.5 , red) and mild ( R(t → ∞) ≈ 0.3 , light red).

Following the initial outbreak at t = 0 , we define the response time tR as the time required to begin the distri-
bution of a therapy. This therapy can be in the form of a vaccine, designed to prevent the infection of susceptible 
individuals, or a drug, facilitating the recovery of infected individuals. As we consider a scenario in which the 
disease is rapidly spreading, and hence many individuals may already be infected, we focus below on the dis-
semination of drugs, which remain relevant at all stages of the  spread33,34.

Focusing on the efficiency of dissemination, rather than production, we assume that the therapeutic is already 
stockpiled in sufficient quantities at a specific source node s . Therefore, the main challenge is to optimally 
distribute it via the air-transportation network to all destinations. The network is characterized by the carrying 
capacities Bnm that quantify the daily volume of drugs that can be shipped through each air-route m → n , i.e. 
Bnm = Bn←m . The challenge is, therefore, to obtain the optimal shipping sequence from s to all other nodes, 
under the constraints imposed by Bnm.

Max‑flow mitigation (Fig. 2a–c). In the maximum flow dissemination strategy we seek to maximize the 
daily volume of drug doses spreading from s to the rest of the network. Denoting the number of doses shipped 
from m to n on day t  by Lnm(t) , our optimization translates to

where

captures the net daily outflow of drugs from n . Hence, in Eq. (2), by maximizing Ls→(t) , i.e. the outflow from the 
source, we seek to boost the total volume of drugs introduced into the network in each day. This maximization 
is subject to two constraints:

The first constraint (4) ensures that the daily flux along each route m → n is within the bounds of the route 
carrying capacity Bnm . The second constraint (5) restricts nodes from accumulating doses in excess of their 
remaining demand at time t  . Hence n ’s net incoming flux Ln←(t) is bounded by n ’s current demand, Dn(t) ; note 
that Ln←(t) = −Ln→(t).

We consider three strategies for setting the demands: (i) Population-based. At t = 0 we set Dn(0) to 
be proportional to each node’s population Mn , then update these demands daily according to n ’s supply, as 
Dn(t + 1) = Dn(t)− Ln←(t) (ii) Impact-based. Setting Dn(0) according to the projected number of infected 
individuals at n (iii) Urgency-based. Updating Dn(t + 1) dynamically based on n ’s supply gap at t  , such that highly 
impacted (or undersupplied) nodes are prioritized. While (i) is simplest, it is also inefficient, tending to over-
estimate the actual demand at n ; strategy (iii), on the other hand, is highly complex, relying on real-time tracking 
and updating of the demands, but, in some cases, benefits, by design, from a high level of congruency with the 
spread of the pathogens. An expanded discussion of these three strategies appears in Supplementary Section 2.4.

Network capacity. Applying (2)–(5), the maximal dissemination rate one can achieve is restricted by the 
out-degree of the source node, Ks =

∑N
n=1Bns , representing an upper-bound on the volume of drugs that can 

be introduced into the network per day. We, therefore, define the network’s normalized capacity with respect to 
each source s as

normalized to Cs = 1 in case s can disseminate sufficient doses to meet the entire global demand ( � ) in 1 day. 
The network capacity can be controlled by rescaling all individual carrying capacities Bnm , to describe affluent 
vs. restrictive dissemination scenarios (Supplementary Section 2.3).

(1)R(t) =
1

�

N
∑

n=1

Mnrn(t),

(2)Maximize{Ls→(t)}

(3)Ln→(t) =

N
∑

m=1

(Lmn(t)− Lnm(t)),

(4)0 ≤ Lnm(t) ≤ Bnm for all n,m = 1, . . . ,N

(5)0 ≤ Ln←(t) ≤ Dn(t) for all n = 1, . . . ,N , n �= s .

