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Differences in interaction lead 
to the formation of different types 
of insulin amyloid
Wakako Mori1, Ryosuke Kawakami2, Yosuke Niko3, Tomohiro Haruta4, Takeshi Imamura2, 
Kentaro Shiraki5 & Tamotsu Zako1*

Insulin balls, localized insulin amyloids formed at the site of repeated insulin injections in patients 
with diabetes, cause poor glycemic control and cytotoxicity. Our previous study has shown that 
insulin forms two types of amyloids; toxic amyloid formed from the intact insulin ((i)-amyloid) and 
less-toxic amyloid formed in the presence of the reducing reagent TCEP ((r)-amyloid), suggesting 
insulin amyloid polymorphism. However, the differences in the formation mechanism and cytotoxicity 
expression are still unclear. Herein, we demonstrate that the liquid droplets, which are stabilized by 
electrostatic interactions, appear only in the process of toxic (i)-amyloid formation, but not in the less-
toxic (r)-amyloid formation process. The effect of various additives such as arginine, 1,6-hexanediol, 
and salts on amyloid formation was also examined to investigate interactions that are important for 
amyloid formation. Our results indicate that the maturation processes of these two amyloids were 
significantly different, whereas the nucleation by hydrophobic interactions was similar. These results 
also suggest the difference in the formation mechanism of two different insulin amyloids is attributed 
to the difference in the intermolecular interactions and could be correlated with the cytotoxicity.

Many neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and prion diseases, are associ-
ated with primary amyloidosis caused by the accumulation of soluble/insoluble protein aggregates and amyloid 
fibrils1,2. Reactive amyloidosis, on the other hand, occurs as a complication of inflammation or tissue degrada-
tion. Insulin ball is one of these complications. Insulin is a 51-residue peptide hormone that consists of two 
polypeptide chains, the A chain (21 residues) and the B chain (30 residues), linked by two disulfide bonds3,4. This 
hormone is important in controlling glucose metabolism and diabetes treatment. However, insulin ball, which 
is essentially consistent with insulin amyloid, occurs against clinical guidelines5. Previous reports showed that 
amyloidosis not only inhibits the absorption of insulin analogs but is also cytotoxic to the surrounding tissue6–8. 
Therefore, the mechanism of the formation of insulin amyloids and their cytotoxicity is now attracting attention.

Our previous studies have shown that bovine insulin and human insulin form two types of amyloids under 
different conditions: a toxic amyloid from intact insulin ((i)-amyloid) and less toxic amyloid formed in the 
presence of the reducing reagent, Tris (2-carboxyethyl) phosphine hydrochloride (TCEP)((r)-amyloid)9,10. It 
was also revealed that this polymorphism of insulin amyloids could be recognized by luminescent conjugated 
oligothiophenes such as pFTAA and BTD2111. Importantly, insulin preparations used for diabetes treatment also 
form these two types of amyloids without TCEP11. Since two types of amyloids with different toxicities are formed 
from the same protein, insulin can be a good model to understand amyloid toxicity. However, the differences 
between (i)-amyloid and (r)-amyloid in the formation mechanism and cytotoxicity expression remain unclear.

This study investigated the mechanisms underlying the formation of (i)-amyloid and (r)-amyloid. First, we 
focus on the possibility of liquid–liquid phase separation (LLPS) based on previous observations12. LLPS leads 
to the formation of distinct liquid droplets within a coexisting liquid milieu. This process is driven by temporary 
interactions, such as electrostatic, hydrophobic, hydrogen bonding, π-π, and cation-π interactions. It has been 
reported that LLPS occurs during the formation of amyloid aggregates of various proteins, such as α-synuclein13, 
tau14, islet amyloid polypeptide15, and TDP-4316,17. The amyloid formation process in the droplet (e.g., nuclea-
tion and maturation) differs depending on the protein. A high concentration of amyloidogenic peptides in the 
liquid droplets might promote the formation of amyloid fibrils18,19. Herein, we investigated whether droplet or 
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phase separation was involved in the formation of human insulin amyloid using optical microscopy, fluores-
cence microscopy, and fluorescence recovery after photobleaching (FRAP), which revealed the movement of 
fluorescence probes within droplets. We also evaluated the effect of 1,6-hexanediol (1,6-HD), which interferes 
with weak hydrophobic interactions and has the property of dissolving droplets20–24 and arginine (Arg), which 
inhibits hydrophobic interactions via cation-π interaction25–30. Anions, which modulate electrostatic interactions, 
were also used to evaluate the intermolecular interactions of proteins.

Our results indicate that the maturation process between (i)-amyloid and (r)-amyloid was significantly dif-
ferent, whereas the nucleation of (i)-amyloid and (r)-amyloid by hydrophobic interactions were similar. The 
droplets, which are stabilized by electrostatic interactions, appeared in the process of (i)-amyloid formation. 
This suggests that LLPS can be related to toxic amyloid formation. In contrast, (r)-amyloid formation was unaf-
fected by droplets and electrostatic interactions. Our results shed new light on the relationship of the important 
interactions for the formation process of toxic amyloid and LLPS/droplets.

Result
Dynamics of insulin amyloids by fluorescence recovery after photobleaching (FRAP).  We 
first observed two types of human insulin amyloids using an optical microscope (Fig. 1a). The (i)-amyloid and 
(r)-amyloid samples were prepared as previously described9,10. Briefly, human insulin was incubated at pH1.6, 
65  °C without ((i)-amyloid) or with ((r)-amyloid) a reducing reagent, TCEP. Interestingly, in the case of (i)-
amyloid, droplets of several micrometers in size were observed 2 h after incubation. In contrast, droplets were 
not observed for (r)-amyloid, but amorphous agglomerate was formed after 5 h of incubation. These results 
suggest the formation of droplets by (i)-amyloid and differences in the amyloid formation mechanism between 
(i)-amyloid and (r)-amyloid.

