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Evidence for shared neural 
information between muscle 
synergies and corticospinal efficacy
David R. Young1,2, Caitlin L. Banks1,2,3, Theresa E. McGuirk1,2,3 & Carolynn Patten1,2,3*

Stroke survivors often exhibit gait dysfunction which compromises self-efficacy and quality of life. 
Muscle Synergy Analysis (MSA), derived from electromyography (EMG), has been argued as a method 
to quantify the complexity of descending motor commands and serve as a direct correlate of neural 
function. However, controversy remains regarding this interpretation, specifically attribution of 
MSA as a neuromarker. Here we sought to determine the relationship between MSA and accepted 
neurophysiological parameters of motor efficacy in healthy controls, high (HFH), and low (LFH) 
functioning stroke survivors. Surface EMG was collected from twenty-four participants while walking 
at their self-selected speed. Concurrently, transcranial magnetic stimulation (TMS) was administered, 
during walking, to elicit motor evoked potentials (MEPs) in the plantarflexor muscles during the 
pre-swing phase of gait. MSA was able to differentiate control and LFH individuals. Conversely, 
motor neurophysiological parameters, including soleus MEP area, revealed that MEP latency 
differentiated control and HFH individuals. Significant correlations were revealed between MSA and 
motor neurophysiological parameters adding evidence to our understanding of MSA as a correlate 
of neural function and highlighting the utility of combining MSA with other relevant outcomes to aid 
interpretation of this analysis technique.

Stroke is the leading cause of physical disability in adults worldwide1. Gait dysfunction following stroke is 
widespread, persistent, and well described including decreased gait speed, increased paretic limb swing time, 
reduced paretic propulsion, and diminished peak ankle power2–4. Gait dysfunction compromises self-efficacy 
and negatively impacts autonomy, community participation, and quality of life5,6 motivating further investiga-
tion to better understand the interaction between supraspinal lesions, impaired descending commands, altered 
muscle activity, and resulting gait deficits7–10.

The computational resources required to directly control the muscle activation patterns required for gait 
are theoretically immense due to the numerous degrees of freedom in gait. Because the neurocomputational 
complexity involved exceeds feasibility for direct neural control of gait, research investigating physiological 
principles such as generalized motor programs and central pattern generators has contributed to determining 
how this complexity may be reduced to improve efficiency of motor control11–13. Muscle synergies, also called 
modules or factors, offer another theoretical framework for reducing computational complexity10,14. A synergy 
is comprised of a neural command (NC), that is a time-varying element which corresponds temporally to the 
movement patterns (here, the gait cycle), and a synergy vector (SV), a vector of the relative weighting coefficients 
for each recorded muscle15.

It has been argued that the product of a Muscle Synergy Analysis (MSA) characterizes the complexity of 
descending neural commands16. For example, it has been found that only five synergies are needed to account 
for 90% or more of the variance (VAF) in the accompanying muscle activity during gait17,18. When performed 
in populations with neuropathologies, MSA often identifies fewer synergies (NumSyn) required to achieve 90% 
or 95% VAF during gait, a finding which is frequently interpreted as reduced complexity of motor commands 
controlling gait9,19. For example, individuals with Parkinson’s Disease, Cerebral Palsy, and incomplete Spinal Cord 
Injury exhibit decreased NumSyn compared to healthy, age-matched peers19–22. This finding of fewer synergies 
in neuropathological conditions has been repeated in individuals following stroke, and these changes appear to 
be related to stroke severity9,10,23–25.

Despite recent popularization of MSA, its significance remains controversial26. Some researchers assert 
that MSA offers a direct correlate of neural function16,27–29. This notion has been supported by correlational 
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neuroimaging analyses30–33. Alternatively, several investigations challenge the meaning and appropriate inter-
pretation of MSA34–36. Experiments have modeled signals resembling synergies by accounting for only task 
constraints and muscular effort minimization without descending cortical commands35. Additionally, some 
modeled data that achieved a high VAF proved insufficient to achieve accurate movements, while others found 
that using biofeedback derived from kinetics, EMG, and muscle synergies led to similar movement outcomes 34,36. 
Collectively these studies highlight the practical utility of using a small set of synergies for motor coordination37. 
Adding to the controversy, a large number of methodological choices made during MSA impact the overall results 
and interpretation15,38. To date, no study has directly compared measures of corticospinal efficacy with MSA, 
which could provide insight and evidence regarding the significance of MSA, specifically the amount of shared 
neural information between these putative neuromarkers.