(6)Cs =
Ks

�
,
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Figure 2.  Outrunning a contageuous epidemic using max-flow vs. egalitarian dissemination. (a) The global coverage 
R(t) vs. t  following an outbreak at Burundi (BJM) under three scenarios: severe (dark red R0 = 10 ), intermediate (red, 
R0 = 2 ) and mild (light red, R0 = 1.5 ). (b) The state of the epidemic (under R0 = 2 ) at t = 56 days, directly before drug 
dissemination begins. The local coverage rn(t) in each node and the flux of infected individuals along each link (air-route) 
are represented by their red color depth. (c) Max-flow dissemination: starting at tR = 56 we begin drug dissemination from 
Osaka (ITM) via max-flow; Eqs. (2)–(5). Drug fluxes Lnm(t) (links) and drug availability qn(t) (nodes circumference) are 
represented by blue color depth. We observe a race between the therapeutic and the disease, both spreading along similar 
routes, ending in a significant fraction of infected individuals, as indicated by the prevalence of red nodes at t = 100 . (d) 
Egalitarian dissemination: under the same scenario, the egalitarian strategy of Eqs. (12)–(14) achieves a much more efficient 
mitigation, where by t = 100 , the epidemic is almost eliminated. (e)–(g) R(t) at the three time-points for the unmitigated 
spread (red), under max-flow (yellow) and under egalitarian (green). By t = 100 egalitarian has reduced the global coverage 
by a factor of ∼ 20 , from R(t) = 0.65 to R(t) = 0.04 , while max-flow has achieved a mere ∼ 1.5 factor reduction. Three 
crucial parameters may impact our mitigation: the global transportation capacity C , our response time tR and the severity 
of the contagion R0 . (h) Mitigation efficiency E vs. C under egalitarian (green) and max-flow (yellow). The former achieves 
higher efficiency with orders of magnitude less resources. For example, egalitarian provides E = 0.8 under C ∼ 10−3 , as 
compared to C ∼ 10−1 , a two order of magnitude gap, required under max-flow for similar efficiency. (i) E vs. tR . Again, we 
find that egalitarian shows a significantly higher performance in the face of a late response. (j) E vs. R0 , confirming, again, the 
consistent advantage of egalitarian mitigation. In each panel we vary one parameter and list the set values of the other two.
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In Fig. 2b,c we present the evolution of the epidemic at four selected time-points. At t = 0 we simulate an 
outbreak (red) at Burundi (BJM), emulating the 2013 Ebola, which originated in  Africa35,36, then track its spread 
through air-travel, setting R0 = 2 . The node infection levels and the epidemic fluxes, i.e. the daily volume of 
infected passengers on each route, are represented by red color depth. Drug dissemination via max-flow opti-
mization (blue) begins at tR = 57 days in Osaka (ITM), using blue color depth to signify the availability/flux of 
drugs in each node/route. We set the network capacity in Eq. (6) to C = 10−2 , a dissemination capability of 1% 
of the global demand per day, and assign demands Dn(t) using the impact-based strategy. We find, through the 
long-term prevalence of infections (Fig. 2c, red), that under these conditions, mitigation falls short. Indeed, in 
Fig. 2e–g we observe that the coverage R(t) in (1) is only slightly affected by our max-flow mitigation (red vs. 
yellow), illustrating the failure to effectively suppress the epidemic.

For a more systematic assessment of our dissemination strategy, we track the mitigation efficiency  via15

where R∞(C) is the long term coverage of the epidemic, i.e. R(t → ∞) , under mitigation with network capac-
ity Cs = C . Efficient mitigation has R∞(C) ≪ R∞(0) , capturing a significant reduction in the disease coverage, 
which in (7) translates to E → 1 . Conversely, a failed mitigation leaves infection levels almost unchanged, lead-
ing to E → 0 . Testing E vs. C under maximum flow dissemination, we find that for a broad range of C levels the 
epidemic is almost unaffected, a consistently inefficient mitigation in which E ≪ 1 (Fig. 2h, yellow). Effective 
mitigation is only achieved around C � 0.1 , a limit in which s is capable of shipping doses in the order of the 
entire global demand in just a few days. Such optimal conditions are not only unlikely, but mainly, they indicate 
the inefficiency of this dissemination strategy, requiring an extreme volume of therapeutics shipped in a highly 
constrained timeframe in order to achieve a measurable impact on the epidemic.

It seems, therefore, that the max-flow optimization strategy is inadequate for the containment of a glob-
ally spreading epidemic. In Supplementary Section 2 we analyze the population and urgency-based strategies, 
observing similar challenges.

The roots of the max‑flow inefficiency
Our mitigation is, in its essence, a spreading competition between the therapeutics and the pathogens, both 
progressing along the same underlying network, i.e. air-transportation19. It seems, therefore, that winning this 
competition is a matter of shipping capacity: we must generate sufficient therapeutic fluxes to outrun the spread of 
the disease, namely we must increase Cs . However, the analysis above indicates, that there is an intrinsic deficiency 
in the spread of therapeutics, that cannot be easily compensated by simply increasing shipping rates. Next, we 
show that the real challenge is rooted in the fact that the two competing processes—epidemics vs. therapeutics—
lead to fundamentally different spreading patterns, in which the pathogens benefit from an intrinsic advantage.

Propagation of pathogens (Fig. 3a,b). Pathogens spread via diffusion coupled with local SIR dynamics, 
as captured by Eqs. (16) in Box 1. In this process, upon penetration of node n , the pathogens reproduce locally 
through SIR, until reaching peak infection at t = TP

n  . In a network environment, since the majority of nodes are 
at the mean distance from the initial outbreak, we find that after a limited propagation time, most nodes reach 
peak infection approximately simultaneously. We track this via the infection rate

capturing the average speed by which the pathogens propagate to n . In Fig. 3b we show P(I) , the probability 
density for a randomly selected node n to have In ∈ (I, I+ dI) . Indeed, we find that In follows a bounded dis-
tribution, where the majority of nodes are infected at a similar rate, and hence their peak infection occurs at 
roughly the same time. Such uniform propagation patterns lead to a simultaneous global peak infection, and, as 
a consequence, to a concurrent global demand for therapeutics.

