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Low divergent MeV‑class proton 
beam with micrometer source size 
driven by a few‑cycle laser pulse
Prashant K. Singh1*, Parvin Varmazyar1, Bence Nagy1, Joon‑Gon Son1,2, 
Sargis Ter‑Avetisyan1 & Karoly Osvay1,3*

Spatial characterization of 0.5 MeV proton beam, driven by 12 fs, 35 mJ, 1019 W/cm2 intense laser-foil 
interaction is presented. The accelerated proton beam has been applied to obtain a high-resolution, 
point-projection static radiograph of a fine mesh using a CR-39 plate. The reconstruction of mesh edge 
blurring and particle ray tracing suggests that these protons have an effective source size (FWHM) 
of just 3.3 ± 0.3 µm. Furthermore, the spatial distribution of the proton beam recorded on the CR-39 
showed that the divergence of these particles is less than 5-degree (FWHM). The low divergence and 
small source size of the proton beam resulted in an ultralow transverse emittance of 0.00032 π-mm-
mrad, which is several orders of magnitude smaller than that of a conventional accelerator beam.

Intense femtosecond laser-driven proton beams1,2 have unique properties, both in the temporal (picosecond 
bunch duration3) and in the spatial domain (small source size4–6 and laminar beam7). Thanks to these features, 
the laser-driven proton beams can be potentially used in a wide range of applications such as unravelling the 
transient plasma-dynamics via proton imaging8,9, creation of warm-dense-matter state by isochoric heating of 
solid materials10, radiobiological effects of laser-driven ions11,12 or transmutation13,14. Some of these applications, 
due to high-flux requirement10,11,13,14, may be benefited from a collimated particle beam. This is where the laser-
driven ions suffer due to inherent large angular divergence (typically in the range of 10°–60°)15,16. To improve 
the beam collimation, several external, post-acceleration schemes17–20, involving both static (using quadrupole 
magnets21,22) and dynamic lensing23,24 have been demonstrated. Recently, few experiments have improved the 
inherent laser-driven proton divergence after suppressing the laser prepulse with double-plasma mirrors25 or 
with saturable absorbers26. These studies suggest that a laser system with high-temporal intensity contrast could 
be more effective in achieving a low divergent proton beam. Reduction of the inherent beam divergence can also 
be beneficial in minimizing particle flux losses that occur during the post-acceleration beam guiding phase21,22. 
Besides the issue of beam collimation, some applications8,9 also demand a small source size, as this affects the 
ultimate spatial resolution that can be realized in point-projection radiography5 or ion-beam lithography27. 
Unlike the beam collimation21,22, improving the inherent proton source size is non-trivial, and much harder to be 
corrected by post-acceleration schemes28. The combined effect of these two features, namely, the beam collima-
tion and small source size can help in minimizing the transverse emittance of the beam, which defines the merit 
of beam transport29 and ultimate focal spot7. Besides promising aspects of improvement in the beam divergence 
and source size, the inherent broadband spectrum of the laser-driven proton beam remains a concern while 
considering the transport or post acceleration of such a beam. Reducing the energy spread of laser-driven ion 
beams has been a long-standing goal, which requires better understanding and control of complex underlying 
physics of laser-solid interaction1.

So far, high-energy, multi Joule level laser systems, operating under single-shot mode have been used to drive 
these experiments1,2. Recently, a different regime of generating high-quality particle beams has been explored 
with modest energy (10’s mJ), few-cycle laser systems30–34. By focusing a few-cycle, mJ laser pulse to the dif-
fraction limit, relativistic intensities35 or the so-called lambda-cube regime36 can be achieved. These systems, 
operating at kHz37,38 or higher repetition rate, can generate MeV proton beams32,33 and could provide the users 
with a similar average particle flux (although at much lower ion cut-off energy) compared to what multi-Joule 
laser systems on a single shot basis do. These MeV-class proton beams can find direct applications in areas such as 
ion-beam implantation39, ion injector in a conventional accelerator40,41, production of bright neutron flux via D(d, 
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n) reaction42–45 for transmutation of spent nuclear fuel14 or recreation of rapid (r) process for nucleosynthesis46,47. 
Towards these goals, here we present the spatial characterization of a laser-driven proton beam generated at an 
intensity of 1019 W/cm2 with a 12 fs laser pulse. Our measurement with point-projection imaging technique4,6 
shows that accelerated proton beams of 0.5 MeV energy have effective source size as small as 3.3 µm and are well 
confined with an angular divergence of less than 5°. Due to low-divergence and small source size, these proton 
beams possess ultra-low transverse emittance and therefore can be used for efficient particle transport or as an 
injector in the accelerators.