Figure 1.   Morphology observation and evaluation of the liquidity of insulin amyloids. (a) Images of insulin 
amyloids were observed using an optical microscope. Insulin monomer was incubated for the indicated periods 
((i)-amyloids, upper; (r)-amyloids, lower). (b) Fluorescence images showing the growth of droplets. (c and d) A 
representative spot at the indicated time points (upper) and FRAP measurements of insulin (i)-amyloids (c) and 
(r)-amyloids (d) to measure the change in fluorescence recovery (1 h (black), 2 h (red), 3 h (blue), 4 h (green) 
5 h (orange), and 24 h (cyan) (lower left)) using the NIS-Elements (Ver. 5.21, Nikon) software. The intensities 
were normalized to the fluorescence intensity before bleaching. The orange arrows represent bleaching area. The 
lower right panels are the plots of normalized intensities before bleaching. Data represent the mean ± s.e.m. for 5 
independent experiments. ***P < 0.005 (two-tailed Student’s t-test).
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Next, we further investigated the macroscopic structural difference between (i)-amyloids and (r)-amyloids 
and the liquidity of droplets using a fluorescence microscope and FRAP. Samples of human insulin amyloids 
were taken every hour. To obtain the structure and shape of droplets and aggregates, we used a solvatochromic 
push–pull pyrene dye, PK (1-acetyl-6-piperidyl pyrene), as a polarity sensitive probe with high brightness and 
photostability advantageous for microscopic applications31. PK is known to exhibit turn-on fluorescence in the 
presence of biological samples such as lipid membranes and droplets upon binding to their hydrophobic (i.e. 
lower polarity) site, and therefore expected to monitor the growth of insulin amyloids31–33. As shown in Fig. 1b, 
droplets were observed in the process of (i)-amyloid formation. This result agrees with the results shown in 
Fig. 1a. It was also shown that the fluorescence intensity peaked at 3 h and then decreased (Fig. S1). These 
results suggest that the amount of PK bound to hydrophobic surfaces increased due to (i)-amyloid formation 
and decreased due to the suppression of the influx of PK by the transition of droplets to solid-state. This result 
agrees with previous reports showing the transition to the solid-state of amyloid droplets formed by α-synuclein 
and FUS13,34. In contrast, droplets were not observed during (r)-amyloid formation, and the aggregate size and 
fluorescence intensity increased in a time-dependent manner (Fig. 1a,b, and Fig. S1), which indicates an increase 
in the hydrophobic surface. Interestingly, similar fluorescence images were obtained using thioflavin T (ThT) 
(Fig. S2), supporting that the droplets are filled with amyloids35. It is plausible that PK could bind to the insulin 
amyloid in the droplet since pyrene and its derivatives were shown to bind to various amyloids with hydrophobic 
interactions36,37.

Figure 1c ((i)-amyloid) and Fig. 1d ((r)-amyloid) show FRAP results during the formation of insulin amyloids. 
Notably, the fluorescence recovery rate increased with the incubation time from 1 to 3 h, reaching a maximum of 
about 0.8 (Fig. 1c). This result of (i)-amyloids indicates that the inside of the droplet during (i)-amyloid formation 
was highly fluid, supporting the droplet formation. Then, the fluorescence recovery rate decreased, with a recov-
ery rate of about 0.2, indicating that the droplet is less fluid, possibly due to the suppression of Brownian motion 
by the formation of insoluble aggregates. This decrease is consistent with the observation of fibrillar amyloid 
aggregates after 24 h. On the other hand, the fluorescence recovery rate of (r)-amyloid was significantly small, 
suggesting that droplet was not formed during (r)-amyloid formation (Fig. 1d). It is noted that the fluorescence 
recovery rate remained 0.4 regardless of the incubation time. It is plausible that the inflow into the bleach region 
is due to the Brownian motion of PK. Importantly, these results suggest differences in the formation mechanism 
of (i)-amyloid and (r)-amyloid.

The formation of insulin amyloids was inhibited by arginine and 1,6‑hexanediol as addi-
tives.  As shown in Fig. 1, (i)-amyloid and (r)-amyloid showed differences in macroscopic appearance. We 
hypothesized that this difference was caused by differences in the intermolecular interactions in the aggrega-
tion process. To test this hypothesis, we first evaluated the effects of hydrophobic interactions on the forma-
tion of insulin amyloids using Arg as an additive (Fig. 2a). Arg is positively charged and binds to the protein 
surface through cation-π interactions with hydrophobic sites, including aromatic amino acids38–40. Eventually, 
the positive charge on the protein surface enhances the repulsion between proteins and inhibits hydropho-
bic interactions25–30. Figure 2b shows the change in turbidity during the formation of insulin amyloids in the 
absence and presence of Arg at various concentrations (0, 0.1, 0.2, 0.4, and 0.6 M). The aggregation of (i)-amyloid 
and (r)-amyloid was inhibited in an Arg concentration-dependent manner. This result indicates that cation-π 
interactions between Arg and hydrophobic sites inhibit insulin amyloid formation, indirectly suggesting that 
hydrophobic interactions are important in forming the two types of amyloids. Similar results were obtained by 
the evaluation of insulin amyloids using the ThT assay (Fig. 2c). These results were supported by the scanning 
electron microscopy (SEM) and transmission electron microscopy (TEM) observation showing suppression of 
amyloid formation by 0.6 M Arg, while insulin amyloids were formed in the absence of Arg (Figs. S3 and S4). It 
should be noted that the increasing tendency of turbidity is consistent with that of ThT fluorescence intensity. 
Therefore, it is plausible that the increase in the accumulated β-sheet structure coincides with the increase in 
aggregates. It was also demonstrated that the lag time of insulin amyloids incubated with Arg increased dose-
dependently, suggesting that Arg inhibited the nucleation of insulin amyloids. We also evaluated the amount 
of exposed hydrophobic surface by the measurement of the 1-anilinonaphthalene 8-sulfonate (ANS) fluores-
cence intensity (Fig. 2d). The time-dependent increase in ANS fluorescence intensity suggests that the exposed 
hydrophobic sites increase with the growth of amyloid. Moreover, the ANS fluorescence intensity of (i)-amyloid 
samples at 150 min was higher than that of mature (i)-amyloid. This high intensity may suggest the formation 
of insulin oligomers since previous study has shown that the ANS fluorescence intensity of Aβ42 oligomers is 
higher than that of mature fibrils41. The oligomer formation is supported by the results of native-PAGE, show-
ing that some multimeric bands were observed, and the molecular weights increased in an Arg concentration-
dependent manner (Fig. 2e). This result is consistent with previous studies showing that the nucleus of insulin 
amyloid is formed stepwise from dimer → two dimer units → three dimer units42–44. It is noted that the change 
of ANS fluorescence intensity of the samples without Arg was similar to that of PK (Fig. S1), supporting that PK 
could recognize hydrophobic sites. Collectively, the increase of lag time and the decrease of aggregates and the 
exposed hydrophobic sites by Arg were observed both in (i)-amyloid and (r)-amyloid, suggesting that the nucle-
ation processes of both (i)-amyloid and (r)-amyloid were similar and hydrophobic interactions play a major role 
in both processes.