Dissemination of therapeutics (Fig. 3c,d, Supplementary Section 4). The dynamics of commod-
ity flow, as provided by Eqs. (2)–(5) are fundamentally different. The therapeutics flow from a single source node 
s , and undergo dilution as they disperse across the exponentially growing number of  pathways37,38. Such flow 
patterns naturally lead to a highly heterogeneous supply pattern across all nodes. To observe this we consider the 
therapeutic supply time TS

n for node n to fill its therapeutic demand, and its subsequent supply rate

where �tn = TS
n − tR , is the elapsed time from initial dissemination ( tR ) to n ’s final supply ( TS

n ). This rate Sn 
quantifies how rapidly n receives treatment. In Supplementary Section 4 we show that under max-flow mitigation 
the probability density P(S) follows a power law of the form

with ν = 2 (Fig. 3d). Hence, in contrast to the homogeneity of the pathogen spread, supply is extremely hetero-
geneous, with a vast majority of undersupplied nodes (small Sn , shaded 80% ), and a selected privileged minority 
of well-treated destinations (large Sn).

(7)E = 1−
R∞(C)

R∞(0)
,

(8)In =
1

TP
n

,

(9)Sn =
1

�tn
,

(10)P(S) ∼ S
−ν ,
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Figure 3.  Why max-flow provides sub-optimal mitigation. (a) Pathogens spread via contagion dynamics, 
reproducing in each desination independently via the SIR process. The result is a relatively homogeneous 
spread, in which the majority of destinations reach peak infection (red) at approximately the same time. Here 
this is observed by the almost uniform red shade and size of all nodes, capturing the instantaneuous infection 
levels jn(t) during the time of global peak infection. (b) To quantify this we measure the infection rate In 
of all nodes as obtained from Eq. (8), and plot its distribution P(I) . The bounded form of P(I) indicates the 
homogeneous nature of the pathogen spread. Indeed, we find that 80% of the nodes are impacted wthin a small 
margin around the average (shaded area). (c) Using max-flow we track the availability of the therapeutics qn(t) 
at all destinations (node size/blue color depth). In contrast to the pathogens, the therapeutics naturally spread 
extremely unevenly, with a small minority of early supplied nodes (large, dark blue), coexisting alogside a 
majority of delayed destinations (small, light blue). (d) The supply rate distribution P(S) as obtained via max-
flow (circles). As predicted in Eq. (10), P(S) can be approximated by a power-law P(S) ∼ S

−ν , with ν = 2 (solid 
line). This captures an extremely heterogeneous dissemination pattern, in which 80% of the nodes are supplied 
at a below average rate (shaded area). Hence, max-flow confronts a homogeneous demand ( jn(t) , red) with an 
extremely hetergeneous supply ( qn(t) , blue). (e) The local efficiency En vs. supply rate Sn as obtained via max-
flow dissemination. As expected we find that Sn crucially impacts the mitgation effectiveness at n . Therefore, 
the fat-tailed nature of P(S) , in which the majority of nodes have a small Sn (80%, shaded) creates an intrinsic 
mitigation defficiency, in which most destinations experience insufficient supply. The challenge, we emphasize, is 
not in the production/shipping capacities, as indeed we have �S� ≈ �I� ≈ 10−2 , namely, that on average, supply 
rate can meet the evolving demand. Rather, is is rooted in the patterns of spread of the existing supply, which are 
fundamentally incongruent with those of the pathogens.
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Together, this combination of homogeneous demand and heterogeneous supply, a consequence of the naturally 
occurring spreading patterns of pathogens versus commodities, creates a crucial gap in our ability to effectively 
mitigate a global pandemic. To understand this, consider ideal flow conditions, where 〈S〉 > 〈I〉 , namely that, on 
average, drug dissemination is more rapid than the pathogen propagation. Still, the fat-tailed nature of P(S) vs. 
the bounded form of P(I) indicates that while most nodes have In ≈ �I� , when it comes to supply, the typical node 
has Sn < 〈S〉 . Indeed, in a scale-free distribution the majority of entries are below the mean. This is illustrated in 
Fig. 3, where we show that 80% of nodes are within a 20% margin of 〈I〉 , i.e. they are all impacted within a narrow 
time window around the mean (Fig. 3b, shaded). Yet, in contrast, a similar 80% have a therapeutic rate below 〈S〉 , 
i.e. they witness supply deficiency (Fig. 3d, shaded). Hence we are confronted with a reality in which almost all 
nodes require treatment, and yet only a small minority receives sufficient, and at times, even superfluous, supply.