The presence, latency, and size of motor-evoked potentials (MEPs) generated by transcranial magnetic stimu-
lation are broadly interpreted as measures of corticospinal efficacy39. MEP presence is related to cortical integrity; 
MEP latency serves as a marker of direct, monosynaptic versus less efficient indirect, oligosynaptic corticomotor 
responses; MEP size is related to cortical excitability40,41. Because MEP characteristics provide a direct marker 
of neurophysiological function, it is of interest to determine how MEP characteristics and MSA outcomes are 
related. Here we compared MEP characteristics and MSA outcomes between three groups of individuals to 
determine whether the characteristics of MSA, an indirect measure of nervous system function, are associated 
with biomechanical and neurophysiological function. Results of this investigation contribute to clarifying the 
scope within which MSA should be interpreted.

Methods
Subjects.  Sixteen individuals with stroke (58.13 ± 7.95  years, F = 2) and eight age-matched control 
(65.56 ± 10.18 years, F = 5) participants were recruited to participate in this investigation (Table 1). Three groups 
were identified: High-Functioning Hemiparetic Individuals (HFH)—producing an average A2 value > 1.0 W/kg, 
Low-Functioning Hemiparetic individuals (LFH)—producing an average A2 of < 1.0 W/kg, and age-matched 
healthy participants (CON). Stroke survivors were included if their stroke was chronic (i.e., > 6 months), they 
exhibited motor impairment (i.e., hemiparesis), and they were able to walk independently at least 10 m with or 
without assistive devices. Exclusion criteria included bilateral or cerebellar lesions, other neurological, mus-
culoskeletal, or cardiovascular dysfunction that limited walking ability, or severe cognitive deficits. Additional 
exclusion criteria included contraindications for transcranial magnetic stimulation (TMS), including implanted 
metal above the chest, seizure disorders, or pregnancy42. All procedures were approved by the University of 
Florida Health Science Center Institutional Review Board (IRB-01). Written informed consent was obtained 
from all participants prior to enrollment and all experimental procedures were conducted in accordance with 
the Declaration of Helsinki43. Testing was administered at the Brain Rehabilitation Research Center located at 
the Malcom Randall VA Medical Center (Gainesville, FL, USA).

Procedures.  Preamplified EMG electrodes (Motion Lab Systems, MA-420, Baton Rouge, LA, USA) were 
placed on 8 lower-limb muscles of each leg using SENIAM guidelines (Table 2)44 alongside 14 mm reflective 
markers for motion capture placed to configure a modified Helen Hayes marker set45. Next, self-selected walking 
speed (SSWS) and baseline walking characteristics were identified while participants walked on an instrumented 
treadmill (Bertec, Columbus, OH, USA) wearing a fall arrest harness (Therastride, St. Louis, MO, USA; Robert-
son Harness Inc, Ft. Collins, CO, USA) for safety.

Next, participants were instrumented for TMS targeting the plantarflexor muscles using a custom batwing-
shaped coil (90 mm, Magstim, Whitland, UK) oriented to induce current in a posterior-to-anterior direction 
and a Magstim 2002 device.  After localization, the coil was stabilized using a custom-built helmet to maintain 
placement and counterbalance the weight of the coil and cable46. TMS was delivered at 120% of the active motor 
threshold (aMT) observed in quiet standing. Electrical stimulation (Estim) (Digitimer DS-7A/DS-7AH, Welwyn 
Garden City, UK) was delivered at the posterior tibial nerve to evoke motor responses and Hofmann reflexes 
(H-reflex) in the soleus (SO). Following the generation of H-reflex recruitment curves, Estim was delivered at 
the intensity level that produced an H-reflex at 50% of H-max.

Following instrumentation, participants walked at their self-selected walking speed (SSWS). Subject-specific 
gait events, detected using a combination of the vertical ground reaction forces and marker data acquired dur-
ing baseline walking, were used to parameterize for TMS and Estim during the pre-swing phase (PSw) of gait 
approximately every third gait cycle. Experimental control was provided via custom-written Signal scripts (Ver-
sion 6.0, Cambridge Electronic Design, Cambridge, UK). Here we report responses acquired using TMS delivered 
during the PSw of gait because this phase corresponds to  peak plantarflexor activity.