Results
Experimental set‑up.  The experiment was performed with the SYLOS Experimental Alignment Laser 
(SEA Laser) at the ELI-ALPS facility in Szeged, Hungary38, details described in the method section. Briefly, the 
laser-driven proton beam was generated by a 12 fs, 35 mJ, linearly polarized, NIR (840 nm) laser pulse, focused 
on a 2 µm thick Al foil target at zero angle of incidence (Fig. 1a). The measured laser focal spot of 2.9 µm × 3.5 µm 
(FWHM), lead to the estimated peak intensity of 1019 W/cm2 (Fig. 1b). The kinetic energy spectrum of the for-
ward accelerated proton beam was measured with a Thomson Parabolic spectrometer (TPS). Figure 1c shows the 
raw image of the particle traces, where protons dominate over other ion species such as carbon or oxygen. The 
corresponding estimated kinetic energy spectrum (Fig. 1d) of the proton beam shows cut-off energy of 0.5 MeV.

The spatial characterization of the proton beam was carried out by projection imaging of a periodic mesh 
with a proton beam accelerated by a single laser shot onto a CR-39 plate. The geometric magnification of the 
mesh, calculated from the distance (Fig. 1a), is 32.2. The 300-LPI Copper mesh, having a thickness of 20 µm, 
blocks protons up to 2 MeV (higher than our proton cut-off energy of 0.5 MeV) and therefore ensure no pos-
sible degradation of edge sharpness due to partial transmission of protons while crossing the mesh. To avoid the 
saturation of the CR-39 plate from the low energy protons and the Carbon ions, a 2 µm thick Al filter was used 
in front of the CR-39. This filter can block protons up to 225 keV (shown by the vertical dash line in Fig. 1d) 
and carbon ions up to 1.8 MeV, which is much higher than the measured carbon ions during the experiment.

Angular divergence of the proton beam.  The proton beam spatial distribution, captured on the 
exposed CR-39 plate (Fig. 2a), shows that accelerated protons are well localized and centered along the target 

Figure 1.   Generation of laser-driven proton beam for point-projection imaging. (a) Schematic of the 
experimental set-up. A linearly polarized, 12 fs laser pulse irradiate the target (2 µm thick Al foil) at zero angle 
of incidence with a peak irradiance of 1019 W/cm2. A magnified image (32.2×) of the 300 lines-per-inch (LPI) 
mesh is projected on the CR-39 plate using the accelerated proton beam. (b) Measured laser focus intensity 
distribution along with horizontal and vertical line profile, fitted with gauss function having FWHM of 2.9 µm 
and 3.5 µm, respectively. (c) Raw TPS data, showing the dominance of proton beam over other ions and (d) 
corresponding calculated kinetic energy spectra of the proton.
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normal direction. Proper selection of the Al filter (2 µm thick) and distance of CR-39 from the target ( ∼ 38 cm) 
ensured that the proton pit number density (pits/mm2) were statistically robust and at the same time overlapping 
of proton pits or saturation of CR-39 plate was avoided. The spatial distribution of the proton beam has been 
plotted along two orthogonal directions, the horizontal (Fig. 2b) and the vertical (Fig. 2c), as indicated by yellow 
dash lines in Fig. 2a. The proton count density ( np ) in the central axis peaked at about 1100 pits in 0.01 mm2 area 
whereas 50 mm away from the central axis it dropped below 100 pits per 0.01 mm2 area. The error bar in the data 
represents the variation of counts by sampling from different regions of the same area of 0.01 mm2 and stand-
ard deviation ( √np ). The horizontal and vertical proton spatial distribution, fitted with a Gaussian function, 
shows a FWHM of 27.5 mm and 32.5 mm, respectively, which corresponds to the proton angular divergence of 
4.2◦ (FWHM) and 4.9◦ (FWHM) along the horizontal and vertical axis, respectively. This indicates that in our 
experimental conditions, the accelerated proton beam is low-divergent in nature.