The effect of 1,6-HD on insulin amyloid formation was then investigated (Fig. 3a). Figure 3b shows the opti-
cal microscopic images of insulin amyloid samples incubated for the indicated periods and those taken soon 
after the addition of 5% 1,6-HD. Circular structures of several micrometers were observed after 120 min incu-
bation of (i)-amyloid, which is consistent with the results shown in Fig. 1. Interestingly, (i)-amyloid aggregates 
were dissolved by the addition of 1,6-HD. This result suggests that (i)-amyloid has the characteristics of liquid 
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droplets since 1,6-HD was known to dissolve droplets20–24. This droplet formation is supported by the results 
obtained by FRAP, which showed high fluidity inside the droplet. These results also suggest that the formation of 
(i)-amyloid is associated with weak hydrophobic interactions, considering the property of 1,6-HD that disrupts 
weak hydrophobic interactions20–24. The decrease in the droplet by the addition of 1,6-HD was supported by the 
measurement of turbidity and ThT fluorescence intensity (Fig. 3c). In contrast, in the (r)-amyloid sample, no 
significant change in the microscopic images was observed for the incubated (r)-amyloid with the addition of 
1,6-HD (Fig. 3b). This result was supported by the results of turbidity and ThT assays (Fig. 3c). Taken together 
with the results of ANS assay above (Fig. 2d), it is plausible that strong hydrophobic interaction in (r)-amyloid 
was not affected by 1,6-HD.

Furthermore, we evaluated insulin amyloid samples incubated in the presence of 1,6-HD at various concen-
trations (0, 5, 10, 15, and 25%) for 300 min (Fig. 3d). The turbidity and ThT fluorescence intensity of (i)-amyloid 
samples decreased in a 1,6-HD concentration-dependent manner, whereas (r)-amyloid samples showed no 
significant decrease, indicating that the prevention effect of 1,6-HD is not on (r)-amyloid formation but on (i)-
amyloid formation (Fig. 3e). This result was supported by the SEM and TEM observations (Figs. S3 and S4). The 
molecular weight of insulin samples incubated in the absence or presence of 1,6-HD at various concentrations 
was analyzed by native-PAGE (Fig. 3f). As shown in the figure, low-molecular-weight multimer increased in 
1,6-HD concentration-manner for the (i)-amyloid samples, whereas (r)-amyloid samples showed no significant 
change. Thus, it is plausible that 1,6-HD affected (i)-amyloids by hydrophobic interactions because the insulin 
amyloid has a hydrophobic accumulated β-sheet structure45, and hence prevents amyloid formation. On the other 
hand, 1,6-HD was less effective in (r)-amyloid formation, and this result is similar to the result shown in Fig. 3b,c.

To further investigate the effect of 1,6-HD on insulin amyloid formation, 25% 1,6-HD was added at various 
incubation times and subsequently incubated for a total of 300 min (Fig. 4a). Figure 4b shows the ThT fluores-
cence intensity of the samples, which were separated into precipitate and supernatant by centrifugation. It should 
be noted that the same protein concentration (5 µM) was used in this assay. ThT fluorescence intensities of (i)-
amyloid samples in the precipitates were relatively low when 1,6-HD was added within 60 min of incubation 
and then increased in a time-dependent manner. This result indicates that (i)-amyloid formation was suppressed 