During walking, kinematic data were recorded by 12 near-infrared cameras (Vicon MX, Vicon Motion Sys-
tems Ltd., Oxford, UK; 200 Hz) and stored for offline analysis. Ground reaction forces, moments, and center of 
pressure were collected using a dual-plate instrumented treadmill (Bertec, Columbus, OH, USA). All analog 
signals were sampled at a rate of 2000 Hz.

Data processing.  Target leg ankle power was derived from kinematic and kinetic data and calculated using 
inverse dynamics (Visual3D Version 6, C-Motion, Germantown, MD). Ankle power in the sagittal plane was 
identified as the product of ankle joint moment and angular velocity47. The second peak of ankle power, A2, was 
calculated for each subject. Muscle Synergy Analysis (MSA) was performed using data derived from a minimum 
of ten but up to twenty gait cycles. Gait cycles including or immediately following either TMS or Estim events 
were disregarded for the MSA analysis. Raw EMG data were gain-corrected, converted to millivolts, demeaned, 
and filtered using a fourth-order zero-lag Butterworth bandpass filter (10–450 Hz). To perform MSA, EMG 
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data were rectified and smoothed using a low-pass, fourth-order zero phase-lag Butterworth filter with a cutoff 
frequency of 7 Hz divided by the participant’s average stride time. Data were also time interpolated using force 
plate-derived gait events to obtain 101 samples per cycle15.

Muscle synergy extraction.  We performed MSA using non-negative matrix factorization (NNMF) to 
identify the underlying patterns of muscle activation following the methods described in Banks et al.48. EMG 
normalization entailed dividing each element of the EMG vector by the standard deviation of the entire trial 
(i.e., UnitOver)15. Each synergy derived from MSA produces a time-varying neural command (NC) and a set of 
weighting coefficients called synergy vectors (SVs): 

EMGj = SV1jNC1 + SV2jNC2 + · · · + SVnjNCn + error

In the above equation, EMGj represents a matrix of the normalized EMG signals for j muscles. The scalar SVs 
and vector NCs can be linearly combined to reconstruct the original EMG. With j muscles and n < j synergies, 
the reconstructed EMG matrix will be lower-dimensional than the original input matrix49.

SVs  were normalized to their maximum value (i.e., SV Max)15. We identified the variance accounted for 
(VAF) by each synergy, as well as NumSyn required to reach a VAF of 90%. Given NumSyn’s small range, for 
correlational analyses VAF explained by the first synergy was used in lieu of NumSyn. All analysis was performed 
using custom MATLAB scripts (The MathWorks r2020a, Natick, MA, USA).

Neurophysiological parameter extraction.  Motor evoked potential (MEP) latency was identified as 
the time from stimulation until a signal threshold (baseline activity ± 1SD) was crossed. MEP area was calcu-
lated as all activity exceeding the signal threshold. A similar process was employed to identify H-reflex latency. 
The difference between SO MEP and H-reflex latencies (latency difference) was calculated for each subject 
(MEPlatency − H-reflexlatency). Because we analyzed MEPs resulting from stimulations delivered during gait, sub-
stantial background muscle activity was observed. As a result, all neurophysiological data were reviewed and 
verified with user-interaction.

Statistical analysis.  Demographic and biomechanical outcomes, and NumSyn, were compared between 
groups using univariate analyses of variance (ANOVAs). A Group by Synergy ANOVA compared VAF within 
the first five synergies, as five synergies were sufficient to explain over 99% of the VAF in our sample. Group by 
Muscle ANOVAs were performed to identify differences in SVs between groups in specific synergies related to 

Table 1.   Demographic information. Data include self-selected walking speed (SSWS), the lower extremity 
subscore of the Fugl-Meyer (FMA-LE) and peak ankle plantarflexor power (A2). *Indicates significant 
differences between groups per an alpha value of p < 0.05.