Proton source‑size and emittance estimations.  The effective source size or the spatial resolution of 
the low-divergent proton beam is explored by examining the sharpness of the mesh edge. A 5× magnified image 
of the central mesh cell capture on the CR-39 is shown in the inset of Fig. 3a, with sharp edges on all four sides. 
To quantify the sharpness of the mesh edge, a 50× magnified image is recorded (Fig. 3a) along the left edge of the 
central cell, indicated by the Yellow box in the inset Fig. 3a. To determine the proton pit distribution, a numerical 
cell detection technique has been used, shown as reconstructed pit image in Fig. 3b. The deviation of pit counts 
between the numerical technique and manual counting was found to be less than 5%. The distribution of proton 
pit count along the horizontal axis (x), with summed along the vertical axis (y) is displayed in Fig. 3c. The proton 
counts starting from the baseline of nearly zero counts, sharply rises to a flat level of ∼ 100 counts. Here, just like 
in Fig. 2, the error bar represents the standard deviation ( √np ) of measured proton counts.

An extended, finite-size proton source leads to penumbral blurring of the mesh edge in the CR-39 plane. The 
mesh edge blurring can be considered as a convolution of proton source distribution at its origin and the edge 
transmission48. Considering step-function for the mesh edge and Gaussian distribution of proton source, the 
mesh edge blurring can be modelled with Gauss error function whose width corresponds to source width. After 
fitting the proton edge distribution with the error function (Fig. 3b,c), the width of the error function ( σerf  ) in the 

Figure 2.   Spatial distribution and angular divergence of proton beam. (a) Image of magnified 300 LPI mesh 
recorded on CR-39 by protons (energy > 225 keV). (b) The spatial distribution of the proton pit across the CR-39 
plate, taken along the horizontal (b) and vertical (c) dash line shown in Fig. (a). Each data point for proton 
distribution is sampled over an area of 0.01 mm2. The proton pit distribution data are fitted with a Gaussian 
function.

Figure 3.   Spatial resolution and effective source size of proton beam. (a) 50× Magnified image of the proton pit 
distribution across a mesh edge and the corresponding cell (inset figure) of the 300 LPI mesh recorded on CR-39 
by protons (energy > 225 keV). (b) Reconstructed proton pit image by numerical cell detection technique. (c) 
The proton pit distribution along the horizontal axis, with counts summed along the vertical axis. To determine 
the edge sharpness, the proton pit distribution data are fitted with an error function.
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detector plane for left edge is 44.7 ± 3.5 µm, which in the target source plane corresponds to source size ( σsource ) 
of 1.4 ± 0.1 µm and FWHM = 3.3 ± 0.3 µm.

The measured value of proton divergence (Fig. 2) and the derived source size (Fig. 3) can be used to estimate 
the normalized emittance ( εnt ) of the proton beam, given as εnt = βγσrσθ , where β and γ are the proton beam 
Lorentz factors, σr proton RMS source size in mm and σθ is proton RMS divergence in mrad48. For our 0.5 MeV 
proton beam, applying β = 0.02302 , γ = 1.00053, σr = 0.0014mm, σθ = 30.89mrad , the value for normalized 
emittance is estimated to be ( εnt) = 0.00032 πmmmrad. The emittance value estimated here relies on two experi-
mental parameters, namely the beam divergence and proton source size. Here, the proton beam divergence was 
directly measured by the two-dimensional distribution of particles recorded on the CR-39 detector (Fig. 2a). 
However, the proton source size was indirectly inferred by observing the mesh edge blurring (Fig. 3) and by 
ballistic ray tracing of proton beamlets (Fig. 5). Both of these methods are based on static projection imaging, 
and therefore the emittance estimation shown here cannot capture any dynamics involved in the proton source. 
Previously reported emittance value of laser-driven MeV protons from the mesh projection (or ‘pepper-pot’) 
methods are about 0.1 πmmmrad4,49. Other measurements using mesh projection have recently reported emit-
tance values of 0.01 π mm mrad50 and 0.065 π mm mrad6. In alternate methods of micromachining groves at 
the target rear surface, the transverse emittance for nearly 10 MeV proton came to about 0.0013 πmmmrad7,15, 
i.e., 100-fold better than conventional accelerators.