Figure 2.   Evaluation of the effect of arginine on the formation of insulin amyloids. (a) Experimental scheme of 
(b–e). (i)-amyloid (left) and (r)-amyloid (right) were formed in the absence and presence of 0.1, 0.2, 0.4, 0.6 M 
Arg (black, red, blue, green, and orange, respectively), and were evaluated by Turbidity (b), ThT (c) and ANS 
(d) fluorescence intensity. Graphs of (c) and (d) are fluorescence values in emission wavelength (ThT, 490 nm; 
ANS, 480 nm). Protein concentrations were adjusted to 5 µM. (e) Native-PAGE analysis of 150 μM (i)-amyloids 
and (r)-amyloids formed in the absence and presence of 0.1, 0.2, 0.4, 0.6 M Arg. The rightmost sample is 
an unincubated native insulin.
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Figure 3.   Evaluation of the effect of 1,6-HD on the formation of insulin amyloids. (a) Experimental scheme of 
(b) and (c). (b) Images of insulin amyloids were observed using an optical microscope. Insulin was incubated 
for the indicated periods ((i)-amyloids, top; (r)-amyloids, third from the top), were observed after the additives 
of 5% 1,6-HD ((i)-amyloids: second from the top, (r)-amyloids: fourth from the top). The scale bar is 50 μm. (c) 
Turbidity (upper) and ThT assay (lower) of (i)-amyloid (left) and (r)-amyloid (right)(red) measured after adding 
5% 1,6-HD (blue). Peak fluorescence values at 490 nm (ThT). Protein concentrations were adjusted to 5 µM. (d) 
Experimental scheme of (e) and (f). (e) (i)-amyloid (left) and (r)-amyloid (right) were formed in the absence 
(black) and presence of 5, 10, 15, 25% 1,6-HD (red, blue, green, and orange, respectively), and were evaluated by 
turbidity (upper) and ThT assay (lower). Peak fluorescence values at 490 nm (ThT). Protein concentrations were 
adjusted to 5 µM. (f) Native-PAGE analysis of 150 μM (i)-amyloids and (r)-amyloids formed in the absence and 
presence of 5, 10, 15, 25% 1,6-HD. The rightmost sample is an unincubated native insulin.
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Figure 4.   Evaluation of effect of 1,6-HD added on the formation process of the insulin amyloids. (a) 
Experimental scheme of (b–d). Samples in the precipitate (left) and the supernatant (right) are (i)-amyloids 
(red) and (r)-amyloids (blue) with 25% 1,6-HD added at the indicated time points and incubated for a total 
of 300 min. These samples were centrifuged at 15,000 rpm for 15 min and evaluated using ThT (b). Peak 
fluorescence values at 490 nm (ThT). Protein concentrations were adjusted to 5 µM. (c and d) Cytotoxicity of 
the samples in the precipitate (c) and the supernatant (d) of (i)-amyloids (left) and (r)-amyloids (right) with 25% 
1,6-HD added at the indicated time points and incubated for a total of 300 min. These samples were centrifuged 
at 15,000 rpm for 15 min, and cytotoxicity was evaluated using the MTT assay against HeLa cells. All samples 
were quantified by BCA assay and were diluted to the same protein concentration: 1, 0.5, and 0.1 μM (black, 
red, and blue, respectively). The absorbance was normalized to 100% in PBS. ***P < 0.005 (two-tailed Student’s 
t-test).
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by adding 1,6-HD during the lag time of (i)-amyloid. As shown in Figure S5, SEM observation of (i)-amyloid 
with 1,6-HD, 150 min after the incubation showed fibrillar structures, whereas (i)-amyloid added with 1,6-HD 
during the lag time showed the inhibition of aggregation.

Similar results were obtained for (i)-amyloid samples containing Arg instead of 1,6-HD during the lag time 
(Fig. S6a). This result may be due to hydrophobic interactions inhibition by both Arg and 1,6-HD20,21. However, 
the precipitates containing 1,6-HD or Arg, 150 min after incubation, showed a difference in the effect between 
1,6-HD and Arg on (i)-amyloid formation. The inhibition effect by 1,6-HD was approximately 65% at 150 min, 
whereas the effect by Arg was approximately 33% when compared with the values at 300 min, indicating that 
the effect of Arg was smaller than that of 1,6-HD (Fig. S7a). This difference might be due to the difference in 
the interaction mechanism of Arg and 1,6-HD. Arg interacts with aromatic amino acid residues via cation-π 
interaction to block hydrophobic interactions25–30, whereas 1,6-HD is considered to inhibit weak hydrophobic 
interactions as an aliphatic alcohol20–24. It is also plausible that the maturation of (i)-amyloid is inhibited by the 
dissolution of droplets as a property of 1,6-HD, whereas the disruption of hydrophobic interactions by Arg is not 
enough to inhibit the further aggregation of (i)-amyloid. Moreover, difference in the effect of temporal increases 
of ThT intensities of the supernatant samples between 1,6-HD and Arg was observed. The peak ThT intensity with 
the addition of 1,6-HD at 150 min was approximately 160% higher than the ThT intensity at 300 min, whereas 
that with Arg was approximately 50% higher than the ThT intensity at 300 min (Fig. S7b).

In the case of the (r)-amyloid samples, the ThT fluorescence intensities of the precipitate formed with 1,6-HD 
did not change compared with that of (i)-amyloid (Fig. 4b left). The changes of the fluorescence intensities of the 
supernatant samples of (r)-amyloid were also not significant considering the intensity of the mature (r)-amyloid 
(Fig. 4b right). On the other hand, ThT fluorescence intensities of the precipitate of (r)-amyloid formed in the 
presence of Arg instead of 1,6-HD were relatively low when Arg was added within 120 min of incubation and 
then gradually increased (Fig. S6a). SEM observation of (r)-amyloid to which 1,6-HD was added showed that 1,6-
HD was less effective in the formation of (r)-amyloid, which was consistent with the results of ThT fluorescence 
intensity (Fig. S5). This is caused by the suppression of nucleation within the lag time by inhibiting hydrophobic 
interactions as discussed above (Fig. 2).

Next, we investigated the cytotoxicity of these insulin samples to which 25% 1,6-HD was added during the 
formation of insulin amyloids against HeLa cells using the MTT assay. The cytotoxicity of both the precipitate 
(Fig. 4c) and the supernatant (Fig. 4d) after centrifugation was evaluated. The (i)-amyloid samples to which 1,6-
HD was added within 60 min of incubation were non-toxic, consistent with the suppression of aggregation. The 
cell viabilities of (i)-amyloid samples in the precipitates then decreased in adding time of 1,6-HD dependent 
manner, possibly due to maturation into insoluble species. Importantly, the highest cytotoxicity of the supernatant 
samples of (i)-amyloid was observed for the samples treated with 1,6-HD 150 min after incubation (Fig. 4d). 
This may be due to the presence of soluble toxic species as discussed below. Then, the cytotoxicity was reduced, 
and the cell viability was restored to 70%. This result indicates that toxic species in the supernatant reduced and 
matured into insoluble (i)-amyloid. It was also shown that soluble toxic species were retained due to the dis-
solution of droplets by 1,6-HD. The cell viabilities of (i)-amyloid samples in the precipitates also decreased by 
the addition of Arg (Fig. S6b). On the other hand, the decrease in cell viability of the supernatant of (i)-amyloid 
samples incubated with Arg was not significant (Fig. S6c). This result suggests that oligomeric species are not 
present in the supernatant because of subsequent aggregation despite the addition of Arg. In contrast, the cell 
viabilities of all the (r)-amyloid samples were close to 80–100%, possibly because (r)-amyloid was non-toxic itself. 
Cell viability was also examined by LDH assay and Caspase-3 activity assay (Figs. S8 and S9). LDH release was 
increased for the (i)-amyloid samples to which 0.6 M Arg or 25% 1,6-HD were added, which showed reduced 
cell viability by MTT assay (Fig. 4c,d). Caspase-3 activity was also increased for these insulin amyloid samples. 
These results suggest that cell death was induced by apoptosis. These results are consistent with the previous 
studies showing that apoptosis was induced by soluble species of various amyloidogenic proteins such as amylin, 
Aβ, and TDP4346–48.