This uneven distribution P(S) directly impacts our mitigation efficiency. To observe this, consider the local 
efficiency

where rn,∞(C) = rn(t → ∞) under mitigation with capacity Cs = C . While E in (7) captures the global mitiga-
tion efficiency, En focuses specifically on the effect observed at n , hence quantifying n ’s local benefit from the sup-
plied drugs. In Fig. 3e we show En vs. Sn . As predicted, we observe that Sn is a crucial determinant of mitigation 
efficiency. Indeed, nodes with low Sn (shaded), by far the majority of nodes thanks to the power-law structure of 
P(S) , exhibit an almost vanishing En . This illustrates, once again, the flaw of max-flow: most nodes, the deprived 
80% , have En → 0 , while a small minority benefit from En → 1.

Taken together, our analysis shows that the common approach of maximizing flow is insufficient, as it treats 
the mean flow, but not its distribution. Most essentially, it disregards the interplay with the competing flow of 
the pathogens. The crucial point it that the main challenge is rooted in equality ( P(S) ) rather than in quantity 
( 〈S〉 ), namely not the volume of the outflux, Ls→(t) , but rather the way in which this volume distributes across 
the network. Hence, below, in addition to max-flow, we also optimize for supply homogeneity.

Optimizing for homogeneity
Egalitarian mitigation (Fig. 1c). The optimization of Eqs. (2)–(5) is designed to increase the volume of 
drugs introduced into the network, but as we have shown, it leads to an extremely sub-optimal dispersion pat-
tern. To remedy this, we introduce a homogeneity criterion, replacing the maximization in (2) by (Supplemen-
tary Section 2)

where the homogeneity coefficient H determines the relative balance between our optimization for max-flow 
( Ls→(t) ) vs. our demand for egalitarian spread ( �(t) ). In addition to constrains (4) and (5) above, we now also 
require

and

forcing, at each step, to supply, at the least, a fraction �(t) of every node’s current demand. This strategy seeks to 
maximize flow, but at the same time favors solutions that supply all nodes simultaneously. Indeed, constraint (13) 
prohibits shipping sequences that at any step supply exclusively a subset of the nodes. This additional constraint 
may, in general, lead to a diminished net flow, however, thanks to its egalitarian nature, we find that it dramati-
cally enhances mitigation efficiency.

To observe this, we revisit the epidemic spread of Fig. 2, leaving all conditions unchanged, except that now, 
instead of the max-flow optimization of (2)–(5) we mitigate the disease via the egalitarian strategy of (12)–(14). 
The results are striking: egalitarian dissemination practically eliminates the epidemic, as observed by the domi-
nance of blue nodes/links at t > tR (Fig. 2d). Indeed, compared to the ∼ 30% reduction in R(t → ∞) afforded 
by max-flow, egalitarian achieves, under the same capacity Cs , a ∼ 95% reduction, representing a practically 
perfect mitigation (Fig. 2g, yellow vs. green).

A systematic comparison of the two mitigation strategies consistently supports the crucial role of dissemina-
tion homogeneity. In Fig. 2h we show the efficiency E in (7) vs. C under egalitarian dissemination (green). We 
find that E approaches 80% already at C ∼ 10−3 . This represents an extreme case of supply deficiency, and yet it 
affords us a rather desirable outcome. A similar E under max-flow was only observed for Cs ∼ 10−1 (yellow), a 
two order of magnitude advantage for egalitarian.

A crucial factor impacting our mitigation efficiency, is the response time tR , required to identify the threat 
and initiate a response. To observe this, in Fig. 2i we present E vs. tR for both max-flow (yellow) and egalitarian 
(green) mitigation. As expected, we find that E declines with tR , however, for the entire range of response times 
egalitarian consistently outperforms max-flow. In Fig. 2j we further show that the egalitarian advantage is con-
sistently maintained for a range of contagion levels R0.

Hence, examined against a series of potential challenges, from the disease parameters ( R0 ) to the perfor-
mance level of our response ( tR,Cs ), we find that egalitarian allows enhanced mitigation, in some cases, by a 

(11)En = 1−
rn,∞(C)

rn,∞(0)
,

(12)Maximize

{

Ls→(t)+H

N
∑

n=1

�(t)Dn(t)

}

,

(13)Ln←(t) ≥ �(t)Dn(t) for all n = 1, . . . ,N , n �= s

(14)0 ≤ �(t) ≤ 1,
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dramatic margin. This, again, is thanks to egalitarian’s homogeneous dissemination patterns, which, at the price 
of a potentially diminished supply rate, afford us a more desirable supply distribution, and consequently, an 
optimized mitigation.