N Age Sex Height (m)* Weight (kg)
Chronicity 
(mo) Paretic Side Location Mechanism

SSWS 
(m/s) * FMA-LE* A2 W/kg*

CON 8 58.13 ± 7.95 F = 5, M = 3 1.67 ± 0.08 76.15 ± 15.77 NA NA NA NA 1.04 ± 0.14 NA 1.84 ± 0.15

HFH 8 66.63 ± 9.78 F = 1, M = 7 1.78 ± 0.06 85.29 ± 14.45 64.87 ± 38.54 R 5
L 3

Cortical 3 
Subcortical 4 
Mixed 1

Hemorrhagic 1
Ischemic 7 0.89 ± 0.09 33.62 ± 0.74 1.14 ± 0.09

LFH 8 64.5 ± 11.14 F = 1, M = 7 1.73 ± 0.07 81.18 ± 11.77 58.13 ± 55.35 R 3
L 5

Cortical 2 
Subcortical 3 
Mixed 3

Hemorrhagic 1
Ischemic 7 0.43 ± 0.11 24.25 ± 5.63 0.29 ± 0.11

Table 2.   Bilateral EMG placement locations.

Bilateral EMG locations

Medial gastrocnemius (MG)

Soleus (SO)

Tibialis anterior (TA)

Vastus medialis (VM)

Rectus femoris (RF)

Biceps femoris (BF)

Gluteus medius (GMe)

Gluteus maximus (GMx)
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plantarflexion, dorsiflexion, and hip extension. Statistical Parametric Mapping (SPM) compared NCs between 
groups (spm1d v0.4.7 for MATLAB, Institute of Neurology, London, UK)50. Two-way ANOVAs for NCs related 
to plantarflexion, dorsiflexion, and hip extension were performed. In the event of a significant finding, the Bon-
ferroni corrected significance level for SPM was p < 0.017. For all other analyses, statistical significance was 
identified as  p < 0.05.

MEP latency and area of the MG, SO, and TA were compared between groups using One-Way ANOVAs. 
Finally, Spearman correlation analyses were computed between the VAF explained by the first synergy and 
behavioral outcomes as well as MEP latencies and areas. Main effect sizes were derived as partial eta squared 
(ηp

2). VAF explained by the first synergy was used instead of NumSyn due to NumSyn’s small range and non-
normal distribution. In the case of a significant main effect, pairwise comparisons were made. Hedge’s G effect 
sizes were used for significant pairwise comparisons. Statistical comparisons were made using SPSS 26 (IBM, 
Armonk, NY, USA) and SPM.

Results
Subjects.  Data from 24 participants were included. Results from a univariate ANOVA confirmed that there 
was no difference in age between groups (p = 0.11 ηp

2 = 0.19). Demographic information can be found in Table 1. 
Data are reported as mean ± standard deviation.

Clinical and biomechanical outcomes.  Differences between groups in self-selected walking speed were 
found (p < 0.0001 ηp

2 = 0.84). Pairwise comparisons identified that the CON group walked faster than both 
HFH and LFH individuals (p = 0.02 HG = 1.19; p < 0.0001 HG = 4.57). HFH individuals also walked faster than 
LFH (p < 0.0001 HG = 4.54). Similarly, A2 differed between groups (p < 0.0001 ηp

2 = 0.75), with CON and HFH 
outperforming LFH, while CON and HFH did not differ (p < 0.0001 HG = 3.32; p < 0.0001 HG = 5.89; p = 0.07, 
respectively). HFH individuals also exhibited higher scores than LFH on the lower extremity subsection of the 
Fugl-Meyer Assessment (FMA-LE) (p = 0.002 HG = 2.34) (Fig. 1). These data are presented in Table 2.

Muscle synergy analysis.  To satisfy a 90% VAF threshold (i.e., NumSyn), the CON group required 
2.0 ± 0.53 synergies, HFH individuals required 2.0 ± 0.0, and LFH individuals required 1.38 ± 0.52 synergies 
(p = 0.01 ηp

2 = 0.75). CON and HFH did not differ, while both CON and HFH exhibited a greater NumSyn 
than LFH (p = 1; p = 0.008 HG = 1.19; p = 0.008 HG = 1.71, respectively). Results of a Group by Synergy ANOVA 
revealed a significant main effect of Synergy on VAF (p < 0.0001 ηp

2 = 0.86), a significant Group effect (p = 0.003 
ηp

2 = 0.43) and a Synergy by Group Interaction effect (p = 0.008 ηp
2 = 0.33) (Fig. 2). Follow-up comparisons were 

performed to identify which synergies differed between groups. In the first synergy, VAF was lower in CON and 
HFH than LFH, while CON  and HFH did not differ (p = 0.0026, ηp