To examine the surface properties of the soluble toxic species, the surface hydrophobicity of these samples 
was evaluated by ANS assay (Fig. S10). ANS fluorescence intensities of the precipitated (i)-amyloid samples 
incubated with 25% 1,6-HD and 0.6 M Arg increased in an adding time-dependent manner (Fig. S10a and b, left 
panels). This result indicates that the additives inhibit the further increase of the exposed hydrophobic surface 
of the insoluble aggregates. Interestingly, the supernatant sample of (i)-amyloid to which 1,6-HD was added at 
150 min of incubation time, which was the most cytotoxic, had the highest ANS fluorescence intensity (Fig. S10a, 
right panel). This result suggests that the high ANS intensity is correlated with oligomer formation and that 
the soluble toxic species is preserved by 1,6-HD. In contrast, the ANS fluorescence intensity of the supernatant 
sample of (i)-amyloid increased for the samples to which Arg was added at 0–150 min of incubation times, but 
no significant change was observed for the samples to which Arg was added at incubation times longer than 
150 min (Fig. S10b, right panel). This result suggests that Arg could inhibit the nucleation process by hydrophobic 
interaction, consistent with the results shown in Fig. 2, but the inhibition of hydrophobic interactions by Arg 
could not suppress the aggregation of (i)-amyloid during the maturation process. Since it was shown that droplet 
of (i)-amyloid was formed after incubation around 150 min (Figs. 1 and 3), it was suggested that the toxic oligom-
ers were formed by dissolution of droplet by 1,6-HD, not by the inhibition of hydrophobic interaction by Arg.

The surface properties of the samples used in Fig. 4 were also evaluated with a dot blot assay using the 
oligomer-specific A11 polyclonal antibody, which has been widely used in the specific detection of the forma-
tion of oligomeric species49 (Fig. S11). The (i)-amyloid samples to which 25% 1,6-HD was added at 0 or 60 min 
of incubation were not recognized by the A11 antibody (Fig. S11a). This agrees with the results showing that 
aggregation was inhibited under these conditions (Fig. 4b and Fig. S6). Interestingly, the (i)-amyloid samples for 
which 1,6-HD was added at 150 min after incubation times showed high dot intensities in both the un-centri-
fuged sample and supernatant sample, indicating that the soluble toxic species have an A11-positive oligomeric 
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structure by dissolution effect of the droplet. Importantly, this result also suggests that the oligomeric structure is 
preserved because of the inhibition of maturation by the addition of 1,6-HD. When the (i)-amyloid sample was 
incubated with 0.6 M Arg, the A11-positive oligomeric structure was formed for the samples to which Arg was 
added at 150 min of incubation time (Fig. S11b). In contrast with the result of 1,6-HD, the oligomeric structure 
was not preserved since the intensity was similar to that of the mature (i)-amyloid, suggesting that Arg could not 
inhibit the maturation process of (i)-amyloid (Fig. S11b). This result is also consistent with the result obtained 
by the ANS assay (Fig. S10b).

Effect of Hofmeister series and electrostatic shielding on the formation of insulin amyloids 
assessed by salts.  Previous research has shown that droplets formed during the formation of amyloids 
are stabilized by electrostatic interactions14,18,50. Thus, it is necessary to investigate the relationship between the 
formation of insulin amyloids and electrostatic interactions. We evaluated the effect of NaCl on the forma-
tion of insulin amyloids using the ThT and BCA assays. As shown in Fig. 5a, ThT fluorescence intensities of 
(i)-amyloid samples decreased in a NaCl concentration-dependent manner, possibly because the electrostatic 
interaction is inhibited by the increase in the electrostatic shielding effect with NaCl concentration. In contrast, 
a decrease in ThT fluorescence intensities of (r)-amyloid samples was not observed. The protein concentration 
in the supernatant after centrifugation was quantified to confirm the decrease in aggregates by NaCl (Fig. 5b). 
The results indicate that the amount of protein in the supernatant of the (i)-amyloid samples increase in a NaCl 
concentration-dependent manner, indicating that the amounts of aggregates decrease. These results suggest that 
electrostatic interactions are involved in (i)-amyloid but not (r)-amyloid formation.