The roots of the egalitarian advantage. The efficiency of egalitarian mitigation may seem, at first 
glance, implausibly high. For example, Fig. 2h indicates that effective mitigation is already achieved with capac-
ity as low as C ∼ 10−3  day−1. This represents an extreme scenario, in which we require an order of 103 days to 
supply the global demand, a time-scale that by far exceeds the final spread of the epidemic. Such extraordinary 
efficiency is rooted in the fact that even a tiny influx of drugs introduced at an early enough stage of the epidemic 
can dramatically impact its future development.

To understand this, consider a node n at the early stages of the spread, when jn(t) ≪ 1 . As time advances, 
this small seed of infections reproduces until n reaches its final infection levels rn(t → ∞) . Suppressing this seed 
when it is small is, therefore, the optimal strategy, allowing us, with a tiny supply of therapeutics, to eliminate 
not just the current jn(t) , but also terminate its potential future reproduction. Hence, maintaining a continuous 
influx of therapeutics, even at a very low rate, keeps jn(t) subdued, never allowing the local infections to reach 
their potential coverage. Egalitarian mitigation is precisely designed to provide such supply patterns: instead of 
rapidly supplying a select group of nodes at a time, it favors a slow influx that is spread evenly across all nodes, 
starting from the get-go at t = tR.

In contrast, max-flow generates a similar (or even higher) total flux, but spreads it out sequentially—few 
nodes receive all their supply early on, and are hence successfully treated, while the majority fill their demand at 
a much later time, when jn(t) is already harder to contain. To observe this, we revisit the simulated mitigation of 
Fig. 2, this time focusing on a pair of specific nodes (Fig. 4a): SDJ which is among the few early supplied nodes 
( SSDJ = 0.2 , red), and CGQ, a typical node that represents the majority of destinations, which receive their supply 
later on ( SCGQ = 3× 10−3 ). In Fig. 4b,c we show the drug availability qn(t) in both nodes (blue), together with 
their unmitigated (red) vs. mitigated (yellow) disease coverage. Indeed, we find that early supply is crucial, with 
SDJ benefiting from an almost perfect mitigation, and CGQ being almost unaffected by the late arriving drugs.

Under egalitarian mitigation the supply pattern is fundamentally different. Here, as per the equality constraint, 
both nodes settle for the slower rate SSDJ ≈ SCGQ ≈ 10−3 . Hence, egalitarian provides no overall rate advantage, 
and, in fact, disadvantages the previously privileged SDJ. However, now, instead of qn(t) remaining idle and 
then, in due time, receiving a sharp supply boost, it is continuously supplied from the outset at tR (Fig. 4d,e), a 
direct consequence of the homogeneity constraint of (12)–(14). The advantage is that now both SDJ and CGQ 
receive treatment early on, mitigating the disease while it is still small, and thus suppressing its potential growth.

Therefore, while egalitarian impedes the supply of the high rate minority, it still allows us to successfully treat 
both that minority and the low rate majority. This is because its simultaneous, even if slow, supply, affords early 
treatment for all nodes, overcoming jn(t) while it is still at its embryonic stage.

Mitigation under restricted supply. A crucial implication of the above analysis touches on the global 
resources required for  mitigation39,40. Clearly, if we run the max-flow/egalitarian algorithm until all demands 
are filled, we will inevitably arrive at a total cost of ∼ � drug units, supplied at a time-scale of ∼ �/Cs days. 
However, since egalitarian begins supplying all nodes while jn(t) is still small, it has the potential to overcome 
the pandemic even before all initial demands Dn(0) are completely satiated. To observe this, we run both strate-
gies—max-flow and egalitarian—for a limited time, from t = 0 to T . We then measured the efficiency E (7), in 
function of the total resource consumption

Equation (15) quantifies the total outflux of therapeutics from s as a fraction of the global demand � , through-
out the mitigation period 0 ≤ t ≤ T . The greater is Q(T) , the more therapeutic resources that are consumed. As 
predicted we find in Fig. 4g that egalitarian, not only provides a higher mitigation efficiency, but achieves this 
in a fraction of the resources. For max-flow (yellow) we observe a linear gain with Q , reaching peak efficiency 
only around Q → 1 , i.e. when supply fills all demands. Egalitarian, in contrast, thanks to its simultaneous treat-
ment of all nodes, suppresses the epidemic early on, when it is still manageable, with limited supply. Therefore 
it enables mitigation above 90% (grey dashed line) with total consumption as low as Q ∼ 0.1 , i.e. a mere 10% of 
the global demand.

COVID‑19 mitigation
Our discussion, up to this point focused on a hypothetical scenario, designed to help us best compare the two 
contending dissemination strategies, max-flow vs. egalitarian. We, therefore, assumed ideal conditions, where, 
aside from our drug dissemination, all else remains unchanged, i.e. no lockdowns or travel restrictions. In reality, 
however, as clearly observed during the spread of COVID-19, our mitigation, hitherto based on vaccines rather 
than drugs, is also reinforced by reduction in international travel, regional lockdowns, testing and other social 
distancing practices. As a result, the spreading patterns, characterized by global waves of infection, are highly 
distinct from the clean SIR dynamics of Box 1.