2 = 0.39; CON and LFH p = 0.009 HG = 1.70; 
HFH and LFH p = 0.02 HG = 1.65; CON and HFH p = 1). No between group differences were identified in the 
VAF attributed to the second synergy (p = 0.065 ηp

2 = 0.23). VAF within the third synergy also differed between 
groups (p = 0.007 ηp

2 = 0.38). CON exhibited lower VAF than LFH, while HFH differed from neither CON nor 
LFH (p = 0.005 HG = 1.59; p = 0.38; p = 0.18, respectively). The same was true in the fourth synergy (p = 0.029 
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Figure 1.   Top left Individual plots of A2 and SSWS, (top right) NumSyn and SSWS, (bottom left) A2 and the 
FMA-LE, and (bottom right) SSWS and the FMA-LE for CON (gold), HFH (light blue), and LFH (dark blue).
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ηp
2 = 0.29; p = 0.03 HG = 1.26; p = 0.31; p = 0.75, respectively). No differences were identified between groups 

within the fifth synergy (p = 0.21 ηp
2 = 0.14).

In order to compare the composition of muscle synergies between groups, we extracted NCs and SVs from 
the three dominant synergies found in our sample: Plantarflexion, Dorsiflexion, and Hip Extension. The Plantar-
flexion Synergy weighted plantarflexors highest and was most active during the stance-to-swing transition. The 
Dorsiflexion Synergy weighted the TA highest and was most active during swing. The Hip Extension Synergy 
weighted the quadriceps, hamstrings, and gluteal muscles highest and was active primarily at the beginning and 
end of the gait cycle ( Fig. 3). SVs were compared between groups for each Synergy. Results of a Group by Muscle 
ANOVA sought to identify differences in SVs between groups, and found that the Plantarflexion Synergy SVs 
were significantly different between groups (p = 0.035 ηp

2 = 0.35), however there was no significant Muscle by 
Group interaction (p = 0.13 ηp

2 = 0.43). Pairwise comparisons revealed that SVs were not different between Con-
trol and HFH individuals, while LFH differed from both CON and HFH (p = 1; p = 0.018; p = 0.04, respectively). 
There was no effect of group on SVs in either the Dorsiflexion Synergy or the Hip Extension Synergy (p = 0.74 
ηp

2 = 0.03; p = 0.58 ηp
2 = 0.03).

SPM identified a significant difference between groups in the NC of the Plantarflexion Synergy (p = 0.03). The 
groups differed from 0 to 3% and from 90 to 100% of the time-normalized gait cycle (p = 0.03; p = 0.001). How-
ever, follow-up t-tests with a corrected alpha value of p = 0.017 failed to confirm differences between CON and 
HFH, CON and LFH, or HFH and LFH (p > 0.05; p = 0.04; p > 0.05, respectively). No differences were observed 
between groups in the Dorsiflexion Synergy or Hip Extension Synergy NCs (p’s > 0.05).
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Figure 2.   VAF accounted for by each synergy. LFH individuals exhibited greater VAF in the 1st synergy than 
CON and HFH, and in the 3rd, and 4th synergies compared to CON. HFH and CON did not differ. Asterisks 
denote a p < 0.05.

Figure 3.   Synergies for CON (gold), HFH (light blue), and LFH (dark blue). The top row corresponds to the 
Plantarflexion Synergy, the middle row to the Dorsiflexion Synergy, and the bottom row to the Support Synergy. 
The 1st, 3rd, and 5th columns correspond to Synergy Vectors and the 2nd, 4th, and 6th columns to Neural 
Commands. Individual participants are represented by thin bars and lines, while thicker bars and lines represent 
group averages.
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Correlation between MSA and other outcomes.  Spearman correlation identified that VAF by the 
first synergy was significantly associated with A2 (r = −  0.45 p = 0.03) as well as SSWS (r = −  0.57 p = 0.003). 
Within stroke survivors, VAF by the first synergy was related to the FMA-LE (r = − 0.58 p = 0.02). VAF by the 
first synergy was also related to MEP latencies in each tested muscle (MG r = 0.42 p = 0.04; SO r = 0.45 p = 0.03; 
TA r = 0.46 p = 0.02), as well as MEP area in the MG (r = − 0.55 p = 0.006) and SO (r = − 0.67 p < 0.001), but not 
the TA (r = − 0.31 p = 0.14). VAF by the first synergy was not correlated to the latency difference (r = 0.3 p = 0.15) 
(See Fig. 7).