Next, we investigated the correlations between the formation of insulin amyloids and the Hofmeister series. 
The Hofmeister series is a parameter that indicates the relative influence of ions on proteins in terms of solu-
bility and stability. Kosmotropic ions (typically NaF and Na2HPO4) have the salting-out effect that decreases 
the solubility of solutes, leading to stabilization and the compact structure of proteins; conversely, chaotropic 
ions (typically NaI) has the salting-in effect of solutes that increase the solubility of proteins51,52. Two types of 
insulin amyloids, (i)-amyloid and (r)-amyloid, were formed in the presence of 100 mM NaI, NaNO3, NaCl, 
NaF, or Na2HPO4, and were evaluated by measuring ThT fluorescence intensity (Fig. 5c). Figure 5d shows the 
correlation between the rate of amyloid formation and the relative viscosity of each salt. The 1/t50 [s-1] values, 
which indicate the reciprocal of t50, the time point at which the amyloid formation is 50% complete, obtained 
from Fig. 5c, were used to determine the rate of amyloid formation53. The B-viscosity coefficient values of the 
Jones-Dole equation, which expresses the relative viscosity of salt solutions as a function of salt concentration, 
were used for the relative viscosity54,55. The order of anions that induce amyloid formation under these condi-
tions was: (i)-amyloid, I- > NO3

- > Cl- > F- > HPO4
2-; (r)-amyloid, HPO4

2- > F- > Cl- > NO3
- > I-. These results sug-

gest that (i)-amyloid formation is accelerated by chaotropic anions, while (r)-amyloid formation is promoted 
by kosmotropic ions. This difference would suggest a difference in affinity for anions between (i)-amyloids and 
(r)-amyloids. It should be noticed that the amyloid morphology was similar for the insulin amyloids formed 
with kosmotropic ions and chaotropic ions (Fig. S12). To investigate the cause of the difference in the affinity, 
the zeta potential of the insoluble aggregate samples of (i)-amyloid and (r)-amyloid was measured (Fig. 5e). The 
positive charge quantity of insoluble aggregates of (i)-amyloid increased, while that of insoluble aggregates of 
(r)-amyloid decreased in an incubation time-dependent manner. This result suggests that the surface charge of 
insoluble aggregates would cause a difference in the type of anion with a high affinity for each insulin amyloid.

Discussion
In this study, the difference in the formation mechanism of insulin amyloids, toxic (i)-amyloid and non-toxic 
(r)-amyloid, was investigated as model amyloid to understand the possible correlation between cytotoxicity and 
the formation mechanism. Based on our results, we propose a schematic representation of the mechanism of (i)-
amyloid and (r)-amyloid (Fig. 6). The importance of hydrophobic interactions was demonstrated by evaluating 
the effect of Arg, which is considered to inhibit hydrophobic interactions through cation-π interactions25–30, on 
the formation of (i)-amyloid and (r)-amyloid. Our results also showed that the addition of Arg inhibited the 
nucleation process of (i)-amyloid and (r)-amyloid. These results indicate the importance of hydrophobic interac-
tions in the nucleation of both types of insulin amyloids, which is consistent with previous reports56. Interestingly, 
a stepwise polymerization reaction of insulin monomer was observed, suggesting that the important interactions 
in the nucleation process of these amyloids were similar.

Importantly, droplet-like structures, which were filled with accumulated β-sheet structures and had high 
liquidity was observed in the process of (i)-amyloid formation, but not in the process of (r)-amyloid forma-
tion. This result suggests that droplet formation may be correlated with amyloid cytotoxicity. The fluorescence 
intensity of PK/ANS of (r)-amyloid increased in an incubation time-dependent manner, possibly due to strong 
hydrophobic interaction in (r)-amyloid formation. These results also suggest a difference in the aggregation 
process between (i)-amyloid and (r)-amyloid. The droplets formation of (i)-amyloid was supported by the dis-
solution of the droplet by 1,6-HD, which has been known to possess the properties of the inhibition of weak 
hydrophobic interactions and the dissolution of the droplet20–24. Interestingly, the formation of (r)-amyloid was 
unaffected by 1,6-HD, possibly because the hydrophobic interactions acting in the formation process of (r)-
amyloid are stronger than those that are inhibited by1,6-HD. Furthermore, the addition of 1,6-HD during the 
forming (i)-amyloid inhibited maturation and retained highly toxic oligomers in the supernatant. Therefore, it 
was suggested that droplets also play an important role in the maturation process of (i)-amyloid. The dissolu-
tion of droplets suppresses the growth of toxic oligomers. This is consistent with the difference in cytotoxicity 
between (i)-amyloid and (r)-amyloid9,10, suggesting that the maturation process is significantly different between 
(i)-amyloid and (r)-amyloid.



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8556  | https://doi.org/10.1038/s41598-022-12212-6

www.nature.com/scientificreports/

Figure 5.   Evaluation of the effect of salts on the formation of insulin amyloids. (a) ThT assay to confirm the 
dependency of the NaCl concentration: (i)-amyloids (red) and (r)-amyloids (blue). Peak fluorescence values at 
490 nm (ThT). Protein concentrations were adjusted to 5 µM. (b) BCA assay of supernatant samples to confirm 
the dependency of the NaCl concentration: (i)-amyloids (red) and (r)-amyloids (blue). Protein concentrations 
were normalized to 2 mg/mL. (c) ThT assay to confirm the effect of salts on the kinetics of insulin amyloid 
formation of (i)-amyloids (left) and (r)-amyloids (right) using the Hofmeister series of salts (100 mM, NaI, 
red; NaNO3, blue; NaCl, black; NaF, green; Na2HPO4, orange). Normalized peak fluorescence values at 490 nm 
(ThT) are shown. Protein concentrations were adjusted to 5 µM. (d) The rank order of the effects of different 
anions on the rate (1/t50) of insulin amyloids formation at 100 mM added salt versus their order in the Jones–
Dole B-coefficient of the Hofmeister series of salts (NaI, red; NaNO3, blue; NaCl, black; NaF, green; Na2HPO4, 
orange). The approximation straight lines for (i)-amyloid  (solid line) and (r)-amyloid (dotted line) are shown. 
(e) ζ potential measurement to confirm the time dependency of the charge: (i)-amyloids (red) and (r)-amyloids 
(blue). These samples were incubated for the indicated periods. The protein concentration in the precipitate was 
adjusted 86 µM (0.5 mg/mL). The average values of three repeated measurements are shown.
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We also evaluated the effect of various salts on insulin amyloid formation to investigate the role of electro-
static interactions. The result using NaCl suggests that electrostatic interactions are involved in (i)-amyloid, but 
not (r)-amyloid formation. This result agrees with previous reports that electrostatic interactions contribute to 
the stabilization of the droplets14,18,39,50. Interestingly, (i)-amyloid formation was promoted by chaotropic ions, 
while (r)-amyloid was promoted by kosmotropic ions. The promotion effect of (i)-amyloid by chaotropic ions 
follows the inverse Hofmeister series. Previous studies have shown that chaotropic anions promote aggregation 