Location of proton source in point‑projection imaging.  In the context of point-projection imaging, 
it is interesting to see how the experimentally measured magnification factor ( Mexp ) and the expected geo-
metrical magnification factor ( Mgeo = L/d = (377.8± 0.5mm)/(11.750± 0.005mm) = 32.15± 0.05 ) relate 

Figure 4.   Geometrical versus measured magnification factor. (a) Zoom image of the hole region (with a gap 
of 58 µm) present in the 300 LPI mesh pattern. The full 300 LPI mesh picture shown in inset of (a). (b) Point-
projection imaging of the hole region recorded by the CR-39 plate. (c) The spatial distribution of the proton 
pit count across the dash yellow rectangle in (b), showing a sharp rise, middle saturation region, and sharp fall. 
To determine the beginning and end location of the hole image, the rising and falling slopes are fitted with the 
Gauss-error function.

Figure 5.   Ray-tracing of proton beamlets. (a) Distribution of the measured magnification factor by CR-39 
detector for different cells of 300 LPI mesh. The black-horizontal line shows an expected magnification factor 
of 32.2 from ideal point-projection imaging. The blue-dash line shows the average value of the magnification 
factor measured within one-standard deviation (± σ). (b) Ray-tracing of the proton beamlets drawn by joining 
the location of mesh edge points in the plane of CR-39 detector (zCR39 = 377.8 mm) to the corresponding points 
in the 300 LPI mesh plane (zmesh = 11.75 mm). The top panel in (b) shows the picture of the magnified mesh 
grid recorded on CR-39. (c) Zoom image of the highlighted area (indicated by blue dash rectangle in b) of 
proton beamlets close to the target plane (ztarget = 0.0 mm). The extent of the possible plane of the virtual source, 
estimated from the measured magnification factors in Fig. a, is highlighted by the blue color.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8100  | https://doi.org/10.1038/s41598-022-12240-2

www.nature.com/scientificreports/

to each other (Fig. 1a). For the calculation of the magnification factor, one of the hole areas (58 µm) of the 300 
LPI mesh is chosen (Fig. 4a). The point projection image of the 58 µm hole, recorded on the CR-39 detector is 
displayed in Fig. 4b). The spatial distribution of the proton pit count across the cell shows two sharp side mesh 
edges and a broad middle plateau region (Fig. 4c). The measured hole size, after fitting the rising and falling 
slopes with Gauss-error function turns out to be 1876± 6 µm (Fig. 4c) and hence the experimental magnifica-
tion factor ( Mexp = (1876± 6)/(58) = 32.3± 0.1 ). This indicates that here the measured magnification differs 
just 0.3% from the expected geometry or in other words, the ray-tracing of particle beamlets maps to plane in 
the vicinity of the target foil, from where the protons are accelerated.

Previous point-projection proton radiographs, obtained with low or medium temporal contrast lasers, have 
found that the Mexp can differ significantly from Mgeo by as much as 60–70% and the ray-tracing of proton 
beamlets lead to a location sub-mm far from the actual target location4,49. The mismatch between magnifica-
tion factors in the point-projection radiographs was explained with a concept of virtual source4,6,7. Considering 
ballistic, straight-line trajectories of the proton beam, the virtual source corresponds to the point where the ray 
tracing forms a minimum waist7. The virtual source location ( x ) from the actual target position can be deter-
mined from the observed magnification ( Mexp = (x + L)/(x + d) ) in the experiment, which was smaller than 
the expected geometric magnification ( Mgeo = (L)/(d) ), where d and L are distances from the target to the mesh 
and the target to the detector, respectively4,49. To estimate the virtual source location ( x ) from the actual target, 
a detailed mapping of the Mexp factor was carried out across the vertical axis of the CR-39 (yellow dash arrow 
in Fig. 2a). To obtain the  Mexp factor, the cell period measured on the CR-39 plane was divided by the 83 µm 
cell periodicity of the 300 LPI mesh, results shown in Fig. 5a. The average value of measured magnification 
�Mexp� = 31.7 is found to be slightly smaller than the geometrical magnification factor Mgeo = 32.2 , considering 
the one sigma deviation of measured data points (σ = 0.5), area shaded by the blue color in Fig. 5a). This indicate 
that the origin of the proton beamlets could lie beyond the target plane hence resulting in lower magnification. 
For better visualization of the proton source, the point-projection technique was used in the backward direction 
for ray-tracing of the proton beamlets, connecting points in the CR-39 detector plane (zCR39 = 377.8 mm) to the 
mesh plane (zmesh = 11.75 mm), as shown in Fig. 5b). These beamlets can be further extended towards the target 
plane to examine virtual source size and its location.