Neurophysiology.  MEP latency differed significantly between groups for each tested muscle (MG p < 0.001 
ηp

2 = 0.53; SO p < 0.001 ηp
2 = 0.60; TA p < 0.001 ηp

2 = 0.53). Follow-up analyses identified that CON exhibited 
shorter latencies than HFH in the MG (p = 0.009 HG = 1.45) and SO (p = 0.009 HG = 1.92), but not the TA 
(p = 0.28), while CON exhibited shorter latencies than LFH in each muscle (MG p < 0.001 HG = 2.26; SO p < 0.001 
HG = 2.53; TA p < 0.001 HG = 2.15). HFH exhibited shorter latencies than LFH in the SO (p = 0.001 HG = 1.27) 
and TA (p = 0.002 HG = 2.07), but not the MG (p = 0.06) (Fig. 4). MEP area differed significantly between groups 
in the MG and SO, but not TA (MG p = 0.007 ηp

2 = 0.41; SO p = 0.03 ηp
2 = 0.31; TA p = 0.30 ηp

2 = 0.12). Follow-up 
analyses identified that CON did not differ from HFH (MG p = 0.16; SO p = 0.10; TA p = 0.43) while CON exhib-
ited greater area than LFH in the MG and SO, but not TA (MG p = 0.006 HG = 1.93; SO p = 0.04 HG = 1.36; TA 
p = 0.83). HFH and LFH did not differ (MG p = 0.33; SO p = 1; TA p = 1) (Fig. 5). The difference between SO MEP 
latency and H-reflex latency also differed between groups (p < 0.001 ηp

2 = 0.55). CON exhibited a latency differ-
ence of − 5.34 ± 2.51 ms, indicating that conduction time from TMS to MEP onset was less than H-reflex latency. 
Conversely, both stroke subgroups exhibited MEP latencies greater than H-reflex latency (HFH 3.06 ± 6.58 ms; 

Figure 4.   MEP latency in the shank muscles during walking. CON exhibited significantly shorter latencies than 
both HFH and LFH individuals. HFH exhibited shorter latencies than LFH in the SO and TA. Asterisks denote 
a p < 0.05.
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individuals in the MG, as well as LFH and HFH individuals in the SO. No differences were observed in the TA. 
Asterisks denote a p < 0.05.
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LFH 5.81 ± 4.64 ms). CON exhibited shorter latency difference than HFH and LFH, while HFH and LFH were 
not significantly different (p = 0.001 HG = 1.81; p < 0.001 HG = 2.98; p = 0.27) (Fig. 6).

Discussion
In this investigation, we compared CON, HFH and LFH individuals following stroke. We used single-pulse TMS 
and Estim to probe corticospinal efficacy between stroke survivors and control participants during locomotion. 
Results of this investigation add to the body of literature comparing MSA outcomes in healthy individuals and 
stroke survivors, as well as the literature comparing MSA outcomes to clinical and biomechanical factors influ-
encing gait. Furthermore, for the first time, this investigation performed both MSA and MEP analyses from data 
acquired concurrently in the same sample, allowing for inferences regarding their relationship and the presence 
of shared neural information between these two metrics (Fig. 7).

Previously, researchers have successfully differentiated healthy individuals and stroke survivors by 
NumSyn9,10,23,24. We identified a greater NumSyn in the CON and HFH groups than LFH. However, NumSyn 
was unable to distinguish between CON and HFH. The lack of differences may be partially explained by the fact 
that HFH individuals in this study were relatively high-functioning (e.g., SSWS 0.89 ± 0.09 m/s, Lower-Extremity 
Fugl-Meyer (FMA-LE) 33.62 ± 0.74 out of 34). Furthermore, HFH did not exhibit significantly lower A2 than 
CON, suggesting that their gait biomechanics are minimally impaired. Nevertheless, our results suggest that 
NumSyn may be somewhat less sensitive than differences identified between the CON and HFH in SSWS and 
neurophysiological parameters.