Figure 6.   Scheme of the proposed mechanism for the formation of insulin (i)-amyloids (a) and (r)-amyloids 
(b). (a) The nucleuses of (i)-amyloid (hexagon) form insulin monomer (triangle). The droplets (orange circle) 
are formed in the elongation reaction (rectangle), and the maturation process proceeds in the droplets. (b) The 
nucleuses of (r)-amyloid (square) form insulin monomer (triangle). The maturation process of (r)-amyloid is 
dependent on incubation time (dotted circles).
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by destabilizing proteins54,55,57. Thus, it is considered that the (i)-amyloid formation is accelerated by the desta-
bilizing effect of chaotropic anions. The insoluble products of (r)-amyloid have a lower affinity for anions than 
those of (i)-amyloid and caused the salting-out effect by increasing surface tension. The kosmotropic anions 
induced salting-out and promoted (r)-amyloid formation58,59. This tendency is consistent with previous research 
showing that the aggregation of TDP-43 is related to LLPS and is promoted by the inverse Hofmeister series17. 
Therefore, a possible relationship between the inverse Hofmeister series and the occurrence of droplets/LLPS 
can also be suggested.

In summary, this study demonstrated the difference in the formation mechanisms of (i)-amyloid and (r)-
amyloid. The similar nucleation processes of (i)-amyloid and (r)-amyloid are affected by hydrophobic inter-
actions. Droplets stabilized by electrostatic interactions work during the maturation process of (i)-amyloid, 
whereas (r)-amyloid is formed by strong hydrophobic interactions. Although those experiments were carried 
out at unphysiological conditions (65 °C and pH 1.6), it is noted that droplet was also observed for (i)-amyloid 
at physiological conditions (37 °C and pH 7.4) (Fig. S13a), and (i)-amyloid formation was inhibited by the sup-
pression of electrostatic interactions (Fig. S13b), supporting a physiological relevance of this study. Although 
future research should be carried out to investigate a more detailed mechanism of the formation of insulin amy-
loids from insulin preparations and the exhibition of cytotoxicity, these insights into the difference between the 
formation mechanism of two different insulin amyloids and their interactions may shed new light on clarifying 
the common underlying mechanism of the amyloid formation and the development of cytotoxicity.

Materials and methods
Materials.  Human insulin was purchased from Wako (Fujifilm, Tokyo, Japan). Tris (2-carboxyethyl) phos-
phine hydrochloride (TCEP) was obtained from Sigma-Aldrich (St. Louis, MO, USA). 1,6-hexanediol (1,6-HD), 
(L)-arginine (Arg), and Ficoll(R) 400 were purchased from Wako (Tokyo, Japan). PK was prepared as previously 
described32. All other reagents were of analytical grade. Aqueous solutions were prepared using deionized Milli-
Q water (Millipore, Billerica, MA, USA).

Preparation of insulin amyloids.  2 mg/mL (344 µM) insulin solutions were freshly prepared for each 
(i)-amyloid formation experiment in 25 mM HCl, 100 mM NaCl, and adjusted to pH 1.643,60. (r)-Amyloid for-
mation was induced by incubating the insulin solution with 50 mM TCEP. The two types of insulin solution 
were incubated at 65 °C for 5 h without agitation. To prepare the precipitated and supernatant samples, insulin 
amyloids incubated were centrifuged at 15,000 rpm for 15 min. Protein concentrations in the supernatant were 
analyzed using a BCA protein assay kit (Thermo Fisher Scientific, Waltham, MA, USA). Precipitated and super-
natant samples were diluted with PBS to equal the protein concentration of each sample. Insulin solutions with 
10% Ficoll were incubated at 65 °C for 5 h without agitation (pH 1.6) to prepare the insulin amyloids for FRAP 
experiments.

To estimate the effect of additives on insulin amyloid formation, Arg and 1,6-HD were added to the insulin 
solutions at different time points at various concentrations (0–0.6 M Arg and 0–25% 1,6-HD). It was confirmed 
that pH of the solution was not changed by the addition of Arg and 1,6-HD at the examined concentrations (data 
not shown). To investigated the correlations between the formation of insulin amyloids and the Hofmeister series, 
(i)-amyloid and (r)-amyloid, were formed in the presence of 100 mM NaI, NaNO3, NaCl, NaF or Na2HPO4.

Turbidity measurement.  Turbidity measurements (optical density at 600 nm) were performed using a 
V-670 UV–VIS–NIR spectrophotometer (Jasco, Tokyo, Japan). Insulin samples (15 μL) were diluted in PBS to a 
final volume of 150 μL, and a final concentration of 0.2 mg/mL. The turbidity of the above samples was measured 
at 600 nm at 25 °C.

Fluorescence measurement.  Fluorescence spectra were measured at 25  °C with a microplate reader 
(Synergy H1, BioTek, Winooski, VT, USA). The fluorescence intensities of insulin amyloids were measured in 
the presence of ThT or ANS in PBS (pH 7.4) as described10. Each sample was prepared with 5 μM protein and 
1 μM probe concentration. The excitation wavelength of ThT was set to 420 nm, and the emission was measured 
at 490 nm. The excitation wavelength of the ANS was set to 360 nm, and the emission was measured at 480 nm.

Native polyacrylamide gel electrophoresis (native‑PAGE).  Insulin samples (344 μM) were mixed 
with the native-PAGE sample buffer at 0.87 mg/mL final protein concentration. Insulin samples (15 μL) were 
mixed with 5 μL of native sample buffer and run on a 10% acrylamide gel under native conditions. Unstained 
protein standards (low range, BioRad, Hercules, CA, USA) and unincubated insulin were used to determine the 
apparent molecular weights of the peptides and aggregates.