(15)Q(T) =
1

�

T
∫

0

Ls→(t)dt.
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Figure 4.  The roots of the egalitarian advantage. (a) We focus on two specific nodes, SDJ (right), who, under max-flow, is among the 
early supplied nodes ( SSDJ = 0.2 ), and CGQ (left), representing the majority of undersupplied destinations ( SCGQ = 3× 10−3 ). 
(b) Therapeutic availability qn(t) vs. t  at CGQ (blue) as obtained under max-flow dissemination. Due to the sequential nature of this 
dissemination scheme, the therapeutic reaches CGQ too late, and consequently its infection level jn(t) remains high, both without 
(red) and under the effect of max-flow mitigation (yellow). (c) In contrast, SDJ is among the first to fill its demand, hence the sharp 
rise in qn(t) at an early stage (blue). As a result this node benefits from highly efficienct mitigation, with rn(t → ∞) reduced 
dramatically from 80% (unmitigated, red) to a mere 15% (mitigated, yellow). The challenge is that while CGQ is representative of 
the majority of destinations, the highly benefited SDJ belongs to a highly exclusive minority and hence cannot represent the typical 
mitigation efficiency. (d,e) Egalitarian generates a homogeneous supply pattern, hence now both CGQ and SDJ share a similar (low) 
supply rate of ∼ 10−3 . Still, they both benefit from a near perfect mitigation (unmitigated—red; mitigated – green). This is thanks to 
the fact that despite their equal but slow supply, they now both begin to receive the therapeutic at an early stage ( qn(t) , blue). Indeed, 
even SDJ, who is now, under egalitarian, experiencing a dramtic drop in its supply rate, from 0.2 to 10−3 , continues to benefit from 
highly efficient mitigation. Hence, the simulataneous, albeit uniformly slow, treatment afforded via egalitarian, not only benefits 
the max-flow deprived majority, but also continues to effectively treat the superflous minority. (f) The global consumption Q(t) vs. 
t  , approaching unity, i.e. all demands are filled, when t → ∞ . (g) Global mitigation efficiency E vs. the volume of disseminated 
therapeutics Q . Under max-flow we have E → 1 only in the limit Q → 1 (yellow), i.e. supplying the entire global demand. In 
contrast, egalitarian has E ∼ 1 already at Q ∼ 0.1 , achieving, thanks to its concurrent supply patterns, an almost perfect mitigation 
with only 10% of the resources.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10430  | https://doi.org/10.1038/s41598-022-12261-x

www.nature.com/scientificreports/

Still, despite these distinctions, our main observation on the supply/demand discrepancy, i.e. Figure 3, remains 
relevant also in the case of COVID-19. To demonstrate this, we collected data on the spread of both the SARS-
CoV-2  virus41 and the  vaccines42 across different countries. We then evaluated the infection/supply rates In and 
Sn of Eqs. (8) and (9) by extracting the delays in the first penetration of the virus, and in the kickoff of the vac-
cine rollout at each location (Supplementary Section 6). As predicted, we find that P(I) is bounded, capturing a 
homogeneous spread of the virus, while P(S) is fat-tailed, well-approximated by Eq. (10) with ν = 2 , precisely 
following our prediction (Fig. 5a–d).

This mismatch between the two spreading patterns, and specifically our quantitatively accurate prediction 
of P(S) , captures the heart of our theoretical analysis, motivating the need for our egalitarian dissemination 
strategy. Hence, while our modeling framework is to some extent stylized, factoring out many of the evident 
complexities observed in real-world pandemics, these empirical observations offer a crucial testament to the 
practical relevance of our strategy beyond its clean model assumptions.

With several new COVID-19  drugs31 at different stages of development, we are now offered an opportunity 
to change route, and revisit our mitigation strategy. Observing the extreme inequality in our de facto vaccine 
distribution (Fig. 5d), it is crucial that we do not recover similar dissemination patterns with the upcoming drug 
shipments. To examine the playout of our shipping protocols in this realistic setting, we repeated the simulations 
of Fig. 2, this time using the COVID-19 disease cycle instead of SIR. Hence, we now use a four-state compartmen-
tal model, susceptible, exposed, infected, recovered (SEIR), with transition  rates43,44 adjusted to fit the data col-
lected on the spread of SARS-CoV-2 (Supplementary Section 6). Our results clearly indicate that, similarly to our 
hypothetical SIR scenario, the COVID-19 therapeutics should also be delivered as evenly as possible (Fig. 5e–g).