NumSyn is often employed in MSA, however this measure is subject to investigator decision-making; for 
example, the choice between a 90% or 95% threshold can impact results. Here, while using a threshold of 90% did 
identify that LFH required fewer synergies than CON, had we used a threshold of 95%, no differences would have 
been identified between any of the three groups in the current sample (p = 0.12 ηp

2 = 0.18). These results coupled 
with the fact that accounting for a high percentage of variance does not inherently lead to successful movement 
patterns suggests that researchers must be cautious both when selecting a critical threshold and interpreting the 
results of MSA36,51. A possible alternative may be to perform a comparison of the VAF by each synergy. In the cur-
rent experiment, a Group by Synergy ANOVA identified significant main effects of group as well as a significant 
group by synergy interaction effect, with specific differences within several synergies. Comparing groups based 
on the VAF added by each synergy also distinguished between CON and LFH individuals, as well as HFH and 
LFH individuals without relying on investigator-made decisions regarding a critical threshold. A similar approach 
was used by Bekius et al., who found that children with cerebral palsy exhibit greater VAF in the first synergy in 
their more-affected side52. Alternatively, Ballarini et al. described an algorithm for choosing the optimal NumSyn, 
which may also serve to decrease the impact of investigator choice on the results53. Recent work has challenged 
commonly used assumptions of MSA analysis, suggesting the presence of physiologically relevant data in the 
residual activity commonly attributed to noise51. Furthermore, extracting synergies beyond commonly utilized 
VAF thresholds (e.g., 90–95%) has been found to influence the reconstructed movement patterns51. In the cur-
rent study, we compare groups using both NumSyn as well as VAF by each synergy. Further investigation into 
methods to distinguish noise from task-relevant signal at, or above, a pre-defined VAF threshold is warranted.

Differences in SVs were observed between groups in the Plantarflexion Synergy. CON and HFH individuals 
did not differ, while muscle weightings were altered in LFH individuals. No group differences were observable 
in the Dorsiflexion or Hip Extension synergies. The ability to detect differences within SVs between groups is a 
source of some controversy. For example, children with cerebral palsy did not exhibit altered SVs compared to 
typically developing children54. Similarly, SVs were not different following sub-acute stroke, or in Parkinson’s 
Disease20,28. Conversely, some researchers have identified differences between SVs in healthy subjects and indi-
viduals with incomplete spinal cord injury17,22,55. Regardless of whether differences in SV composition can be 

Figure 6.   Latency difference derived using SO MEP latency and H-reflex latency. This relationship was 
significantly more negative in CON than LFH or HFH, while LFH and HFH did not differ. Asterisks represent a 
p < 0.05.
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statistically identified, questions remain regarding whether such differences provide novel or physiologically 
important information. Roh et al. found increased coactivation among the three heads of the deltoid muscles in 
stroke survivors during upper extremity tasks, leading to altered SVs (i.e., increased weighting of the deltoids)56. 
Greater coactivation within synergies has been found in other experiments as well19,57,58. As other EMG analysis 
techniques can be employed to measure co-contraction indices without the need to consider muscle synergies, 
or the need to identify the investigator-dependent decisions required to conduct and interpret the results of an 
MSA, these may be more attractive options until the investigator-dependent decisions become standardized38,47.

Like Synergy Vectors, Neural Command comparisons have led to a wide array of results. Several investigations 
have found no differences in NCs between groups despite obvious physiological differences including differences 
in NumSyn22,28,55. Gizzi et al. argued that the lack of differences between groups in their investigation indicate 
NCs may be preserved in stroke due to the maintained functionality of the spinal cord28. Conversely, investiga-
tions that have found differences in NCs between groups have applied several methods to do so. NC duration 
has been compared between groups by quantifying the amount of time the NC signal surpasses a given threshold 
of signal maximum19,54, or alternatively, the time-index of the NC’s signal maximum20,59. We utilized Statistical 
Parametric Mapping to identify whether group differences occurred at any point in the NC time-series. Visual 
inspection suggested that LFH individuals may not deactivate the Plantarflexor Synergy as readily as CON or 
HFH individuals. However, after statistical corrections for multiple comparisons, pairwise comparisons did not 
reach the threshold of significance. Furthermore, no differences were found in the Dorsiflexion or Hip Exten-
sion synergies. The relatively small number of individuals in each group may contribute to low statistical power. 
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Regardless, this result highlights the need to minimize investigator decision-making by standardizing how NCs 
are compared, as it may strongly influence whether the groups can be differentiated.