On a few mm spatial scale (Fig. 5b), the proton beamlets appear symmetric, uniformly distributed and tend 
to get merged at z = 0 mm plane. A magnified view of the beamlets (region indicated by blue dash rectangle in 
Fig. 5b) reveals that the rays merge beyond the target plane, as expected from the lower measured magnification 
factor (Fig. 5a). Moreover, looking at the merging and crossing trajectories of the rays, a plane of minimum beam 
waist can be determined. For instance, the D80 diameter51, encompassing 80% of the beamlets is estimated to be 
D80 = 3.5 µm at the plane of z = − 250 µm. This estimated beam waist of the virtual source is in good agreement 
with the spatial resolution of the proton imaging realised in the experiment while looking at the mesh edge 
blurring (FWHM = 3.3 µm, Fig. 3c).

Radiograph imaging with a perfectly laminar proton beam will have a step-like edge response unless restricted 
by the detector spatial resolution. In the present study, the use of a CR-39 detector allows one to examine the 
edge response down to 30 nm resolution in the source plane (considering magnification factor of 32 and spatial 
resolution of the CR-39 detector down to sub-micrometre scale, primarily limited by the size of proton pits). 
The results obtained here indicate that the laser-driven proton beams are quasi-laminar, where some proton 
beamlets are crossing each other near the target plane (Fig. 5c), and therefore a finite, measurable edge blurring 
of σerf = 44.7± 3.5µm was obtained (Fig. 3c). It has to be the emphasised here that the visualization of the 
proton source drawn here is mainly coming from a static projection imaging diagnostic, and hence is capable of 
reproducing scenario with assumption that these particles retain ballistic trajectories throughout their journey 
from source to the detector plane.

Synthetic point‑projection imaging with Geant4.  The point-projection imaging of the mesh has been 
simulated by using the G4Beamline package, a Monte Carlo particle tracking tool, based on Geant452. The syn-
thetic radiograph of a 300 LPI Cu mesh, similar to use in the experiment (Fig. 1a), was generated by launching 
a 0.5 MeV proton beam, consisting of 107 particles, with a divergence of 5-degree. The source size of the proton 
beam was considered as Gaussian distribution ( σx = σy) with different sizes varying from 1–10 µm. For the 
proton imaging, the geometry, size and location of the proton source, mesh (3.05 mm diameter, 300 LPI) and 
detector (100 mm × 100 mm) were kept the same as in the experiment, just to realize a similar magnification 
factor of 32.2 (Fig. 6a). The synthetic radiograph of the 300 LPI circular mesh, obtained by the 0.5 MeV proton 
beam is shown in Fig. 6b), which qualitatively reproduces the experimental mesh imaging picture (Fig. 2a). 
For detailed quantitative analysis, an enlarged region of the central mesh area is selected (Fig. 6c) and the cor-
responding proton count distribution across the central hole (encircled with red dotted square in Fig. 6c) is 
displayed in Fig. 6d. After fitting the rising and falling edges with the Gauss-error function, the 58 µm wide gap 
of the 300 LPI mesh turns out to be 1854± 5 µm (Fig. 6d) in the detector plane. The magnification factor of 
this point-projection imaging comes out to be 32.0± 0.1, which is in good agreement with the experimentally 
measured average magnification factor of �Mexp� = 31.7± 0.5 . This indicates that our experimental conditions 
are close to the geometrical point-projection imaging. Furthermore, the effect of mesh edge sharpness is also 
shown (Fig. 6e), where the source size of the proton beam is varied. By comparing the experimental result σsource 
= 1.4 ± 0.1 µm (Fig. 3c), the best match can be found for proton beam of having source size of 1 µm for which of 
the edge σedge = 1.4µm (Fig. 6e).
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Discussion
The few-cycle laser-foil interactions inherently facilitate the confining of plasma fields in both the space and time 
domain. In the spatial domain, these laser pulses under tight focusing conditions (F/2 OAP) with only a few 10’s 
of mJ laser energy do not support the presence of strong accelerating fields beyond a few micrometers. Similarly, 
in the time domain, the strong laser field, responsible for electron heating is present only for the duration of the 
laser pulse (12 fs), a time-frame too small for any significant plasma evolution involving ion motion. Further-
more, the use of high-temporal intensity contrast laser, where the target surface is not affected by the prepulse, 
can also suppress longitudinal and transverse pre-expansion of the electron cloud. In this study, the intensity 
in the pre-pulse region (up to 3.5 ps before the arrival of the main pulse) was kept below the level of 109 W/cm2 
(the laser intensity contrast of 10–10) and consequently ensured nearly pre-plasma free conditions for laser-foil 
interaction. Some previous experiments with simulations25,26 have indicated that high-contrast laser pulses tend 
to produce fast electrons with low angular divergence which in turn can help in confining the proton acceleration 
in a low angular cone. In future, it would be hence interesting to carry out a systematic study on the possibility of 
controlling the proton beam divergence and source size by changing laser intensity contrast and pulse duration.