Figure 5.  Vaccine and drug-based mitigation of COVID-19. (a) To track the SARS-CoV-2 spreading patterns 
we collected data on jn(t) vs. t  from the intial stages of the pandemic in 41 countries. Fitting each curve to a 
shifted exponential of the form jn(t) ∼ eχn(t−τPn ) we were able to exract the observed COVID-19 infection rate 
( χ ) and delay time ( τP ) in each destination (Supplementary Section 6). We set t = 0 at the date of the intial 
outbreak in Wuhan, China (January 22, 2020). This allows us to extract the local infection rate In = 1/τPn  , 
as appears in Eq. (8). Here we show the results for two selected coutries, Italy and UK. (b) The infection rate 
distribution P(I) vs. I . As predicted, we observe a bounded distribution, which translates to a homogeneous 
spreading pattern. (c) We tracked the vaccine rollout vn(t) in 229 countries (three examples shown here). In 
each country the vaccination campaign begins at τ Sn (dot), allowing us to evaluate the country’s supply rate 
via Sn = 1/τ Sn , as in Eq. (9). Here t = 0 represents the time of first vaccine shipment (December 1, 2020). (d) 
P(S) vs. S as obtained from COVID-19 vaccination data. We observe a power-law of the form of Eq. (10) with 
ν = 2 , precisely our predicted supply patterns. This confirms our thoeretical analysis, showing that indeed, 
pathogens spread homogeneously, while supplies (here vaccines) spread extremely heterogeneously. (e,f) We 
tracked drug distrbution via max-flow (e) and egalitarian (f) against the spread of COVID-19 (Supplementary 
Section 6). The total number of infections rn(t) at t = 150 days is represented by red color depth, and the flux of 
therapeutics along each route by blue. Here we set the outbreak node o to Wuhan, China and the source node s 
to Brussles, Belgium, one of the distribution sources of the Pfizer-BioNTech COVID-19 vaccine; capacity was set 
at C = 5× 10−3 . As expected, we find, by comparing the amound of red nodes, that egalitarian supercedes max-
flow. (g) Efficiency E vs. capacity C as obtained from simulations of COVID-19, show the systematic advantage 
of egalitarian (green) over max-flow (yellow).
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Box I: Modeling the mitigation of a global epidemic. In a network of N coupled nodes 
n = 1, . . . ,N , each with a population of Mn individuals, we use the SIR model to track the fraction of Mn 
who are susceptible ( sn ), infected ( jn ) or removed ( rn ). The infected are divided as jn = jTn + jUn  , among the 
treated ( T ) individuals, who have been provided a therapeutic and the untreated ( U ) individuals, who have 
not yet gained access to it. The epidemic dynamics is driven by (Supp. Sec. 1)

where α is the infection rate, β is the mortality/recovery rate of the untreated individuals and ζ > β is the 
recovery rate under treatment. The epidemic reproduction number R0 = α/β captures the level of conta-
gion of the (untreated) disease. The therapeutic consumption rate ρ(qn) depends on the availability of the 
therapeutic qn(t) in n , as

Hence ρ(qn) increases linearly with qn(t) as long as the demand (denominator) exceeds the supply. It then 
saturates to unity when n has excess quantities of the therapeutic, avoiding overconsumption (Supp. Sec. 1.2). 
The availability qn(t) is determined by our dissemination scheme, following either max-flow, as in Eq. (3), 
or egalitarian flow, as in Eq. (11).

In (16) we introduce an invasion threshold ε through the sigmoidal function

which activates the local SIR dynamics only when the local infection levels jn = jUn + jTn  exceed ε (Supp. Sec. 
1.1). The diffusion of individuals between nodes is mediated by Anm , derived from the empirical international 
air-travel network (Supp. Sec. 2.1).

Discussion
Commodity flow problems are at the heart of many crucial applications, from communications to supply-chains, 
seeking to optimize a network’s capacity to distribute information or  goods20–25,45–47. Most often the target opti-
mization function, e.g., max-flow, arises naturally from the purpose of the distribution. However, in the context 
of disease mitigation, the optimization is a consequence not just of the dissemination scheme, but also of its 
interplay with the viral spread. Indeed, our true goal is not just distribution efficiency in and of itself, but rather 
mitigation efficiency. Hence, to assess a dissemination protocol we must couple it with the spread of the epidemic, 
and observe its effectiveness in terms of the actual observed reduction in infection levels. Here we have shown 
that the naïve approach of maximizing the commodity flow fails this test, indeed, providing rapid supply, but 
at the same time a highly inefficient mitigation. On the other hand—optimizing for homogeneity dramatically 
improves mitigation efficiency.