This investigation also sought to examine measures of corticospinal efficacy in isolation. TMS was applied 
during walking using a custom built helmet to secure the coil in place46. As a result, we were able to probe 
corticospinal efficacy during the relevant task of locomotion. The CON group exhibited the shortest latency in 
MG and SO MEPs, producing a negatively signed latency difference, indicative of MEPs occurring prior to the 
H-reflex. Latency information aids inference regarding whether the pathway from the motor cortex to the muscle 
fibers is monosynaptic, or requires multiple synapses, thus serving as a biomarker for corticospinal efficacy40,41. 
SO MEP area was also greater in CON than individuals with stroke, with no distinction between HFH and LFH. 
No differences were detected between groups in TA MEP area. This may be the case for several reasons. First, the 
current investigation analyzed data derived from TMS delivered during the pre-swing phase (PSw) of walking, 
which is characterized primarily by plantarflexor activity with little input from dorsiflexors. Second, because 
plantarflexor function is intimately linked with gait function2,60 the TMS coil was localized to evoke plantarflexor 
MEPs. While MEPs were often observed in the TA, TMS pulses did not directly target the TA and, as a result, 
TA MEPs exhibited considerable within-and-between subject variability.

The current analysis did not reveal differences between CON and HFH in NumSyn, VAF by each synergy, SVs, 
or NCs. Nevertheless, we found a significant correlation between NumSyn and both SSWS and A2 in the whole 
sample as well as the FMA-LE in stroke survivors. VAF by the first synergy was also related to MEP latency in 
all tested muscles and MEP area in the MG and SO, demonstrating that while MSA was unable to differentiate 
between CON and HFH, it was related to corticospinal efficacy, walking speed, and paretic A2 in this sample. The 
high level of function in the HFH group, as well as the sample size of eight individuals per group may partially 
explain the lack of MSA differences between CON and HFH.

Controversy already exists regarding the appropriate interpretation of MSA26,61. In 2013, de Rugy et al. argued 
that VAF is a relatively insensitive measure, finding that while four synergies were able to achieve 90% VAF in 
healthy participants performing an upper limb task, outcomes of modeled data derived from those four syner-
gies led to poor performance of their model. This finding led the group to question the utility of measuring VAF 
because high VAF can occur in the presence of poor motor performance36. Furthermore, Kutch & Valero-Cuevas 
(2012) and De Groote et al. (2014), were both able to model signals that resembled muscle synergies without 
accounting for descending commands from the cortex. Kutch & Valero-Cuevas modeled muscle activity based 
solely on anatomical characteristics and task constraints34 while De Groote et al. modeled muscle activation 
based on task-constraints including a goal to minimize overall muscle activity35. Both authors’ efforts created 
signals which resembled muscle synergies. As a result, these authors argued that it was incorrect to attribute 
signals known as muscle synergies solely to descending neural commands from the cortex. Instead, these signals 
emerge from the interaction of task-constraints, central pattern generators, and sensory feedback without the 
need for descending signals35.

Serving as a counterpoint to the above arguments, recently, multiple authors have reported a relationship 
between cortico-muscular coupling and MSA outcomes in both humans and non-human primates. Liu et al. 
found decreased strength of cortico-muscular coupling after stroke was related to NumSyn and SV differences 
compared to healthy individuals33. Overduin et al. identified that features of muscle synergies, including the 
dimensionality, timing (NCs), and weightings (SVs), could be observed both at the cortical and muscular level 
in primates31.

In conclusion, we found that TMS administered during walking yielded MEPs that differentiated between 
controls and stroke survivors. MEP latency and area were different, as was the latency difference. This investiga-
tion highlights the feasibility of generating MEPs during walking and provides an avenue for future investigation 
comparing MEPs in task-relevant situations. We also found that while no MSA outcome differentiated controls 
from HFH individuals, LFH individuals differed significantly from CON in NumSyn and the Plantarflexion 
Synergy SV measures, but not NC measures. Nevertheless, we found statistical associations between MSA out-
comes and neurophysiological parameters of corticospinal efficacy suggesting there may be some shared neural 
information between these metrics of neuromotor function. MSA calculation methods, including manipulation 
of outcomes for post-processing comparisons are highly dependent on investigator decisions. While it is possible 
to identify differences between groups in each measure, especially within NumSyn, the utility of MSA to provide 
novel, relevant, unbiased information regarding neuromotor dysfunction has yet to be conclusively demonstrated. 
Therefore, interpretation and application of MSA should be performed in conjunction with biomechanical or 
neurophysiological parameters known to reflect motor dysfunction in order to improve the interpretability of 
results.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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