Conclusion
In summary, our experimental measurements have shown that the effective proton source size and the resultant 
spatial resolution is very similar to the laser focal spot size. Considering scalability to a kHz repetition rate, the 
demonstration of low-divergent proton source could be used for applications such as radiation therapy, warm 
dense matter and transmutation of nuclear waste, whereas the point like proton source feature can be applied 
for obtaining high-resolution static, dynamic radiographs, ion-beam lithography. Furthermore, these proton 
beams having low emittance can easily be transported and refocused over long distances with the help of proper 
beam-optics21 or can be post accelerated to higher energy by injecting in conventional accelerators19,40. In future, 
it would be interesting to see if the effective spatial resolution of the proton source can be further be reduced by 
using tighter laser focusing conditions (f/1 OAP).

Methods
The experiment was performed with the SYLOS Experimental Alignment Laser (SEA Laser) at the ELI-ALPS 
facility in Szeged, Hungary38. A linearly polarized, NIR (840 nm), 12 fs, 35 mJ, laser pulse was focused with an 
f/2 off-axis parabolic (OAP) dielectric mirror on a 2 µm thick Al foil target at zero angle of incidence (Fig. 1a). 
The laser focal spot, measured with a microscopic objective (10× , PAL-10-NIR, NA = 0.3) was found to be 
2.9 µm × 3.5 µm (FWHM), containing 36% of total energy and therefore leading to the estimated peak intensity 

Figure 6.   Monte-Carlo simulation for creating synthetic proton radiograph. (a) Geometry of the point-
projection imaging simulation in Geant4. (b) Synthetic radiograph of 300LPI mesh grid generated by 0.5 MeV 
proton beam. (c) Enlarged image of the central mesh area, highlighted by Yellow Square in (b). (d) The 
spatial distribution of the proton count across the central mesh hole region, taken across the red square in 
(c). To determine the beginning and end location of the edged, the rising and falling slopes are fitted with the 
Gauss-error function. (e) The sharpness of the mesh edge is obtained by varying proton beam source sizes. To 
determine the edge sharpness, the proton pit distribution data are fitted with an error function.
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of 1019 W/cm2 (Fig. 1b). The temporal intensity contrast of the laser pulse, found to be 10–10 (3.5 ps before the 
arrival of the main pulse), limited the pre-pulse intensity to be below 109 W/cm2 and consequently supported 
nearly pre-plasma free conditions for laser-foil interaction. To achieve the highest laser irradiance and shot-to-
shot performance stability, each target were pre-positioned at the plane corresponding to the smallest laser focus 
with an accuracy of a few micrometers using the same microscopic objective back-illuminated with a white light 
source53. For kinetic energy spectrum of the forward accelerated ions, in the TPS, a small part (30 × 10−9 sr) of 
the total ion beam, sampled by a 200 µm diameter pinhole, were dispersed on a micro-channel-plate (MCP) 
detector based on their charge-to-mass ratio (q/m), by the parallel magnetic field (0.2 T) and electric field (3 kV/
cm). The spatial characterization of the proton beam was carried out by projection imaging of a periodic mesh, 
300 Lines-per-inch (LPI) onto a 1 mm thick CR-39 plate (10 cm × 10 cm) with a geometric magnification of 
32.2. The distance between target and mesh was measured within uncertainty of ± 5 µm, by same microscope 
objective system, which was used for pre-positioning of the target surface. The distance between target and the 
CR-39 detector was measured with a metric ruler having precision of ± 0.5 mm. The CR-39 plate, after being 
exposed to the accelerated protons, was etched in a 6 N NaOH solution at a constant temperature of 70 °C for 
60 min. After the etching process, the proton irradiated area has been recorded using an optical microscope 
(Zeiss Axio) with different magnifying objectives.

Data availability
All data generated or analysed during this study are included in this published article.
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