Our methodological analysis, and its rather dramatic results, were obtained on a hypothetical scenario, 
in which the spread is driven by SIR dynamics, the mitigation is based on pre-existing drug supplies, and no 
additional restrictions, such as lockdowns or travel bans, are employed. This allowed us to focus on the unique 
impact of our dissemination strategy, removing all additional factors that may impact the spread. In reality, as 
COVID-19 has demonstrated, real-world pandemics are potentially more complex, both in terms of the disease 
cycle (SEIR), the disseminated commodity (vaccine) and the social response (distancing, travel restrictions). This 
will likely require specific adaptations to our methodological idea, but as Fig. 5 clearly indicates—in its essence the 
egalitarian advantage remains equally relevant also in this more complex setting. Additional practical considera-
tions, such as the potential existence of multiple distribution sources, or the fact that the shipping network may 
be diverted or restructured for the specific mitigation requirements, are examined in Supplementary Section 5.

Battling a global spread, it is crucial to appropriately set the demands Dn(t) , which determine how much sup-
ply will be shipped to each node. On the side of caution, the natural tendency is to overestimate these demands, 
i.e. generate redundancy. However, in the face of a globally spreading epidemic, where the distribution network is 
stretched to its maximal capacity, such strategy may over-allocate resources to some destinations, while depriving 

dsn

dt
= −αsUn jnσ

(

jn
)

+

N
∑

m=1

Anm(sm − sn)

djUn
dt

= αsnjnσ
(

jn
)

− βjUn − ρ(qn)j
U
n +

N
∑

m=1

Anm

(

jUm − jUn
)

djTn
dt

= −ζ jTn + γρ(qn)j
U
n +

N
∑

m=1

Anm

(

jTm − jTn

)

(16)
drUn
dt

= βjUn + ζ jTn +

N
∑

m=1

Anm

(

rTm − rTn

)

,

(17)ρ
(

qn
)

= min

{

qn(t)

jUn (t)
, 1

}

.

(18)σ
(

jn
)

=

(

jn/ε
)h

(

jn/ε
)h

+ 1
,



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10430  | https://doi.org/10.1038/s41598-022-12261-x

www.nature.com/scientificreports/

others. This is, in fact, currently observed as countries are securing excess amounts of COVID-19 vaccine doses at 
the expense of  others48. On the other hand, fine-tuning the demands to meet the exact supply gap of each node, 
as we do, for example in our urgency-based strategy, is highly complex, not always practical, and, if inaccurate, 
may lead to undersupply in some destinations. Our egalitarian optimization addresses this trade-off quite natu-
rally, by simultaneously supplying all nodes. To understand this consider two nodes n and m . Under max-flow, 
supply will be typically sequential, e.g., n and then m . Under these conditions, overestimating Dn(t) will lead to 
the shipment of more doses to n , thus wrongly delaying the treatment of m . In contrast, such discrepancy under 
egalitarian, will have no bearing on m , as both nodes are simultaneously supplied from the start. This makes 
egalitarian highly robust against the specific assignment of Dn(t) , allowing us to design a simple dissemination 
protocol, free of the need to accurately tailor and fine-tune all demands.

Our analysis focuses on drug-based mitigation, and—in and of itself—has limited relevance to vaccine dis-
tribution. The main difference is that vaccines—a preemptive mitigator—are supplied to the susceptible popula-
tion, while drugs are administered to the infected. As Fig. 4 indicates, this distinction is crucial. Indeed, at any 
given point in time, since only a small part of the population is infected ( jn(t) ), a slow but equal drug supply can 
help suppress the disease in the vast majority of nodes, curing not just the currently infected, but also all their 
future secondary infections. In simple terms, all nodes benefit thanks to the equality, and practically none pay a 
significant price because of the resulting slowdown in supply rates. This, however, is not the case regarding the 
susceptible population, which at the early stages of the disease follow sn(t) ∼ 1 , i.e. almost all individuals require 
a vaccine dose. Hence, the egalitarian benefit in which all nodes receive the vaccines, is potentially undermined 
by the subsequently constricted supply rates. Consequently, while egalitarian continues to outperform max-flow, 
the margin in vaccine distribution is not nearly as dramatic as the one observed under drug-based mitigation 
(Supplementary Section 5).

Despite the above, there are many additional considerations in favor of distribution equality, that are not cov-
ered by our current modeling  framework48,49. For example, the risk of vaccine evading mutations is dramatically 
increased in countries with low vaccine coverage, in which vaccinated and unvaccinated individuals continuously 
 interact50. We, therefore, believe, that on top of the results shown here, the call for distribution equality—in drugs 
or vaccines—should be our main guideline in battling COVID-19 or any future global health crisis.

Our analysis focuses solely on the mitigation efficiency, yet its conclusions touch upon the ethics of resource 
allocation during a global emergency. While often one is confronted with a clash of values in such cases, here 
we find it encouraging that efficiency and equity are, in fact, compatible—representing a case in which scientific 
results go hand in hand with moral directives.

Data availability
All data and code to reproduce and improve our analysis is freely available via: https:// figsh are. com/ accou nt/ 
home#/ proje cts/ 139465.
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