Scanning electron microscopy (SEM).  Insulin samples (5 μM) were dropped onto a silicon wafer and 
allowed to air-dry. The samples were observed at an acceleration voltage of 15 kV using a field-emission scanning 
electron microscope (FE-SEM, JSM7001FA, JEOL, Tokyo, Japan).

Transmission electron microscope (TEM).  TEM measurements were performed using a JEM-1400 
Flash transmission electron microscope (JEOL, Tokyo, Japan) operated at 120 kV. Samples were diluted with 
distilled water and negatively stained with 2% (w/v) uranyl acetate solution on copper grids (F-150 grid, Nisshin 
EM, Tokyo, Japan) covered by carbon-coated Formvar film.
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MTT assay.  Cell viability was determined using an MTT cell proliferation kit (Roche, Basel, Switzerland), as 
previously described10. HeLa cells were maintained in EMEM medium with 10% fetal bovine serum, penicillin 
(100 U/mL), and streptomycin (100 mg/mL) in 5% CO2 at 37 °C. Cells were plated at a density of 25,000 cells/
well in 96-well plates and grown overnight. Cells were subsequently incubated in the absence (control) and pres-
ence of insulin amyloids for 24 h. After 24 h of incubation, 10 µL of MTT reagent was added to each well, accord-
ing to the manufacturer’s directions. The cells were then incubated for 4 h at 37 °C. The reaction was stopped by 
adding 100 µL of 10% SDS in 10 mM HCl. Plates were read at 562 nm using a microplate reader (BioTek). Each 
data point was the average of triplicates.

LDH assay.  We performed LDH assays using an LDH cytotoxicity detection kit (Takara-Bio, Tokyo, Japan) 
according to the manufacturer’s instructions. HeLa cells were plated at a density of 25,000 cells/well in 96-well 
plates and grown overnight. Cells were subsequently incubated in the absence (negative control), and presence 
of 0.1% Tween20 (positive control) or insulin amyloid samples for 24 h. After 24 h of incubation, 100 µL of rea-
gent mixture was added to each well. The plates were then incubated for 30 min at room temperature. Plates were 
read at 490 nm using a microplate reader (BioTek). Each data point was the average of triplicates.

Caspase‑3 activity assay.  The caspase-3 activity assay was carried out using the caspase-3 fluorometric 
assay kit (Sigma-Aldrich) done according to the manufacturer’s instructions. HeLa cells were plated at a density 
of 25,000 cells/well in 96-well plates and grown overnight and were incubated with insulin amyloid samples for 
24 h. After 24 h of incubation, cells were collected and lysed in cell lysis buffer, 200 µL of assay buffer was added 
to each well. The plates were then incubated for 60 min at 37 °C. Fluorescence was measured using a microplate 
reader (BioTeK, ex: 360 nm/em: 460 nm). Each data point was the average of triplicates.

Dot blot.  Insulin samples (2 μL) were spotted onto a nitrocellulose membrane (0.22 μm, GE Healthcare Life 
Sciences, Buckinghamshire, UK). The membrane was blocked with 5% skim milk in 5% BSA/Tris-buffered saline 
(TBS) containing 0.01% Tween 20 for 1 h at room temperature. Subsequently, the membrane was incubated with 
primary anti-insulin antibody (1:3000, ab181547, Abcam, Cambridge, MA, USA) and anti-oligomer antibody 
(1:3000, A11, Invitrogen, Carlsbad, CA, USA) for 24 h. The following day, the membrane was incubated with 
the secondary anti-rabbit IgG antibody (1:10,000; R&D Systems, Minneapolis, MN, USA) for 1 h, as described10. 
After washing with TBST, proteins were visualized using an ECL blotting detection kit (Bio-Rad) according to 
the manufacturer’s instructions. Luminescence was detected with a Las 4000 mini luminescent image analyzer 
(Fujifilm, Tokyo, Japan) using the Image Reader Las 4000 software. ImageJ was used to determine the intensity 
of each dot, which was used to quantify the amount of antibodies on the membrane.

FRAP.  FRAP experiments were carried out on particles of 2.0 μm side (0.5 μm for the (i)-Amyloid samples 
incubated for 1 h) by photobleaching a square region encompassing the droplet using a Nikon upright confocal 
microscope A1R (Tokyo, Japan) with a water immersion objective lens (Plan Apo IR 60 × WI DIC N2). Bleaching 
was performed using a 403 nm solid-state laser at 20% power for iterations at 0.237 s bleaching time per iteration 
to bleach the particle completely. The particle was imaged over time by a time series at no intervals, including 
2.59 s before bleaching and up to 41.45 s after bleaching. All measurements were performed in quintuplicate 
using the NIS-Elements (Ver. 5.21, Nikon) software.

Fluorescence recovery curves were constructed from the total intensity fluorescence values in the unbleached 
regions of interest (ROIs) for each frame corrected for the background and laser scanning bleaching. To calculate 
the normalized fluorescence intensity, I (n), the following equation was used:

I (t) = fluorescence intensity at time t. I (m) = minimum of fluorescence intensity. r = Ic/Ic0 rate of photo-
bleaching. Ic = fluorescence intensity of the ROI after photo-bleaching. Ic0 = fluorescence intensity of the ROI 
before photo-bleaching.

The normalized and background-corrected fluorescence recovery curves were fitted using a single exponential 
recovery function. The fitted equation is as follows:

A = mobile fraction. k = decay rate.
The half time of the recovery (t1/2) was calculated from61,

The diffusion coefficient (D) is calculated by the following equation62.

I(n) =
[I(t)− I(m)]

r

I(t) = A

(

1− e
−kt

)

t1/2 =
ln(2)

k

D =

0.244R2

t1/2
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R = radius of the bleached ROIs. t1/2 = half-time of the recovery.

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).
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